Changes for page LSS-P - Communication Protocol
Last modified by Eric Nantel on 2024/07/03 09:42
Change comment: There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,8 +1,6 @@ 1 1 {{warningBox warningText="More information coming soon"/}} 2 2 3 3 4 - 5 - 6 6 (% class="wikigeneratedid" id="HTableofContents" %) 7 7 **Page Contents** 8 8 ... ... @@ -10,13 +10,13 @@ 10 10 11 11 = Serial Protocol = 12 12 13 -The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost e verything onemight expecttobebletoconfigure forasmartservomotor isavailable.11 +The Lynxmotion Smart Servo (LSS) PRO serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's Smart Servo (LSS) protocol, which itself was based on the SSC-32 & SSC-32U RC servo controllers. The LSS PRO series and normal LSS share many of the same commands, but because of higher angular precision, slightly different operation and different features, the two protocols do not fully overlap. 14 14 15 15 In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol. 16 16 17 17 = Action Commands = 18 18 19 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]] (described below). Action commands are sent serially to the servo 'sRx pinand must be sent in the following format:17 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]] (described below). Action commands are sent serially to the servo and must be sent in the following format: 20 20 21 21 1. Start with a number sign **#** (Unicode Character: U+0023) 22 22 1. Servo ID number as an integer (assigning an ID described below) ... ... @@ -25,9 +25,9 @@ 25 25 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 26 26 27 27 ((( 28 -Ex: #5D1 8000<cr>26 +Ex: #5D130000<cr> 29 29 30 -This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1 800 intenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.28 +This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (13000 in hundredths of degrees) of 130.00 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 31 31 32 32 == Modifiers == 33 33 ... ... @@ -43,13 +43,14 @@ 43 43 1. Modifier value in the correct units with no decimal 44 44 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 45 45 46 -Ex: #5D1 800T1500<cr><div class="wikimodel-emptyline"></div>44 +Ex: #5D13000T1500<cr><div class="wikimodel-emptyline"></div> 47 47 48 -This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 1 80.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div>46 +This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div> 49 49 <div class="wikimodel-emptyline"></div></div></div> 50 50 49 +<h2>Queries</h2> 51 51 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 52 -Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex".Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div>51 +Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div> 53 53 54 54 1. Start with a number sign **#** (Unicode Character: U+0023) 55 55 1. Servo ID number as an integer ... ... @@ -56,9 +56,9 @@ 56 56 1. Query command (one to four letters, no spaces, capital or lower case) 57 57 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 58 58 59 -Ex: #5QD<cr> Query the position in ( tenth of) degrees for servo with ID #5<div class="wikimodel-emptyline"></div>58 +Ex: #5QD<cr> Query the position in (hundredths of) degrees for servo with ID #5<div class="wikimodel-emptyline"></div> 60 60 61 -The query will return a serial string (almost instantaneously) via the servo's Tx pinwiththe following format:60 +The query will return a serial string (almost instantaneously) via the servo's Tx in the following format: 62 62 63 63 1. Start with an asterisk * (Unicode Character: U+0023) 64 64 1. Servo ID number as an integer ... ... @@ -68,15 +68,17 @@ 68 68 69 69 There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div> 70 70 71 -Ex: *5QD1 800<cr><div class="wikimodel-emptyline"></div>70 +Ex: *5QD13000<cr><div class="wikimodel-emptyline"></div> 72 72 73 -This indicates that servo #5 is currently at 1 80.0 degrees (1800 tenths of degrees).72 +This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees). 74 74 <div class="wikimodel-emptyline"></div></div></div> 75 75 75 +<h2>Configurations</h2> 76 + 76 76 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 77 77 Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div> 78 78 79 -These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RCmode canbefound on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative.This means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>80 +These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div> 80 80 81 81 The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div> 82 82 ... ... @@ -86,43 +86,43 @@ 86 86 1. Configuration value in the correct units with no decimal 87 87 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 88 88 89 -Ex: #5CO-50<cr><div class="wikimodel-emptyline"></div> 90 +Ex: #5CO-500<cr><div class="wikimodel-emptyline"></div> 90 90 91 -This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div>92 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div> 92 92 93 93 **Session vs Configuration Query**<div class="wikimodel-emptyline"></div> 94 94 95 95 By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div> 96 96 97 -Ex: #5CSR 20<cr> immediately sets the maximum speed for servo #5 to20rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>98 +Ex: #5CSR10<cr> immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div> 98 98 99 99 After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div> 100 100 101 101 #5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas<div class="wikimodel-emptyline"></div> 102 102 103 -#5QSR1<cr> would return *5QSR 20<cr> which represents the value in EEPROM104 +#5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM 104 104 <div class="wikimodel-emptyline"></div></div></div> 105 105 106 106 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 107 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div> 108 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div> 108 108 109 109 [[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div> 110 110 111 111 In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div> 112 112 113 -#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)<div class="wikimodel-emptyline"></div> 114 +#1D-3000<cr> This causes the servo to move to -30.00 degrees (green arrow)<div class="wikimodel-emptyline"></div> 114 114 115 -#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)<div class="wikimodel-emptyline"></div> 116 +#1D21000<cr> This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)<div class="wikimodel-emptyline"></div> 116 116 117 -#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div> 118 +#1D-42000<cr> This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div> 118 118 119 -Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.<div class="wikimodel-emptyline"></div> 120 +Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees.<div class="wikimodel-emptyline"></div> 120 120 121 -#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div> 122 +#1D48000<cr> This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div> 122 122 123 -#1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).<div class="wikimodel-emptyline"></div> 124 +#1D33000<cr> would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).<div class="wikimodel-emptyline"></div> 124 124 125 -If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°]. 126 +If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.00 degrees before power is cycled, upon power up the servo's position will be read as +120.00 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.00°, 180.00°]. 126 126 <div class="wikimodel-emptyline"></div></div></div> 127 127 128 128 {{/html}} ... ... @@ -132,332 +132,154 @@ 132 132 133 133 **Latest firmware version currently : v0.0.780** 134 134 135 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]] 136 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 137 -| |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Soft reset. See command for details. 138 -| |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Revert to firmware default values. See command for details 139 -| |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Update firmware. See command for details. 140 -| |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 141 -| |[[**C**hange to **RC**>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CRC|(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Change to RC mode 1 (position) or 2 (wheel). 142 -| |[[**ID** #>>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %) |(% style="text-align:center" %)✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 143 -| |[[**B**audrate>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QB|(% style="text-align:center" %)CB|(% style="text-align:center" %) |(% style="text-align:center" %)✓|115200| |Reset required after change. 136 +|(% colspan="8" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]] 137 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 138 +| |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Soft reset. See command for details. 139 +| |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Revert to firmware default values. See command for details 140 +| |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Update firmware. See command for details. 141 +| |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) | | | 142 +| |[[**E**nable CAN **T**erminal>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0 or 1|0: Disable 1: Enable 143 +| |[[**ID** Number >>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 144 +| |[[**U**SB **C**onnection State>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected 145 +| |**Q**uery **F**irmware **R**elease|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | | 144 144 145 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]] 146 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 147 -| |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°| 148 -| |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°| 149 -| |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation" 150 -| |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM28WR29"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation" 151 -| |[[Position in **P**WM>>||anchor="HPositioninPWM28P29"]]|(% style="text-align:center" %)P|(% style="text-align:center" %)QP|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|Inherited from SSC-32 serial protocol 152 -| |[[**M**ove in PWM (relative)>>||anchor="H28Relative29MoveinPWM28M29"]]|(% style="text-align:center" %)M|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us| 153 -| |[[**R**aw **D**uty-cycle **M**ove>>||anchor="HRawDuty-cycleMove28RDM29"]]|(% style="text-align:center" %)RDM|(% style="text-align:center" %)QMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW 154 -| |[[**Q**uery Status>>||anchor="HQueryStatus28Q29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1 to 8 integer|See command description for details 155 -| |[[**L**imp>>||anchor="HLimp28L29"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 156 -| |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 147 +|(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]] 148 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 149 +| |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) | |1/100°| 150 +| |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) | |1/100°| 151 +| |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) | |°/s|A.K.A. "Speed mode" or "Continuous rotation" 152 +| |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM28WR29"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) | |RPM|A.K.A. "Speed mode" or "Continuous rotation" 153 +| |[[**Q**uery Motion Status>>||anchor="HQueryStatus28Q29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) | |1 to 8 integer|See command description for details 154 +| |[[**L**imp>>||anchor="HLimp28L29"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Removes power from stepper coils 155 +| |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Stops (halts) motion profile and holds last position 157 157 158 -|(% colspan=" 10" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]]159 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style=" text-align:center;width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**160 -| |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM| (% style="text-align:center" %) |(% style="text-align:center" %)✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile161 -| |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC| (% style="text-align:center" %)✓|(% style="text-align:center" %)✓|5| |Affects motion only when motion profile is disabled (EM0)162 -| |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO| (% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|1/10°|163 -| |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR| (% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1800|1/10°|164 -| |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS| (% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|-4 to +4 integer|Suggested values are between 0 to +4165 -| |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH| (% style="text-align:center" %)✓|(% style="text-align:center" %)✓|4|-10 to +10 integer|166 -| |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA| (% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).167 -| |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD| (% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).168 -| |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG| (% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)169 -| |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD| (% style="text-align:center" %)✓|(% style="text-align:center" %)✓|No value|1/10°|Reset required after change.170 -| |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) | (% style="text-align:center" %) |(% style="text-align:center" %)✓|1023|255 to 1023 integer|171 -| |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD| (% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa172 -| |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR| (% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa157 +|(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]] 158 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 159 +| |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|1| |EM1: trapezoidal motion profile / EM0: no motion profile 160 +| |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|5| |Affects motion only when motion profile is disabled (EM0) 161 +| |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|0|1/10°| 162 +| |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|1800|1/10°| 163 +| |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|0|-4 to +4 integer|Suggested values are between 0 to +4 164 +| |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|4|-10 to +10 integer| 165 +| |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 166 +| |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 167 +| |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise) 168 +| |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|No value|1/10°|Reset required after change. 169 +| |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |1023|255 to 1023 integer| 170 +| |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa 171 +| |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa 173 173 174 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]] 175 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 176 -| |[[**S**peed>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)S|(% style="text-align:center" %)QS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |uS/s |For P action command 177 -| |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |0.1°/s|For D and MD action commands 178 -| |[[**T**imed move>>||anchor="HTimedmove28T29modifier"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |ms|Modifier only for P, D and MD. Time can change based on load 179 -| |[[**C**urrent **H**old>>||anchor="HCurrentHalt26Hold28CH29modifier"]]|(% style="text-align:center" %)CH|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR 180 -| |[[**C**urrent **L**imp>>||anchor="HCurrentLimp28CL29modifier"]]|(% style="text-align:center" %)CL|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR 173 +|(% colspan="8" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]] 174 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 175 +| |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) | |1°/s|For D and MD action commands 176 +| |[[**T**imed move>>||anchor="HTimedmove28T29modifier"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) | |ms|Time associated with D, MD commands 181 181 182 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]] 183 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 184 -| |[[**Q**uery **V**oltage>>||anchor="HQueryVoltage28QV29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QV|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mV| 185 -| |[[**Q**uery **T**emperature>>||anchor="HQueryTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°C| 186 -| |[[**Q**uery **C**urrent>>||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA| 187 -| |[[**Q**uery **M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1) 188 -| |[[**Q**uery **F**irmware Version>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 189 -| |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the unique serial number for the servo 178 +|(% colspan="8" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]] 179 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 180 +| |[[**Q**uery PCB **T**emperature>>||anchor="HQueryTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) | |°C| 181 +| |[[**Q**uery **C**urrent>>||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) | |mA|Nominal RMS value to stepper motor driver IC. 182 +| |[[**Q**uery **M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) | | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1) 183 +| |[[**Q**uery **F**irmware Version>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) | | | 184 +| |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) | | |Returns the unique serial number for the servo 185 +| |**Q**uery **T**emperature **P**robe|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | | |Queries temperature probe fixed to stepper motor 186 +| |**Q**uery **T**emp of **C**ontroller|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW, QTCE|(% style="text-align:center" %) | | |((( 187 +QTCW: Queries the temperature status of the motor controller (pre-warning) 190 190 191 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]] 192 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 193 -| |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White 194 -| |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 63 integer|Reset required after change. See command for details. 189 +QTCE: Queries the temperature status of the motor controller (over-temp error) 190 +))) 191 +| |**Q**uery **C**urrent **S**peed |(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | | |Queries the motor controller's calculated speed 192 +| |**Q**uery **I**MU Linear **X**|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2| 193 +| |**Q**uery **I**MU Linear **Y**|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2| 194 +| |**Q**uery **I**MU Linear **Z**|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2| 195 +| |**Q**uery **I**MU Angular Accel **α** |(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha) 196 +| |**Q**uery **I**MU Angular Accel **β**|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta) 197 +| |**Q**uery **I**MU Angular Accel **γ**|(% style="text-align:center" %) |(% style="text-align:center" %)QIC / QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma) 195 195 199 +|(% colspan="8" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]] 200 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 201 +| |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White 202 +| |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB| |0 to 63 integer|Reset required after change. See command for details. 203 + 196 196 = (% style="color:inherit; font-family:inherit" %)Details(%%) = 197 197 198 198 == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) == 199 199 200 -====== __Reset__ ====== 201 201 202 -{{html wiki="true" clean="false"}} 203 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 204 -Ex: #5RESET<cr><div class="wikimodel-emptyline"></div> 205 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). 206 -Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div> 207 -</div></div> 208 -{{/html}} 209 +====== ====== 209 209 210 -====== __Default & confirm__ ====== 211 - 212 -{{html wiki="true" clean="false"}} 213 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 214 -Ex: #5DEFAULT<cr><div class="wikimodel-emptyline"></div> 215 - 216 -This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.<div class="wikimodel-emptyline"></div> 217 - 218 -EX: #5DEFAULT<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 219 - 220 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<div class="wikimodel-emptyline"></div> 221 - 222 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 223 -</div></div> 224 -{{/html}} 225 - 226 -====== __Update & confirm__ ====== 227 - 228 -{{html wiki="true" clean="false"}} 229 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 230 -Ex: #5UPDATE<cr><div class="wikimodel-emptyline"></div> 231 - 232 -This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<div class="wikimodel-emptyline"></div> 233 - 234 -EX: #5UPDATE<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 235 - 236 -Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div> 237 - 238 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 239 -</div></div> 240 -{{/html}} 241 - 242 -====== __Confirm__ ====== 243 - 244 -{{html wiki="true" clean="false"}} 245 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 246 -Ex: #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 247 - 248 -This command is used to confirm changes after a Default or Update command.<div class="wikimodel-emptyline"></div> 249 - 250 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 251 -</div></div> 252 -{{/html}} 253 - 254 -====== __Configure RC Mode (**CRC**)__ ====== 255 - 256 -{{html wiki="true" clean="false"}} 257 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 258 -This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.<div class="wikimodel-emptyline"></div> 259 - 260 -|**Command sent**|**Note** 261 -|ex: #5CRC1<cr>|Change to RC position mode. 262 -|ex: #5CRC2<cr>|Change to RC continuous rotation (wheel) mode. 263 -|ex: #5CRC*<cr>|Where * is any value other than 1 or 2 (or no value): stay in smart mode.<div class="wikimodel-emptyline"></div> 264 - 265 -EX: #5CRC2<cr><div class="wikimodel-emptyline"></div> 266 - 267 -This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.<div class="wikimodel-emptyline"></div> 268 - 269 -**Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.<div class="wikimodel-emptyline"></div> 270 -</div></div> 271 -{{/html}} 272 - 273 -====== __Identification Number (**ID**)__ ====== 274 - 275 -{{html wiki="true" clean="false"}} 276 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 277 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div> 278 - 279 -Query Identification (**QID**)<div class="wikimodel-emptyline"></div> 280 - 281 -EX: #254QID<cr> might return *QID5<cr><div class="wikimodel-emptyline"></div> 282 - 283 -When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.<div class="wikimodel-emptyline"></div> 284 - 285 -Configure ID (**CID**)<div class="wikimodel-emptyline"></div> 286 - 287 -Ex: #4CID5<cr><div class="wikimodel-emptyline"></div> 288 - 289 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div> 290 -</div></div> 291 -{{/html}} 292 - 293 -====== __Baud Rate__ ====== 294 - 295 -{{html clean="false" wiki="true"}} 296 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 297 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div> 298 - 299 -Query Baud Rate (**QB**)<div class="wikimodel-emptyline"></div> 300 - 301 -Ex: #5QB<cr> might return *5QB115200<cr><div class="wikimodel-emptyline"></div> 302 - 303 -Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.<div class="wikimodel-emptyline"></div> 304 - 305 -Configure Baud Rate (**CB**)<div class="wikimodel-emptyline"></div> 306 - 307 -**Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.<div class="wikimodel-emptyline"></div> 308 - 309 -Ex: #5CB9600<cr><div class="wikimodel-emptyline"></div> 310 - 311 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div> 312 -</div></div> 313 -{{/html}} 314 - 315 -====== __Automatic Baud Rate__ ====== 316 - 317 -{{html clean="false" wiki="true"}} 318 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 319 -This option allows the LSS to listen to it's serial input and select the right baudrate automatically.<div class="wikimodel-emptyline"></div> 320 - 321 -Query Automatic Baud Rate (**QABR**)<div class="wikimodel-emptyline"></div> 322 - 323 -Ex: #5QABR<cr> might return *5ABR0<cr><div class="wikimodel-emptyline"></div> 324 - 325 -Enable Baud Rate (**ABR**)<div class="wikimodel-emptyline"></div> 326 - 327 -Ex: #5QABR1<cr><div class="wikimodel-emptyline"></div> 328 -Enable baudrate detection on first byte received after power-up.<div class="wikimodel-emptyline"></div> 329 - 330 -Ex: #5QABR2,30<cr><div class="wikimodel-emptyline"></div> 331 -Enable baudrate detection on first byte received after power-up. If no data for 30 seconds enable detection again on next byte.<div class="wikimodel-emptyline"></div> 332 - 333 -Warning: ABR doesnt work well with LSS Config at the moment.<div class="wikimodel-emptyline"></div> 334 -</div></div> 335 -{{/html}} 336 - 337 337 == Motion == 338 338 339 339 ====== __Position in Degrees (**D**)__ ====== 340 340 341 -{{html wiki="true" clean="false"}} 342 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 343 -Example: #5D1456<cr><div class="wikimodel-emptyline"></div> 344 344 345 - This moves the servo toan angleof145.6degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction.<divclass="wikimodel-emptyline"></div>216 +Example: #5D1456<cr> 346 346 347 - Largervaluesarepermittedandallowformulti-turnfunctionalityusingthe conceptofvirtual position(explainedabove).<divclass="wikimodel-emptyline"></div>218 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. 348 348 349 - QueryPosition inDegrees(**QD**)<divclass="wikimodel-emptyline"></div>220 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). 350 350 351 - Example: #5QD<cr>mightreturn*5QD132<cr><div class="wikimodel-emptyline"></div>222 +Query Position in Degrees (**QD**) 352 352 353 - Thismeansthe servois locatedat 13.2degrees.<divclass="wikimodel-emptyline"></div>224 +Example: #5QD<cr> might return *5QD132<cr> 354 354 355 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 356 -Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div> 226 +This means the servo is located at 13.2 degrees. 357 357 358 - Ex: #5QDT<cr> might return*5QDT6783<cr><divclass="wikimodel-emptyline"></div>228 +Query Target Position in Degrees (**QDT**) 359 359 230 +Ex: #5QDT<cr> might return *5QDT6783<cr> 231 + 360 360 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 361 -<div class="wikimodel-emptyline"></div></div></div> 362 -{{/html}} 363 363 364 364 ====== __(Relative) Move in Degrees (**MD**)__ ====== 365 365 366 -{{html wiki="true" clean="false"}} 367 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 368 -Example: #5MD123<cr><div class="wikimodel-emptyline"></div> 369 369 237 +Example: #5MD123<cr> 238 + 370 370 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 371 -<div class="wikimodel-emptyline"></div></div></div> 372 -{{/html}} 373 373 374 374 ====== __Wheel Mode in Degrees (**WD**)__ ====== 375 375 376 -{{html wiki="true" clean="false"}} 377 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 378 -Ex: #5WD90<cr><div class="wikimodel-emptyline"></div> 379 379 380 - This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The exampleabove would have the servo rotate at90.0 degrees per second clockwise (assuming factory default configurations).<divclass="wikimodel-emptyline"></div>244 +Ex: #5WD90<cr> 381 381 382 - QueryWheelMode inDegrees(**QWD**)<divclass="wikimodel-emptyline"></div>246 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations). 383 383 384 - Ex: #5QWD<cr> might return*5QWD90<cr><divclass="wikimodel-emptyline"></div>248 +Query Wheel Mode in Degrees (**QWD**) 385 385 250 +Ex: #5QWD<cr> might return *5QWD90<cr> 251 + 386 386 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 387 -<div class="wikimodel-emptyline"></div></div></div> 388 -{{/html}} 389 389 390 390 ====== __Wheel Mode in RPM (**WR**)__ ====== 391 391 392 -{{html wiki="true" clean="false"}} 393 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 394 -Ex: #5WR40<cr><div class="wikimodel-emptyline"></div> 395 395 396 - This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximumrpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at40rpm clockwise (assuming factory default configurations).<divclass="wikimodel-emptyline"></div>257 +Ex: #5WR40<cr> 397 397 398 - QueryWheelMode inRPM(**QWR**)<divclass="wikimodel-emptyline"></div>259 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). 399 399 400 - Ex: #5QWR<cr> might return*5QWR40<cr><divclass="wikimodel-emptyline"></div>261 +Query Wheel Mode in RPM (**QWR**) 401 401 263 +Ex: #5QWR<cr> might return *5QWR40<cr> 264 + 402 402 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 403 -<div class="wikimodel-emptyline"></div></div></div> 404 -{{/html}} 405 405 406 -====== __Positionin PWM (**P**)__======267 +====== ====== 407 407 408 -{{html wiki="true" clean="false"}} 409 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 410 -Example: #5P2334<cr><div class="wikimodel-emptyline"></div> 269 +====== __(Relative) Move in Degrees (**MD**)__ ====== 411 411 412 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.<div class="wikimodel-emptyline"></div> 271 +====== 272 +Example: #5M1500<cr> ====== 413 413 414 -Query Position in Pulse (**QP**)<div class="wikimodel-emptyline"></div> 274 +(% class="wikigeneratedid" %) 275 +====== The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. ====== 415 415 416 -Example: #5QP<cr> might return *5QP2334<div class="wikimodel-emptyline"></div> 417 - 418 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 419 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 420 -<div class="wikimodel-emptyline"></div></div></div> 421 -{{/html}} 422 - 423 -====== __(Relative) Move in PWM (**M**)__ ====== 424 - 425 -{{html wiki="true" clean="false"}} 426 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 427 -Example: #5M1500<cr><div class="wikimodel-emptyline"></div> 428 - 429 -The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 430 -<div class="wikimodel-emptyline"></div></div></div> 431 -{{/html}} 432 - 433 -====== __Raw Duty-cycle Move (**RDM**)__ ====== 434 - 435 -{{html wiki="true" clean="false"}} 436 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 437 -Example: #5RDM512<cr><div class="wikimodel-emptyline"></div> 438 - 439 -The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.<div class="wikimodel-emptyline"></div> 440 - 441 -The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).<div class="wikimodel-emptyline"></div> 442 - 443 -Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div> 444 - 445 -Example: #5QMD<cr> might return *5QMD512<div class="wikimodel-emptyline"></div> 446 - 447 -This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle. 448 -<div class="wikimodel-emptyline"></div></div></div> 449 -{{/html}} 450 - 451 451 ====== __Query Status (**Q**)__ ====== 452 452 453 -{{html wiki="true" clean="false"}} 454 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 455 -The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div> 456 456 457 -Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div> 458 -</div></div> 459 -{{/html}} 280 +The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below. 460 460 282 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 283 + 461 461 |(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description** 462 462 | |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 463 463 | |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely ... ... @@ -475,12 +475,9 @@ 475 475 Send a Q1 command to know which limit has been reached (described below). 476 476 ))) 477 477 478 -{{html wiki="true" clean="false"}} 479 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 480 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div> 481 -</div></div> 482 -{{/html}} 301 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 483 483 303 + 484 484 |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description** 485 485 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 486 486 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long ... ... @@ -489,459 +489,225 @@ 489 489 490 490 ====== __Limp (**L**)__ ====== 491 491 492 -{{html wiki="true" clean="false"}} 493 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 494 -Example: #5L<cr><div class="wikimodel-emptyline"></div> 495 495 496 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 497 -<div class="wikimodel-emptyline"></div></div></div> 498 -{{/html}} 313 +Example: #5L<cr> 499 499 315 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 316 + 500 500 ====== __Halt & Hold (**H**)__ ====== 501 501 502 -{{html wiki="true" clean="false"}} 503 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 504 -Example: #5H<cr><div class="wikimodel-emptyline"></div> 505 505 320 +Example: #5H<cr> 321 + 506 506 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 507 -<div class="wikimodel-emptyline"></div></div></div> 508 -{{/html}} 509 509 510 510 == Motion Setup == 511 511 512 -====== __ Enable MotionProfile (**EM**)__ ======326 +====== __Origin Offset (**O**)__ ====== 513 513 514 -{{html clean="false" wiki="true"}} 515 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 516 -EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div> 517 517 518 -Ex: #5 EM1<cr><divclass="wikimodel-emptyline"></div>329 +Example: #5O2400<cr>This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered). 519 519 520 - Thisandenablesapezoidalmotionfileforservo#5 <div class="wikimodel-emptyline"></div>331 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]] 521 521 522 -Ex: #5EM0<cr><div class="wikimodel-emptyline"></div> 523 523 524 - This commandwill disablethebuilt-in trapezoidalmotion profile. As such, the servo willmoveat full speedto thetarget position usingthe D/MD actioncommands.Modifiers like SD/S or T cannotbe used in EM0 mode. By default theFilter Position Counter, or"FPC" is activein EM0 mode tosmooth out its operation. EM0 is suggestedfor applicationswhereanexternal controller will be determiningall incremental intermediatepositions of the servo's motion, effectively replacinga trajectorymanager. Toprevent having to sendposition commands continuously toreachthe desired position in EM0/FPCactive(FPC >= 2), an internal positionengine(IPE) repeatsthe last position command.Notethat in EM0mode, the servo willeffectively alwaysbe in status:Holding (if using the query status command).334 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees: 525 525 526 - <div class="wikimodel-emptyline"></div>336 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]] 527 527 528 -Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div> 529 529 530 - Ex: #5QEM<cr> mightreturn*5QEM1<cr><div class="wikimodel-emptyline"></div>339 +Origin Offset Query (**QO**) 531 531 532 - This command will query themotionprofile. **0:**motion profiledisabled / **1:**trapezoidal motion profile enabled.<divclass="wikimodel-emptyline"></div>341 +Example: #5QO<cr> might return *5QO-13 533 533 534 - ConfigureMotionProfile(**CEM**)<divclass="wikimodel-emptyline"></div>343 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero. 535 535 536 - Ex: #5CEM0<cr><divclass="wikimodel-emptyline"></div>345 +Configure Origin Offset (**CO**) 537 537 538 -This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 539 -<div class="wikimodel-emptyline"></div></div></div> 540 -{{/html}} 347 +Example: #5CO-24<cr> 541 541 542 -====== __Filter Position Count (**FPC**)__ ====== 543 - 544 -{{html clean="false" wiki="true"}} 545 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 546 -The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default. 547 -<div class="wikimodel-emptyline"></div> 548 -Ex: #5FPC10<cr><div class="wikimodel-emptyline"></div> 549 -This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div> 550 - 551 -Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div> 552 - 553 -Ex: #5QFPC<cr> might return *5QFPC10<cr><div class="wikimodel-emptyline"></div> 554 - 555 -This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div> 556 - 557 -Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div> 558 - 559 -Ex: #5CFPC10<cr><div class="wikimodel-emptyline"></div> 560 - 561 -This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 562 -<div class="wikimodel-emptyline"></div></div></div> 563 -{{/html}} 564 - 565 -====== __Origin Offset (**O**)__ ====== 566 - 567 -{{html wiki="true" clean="false"}} 568 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 569 -Example: #5O2400<cr><div class="wikimodel-emptyline"></div> 570 - 571 -This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div> 572 - 573 -[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div> 574 - 575 -In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div> 576 - 577 -[[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div> 578 - 579 -Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div> 580 - 581 -Example: #5QO<cr> might return *5QO-13<div class="wikimodel-emptyline"></div> 582 - 583 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div> 584 - 585 -Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div> 586 - 587 -Example: #5CO-24<cr><div class="wikimodel-emptyline"></div> 588 - 589 589 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 590 -<div class="wikimodel-emptyline"></div></div></div> 591 -{{/html}} 592 592 593 593 ====== __Angular Range (**AR**)__ ====== 594 594 595 -{{html wiki="true" clean="false"}} 596 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 597 -Example: #5AR1800<cr><div class="wikimodel-emptyline"></div> 353 +Example: #5AR1800<cr> 598 598 599 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: <div class="wikimodel-emptyline"></div>355 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: 600 600 601 -[[image:LSS-servo-default.jpg ]]<div class="wikimodel-emptyline"></div>357 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]] 602 602 603 -Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. <div class="wikimodel-emptyline"></div>359 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 604 604 605 -[[image:LSS-servo-ar.jpg ]]<div class="wikimodel-emptyline"></div>361 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]] 606 606 607 -Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div> 608 608 609 - [[image:LSS-servo-ar-o-1.jpg]]<divclass="wikimodel-emptyline"></div>364 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range: 610 610 611 - Query Angular Range(**QAR**)<div class="wikimodel-emptyline"></div>366 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]] 612 612 613 -Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div> 614 614 615 - Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div>369 +Query Angular Range (**QAR**) 616 616 617 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 618 -<div class="wikimodel-emptyline"></div></div></div> 619 -{{/html}} 371 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees. 620 620 621 - ======__AngularStiffness(**AS**)__ ======373 +Configure Angular Range (**CAR**) 622 622 623 -{{html wiki="true" clean="false"}} 624 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 625 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div> 375 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 626 626 627 -A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div> 628 - 629 -* The more torque will be applied to try to keep the desired position against external input / changes 630 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div> 631 - 632 -A lower value on the other hand:<div class="wikimodel-emptyline"></div> 633 - 634 -* Causes a slower acceleration to the travel speed, and a slower deceleration 635 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div> 636 - 637 -The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 638 - 639 -Ex: #5AS-2<cr><div class="wikimodel-emptyline"></div> 640 - 641 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div> 642 - 643 -Ex: #5QAS<cr><div class="wikimodel-emptyline"></div> 644 - 645 -Queries the value being used.<div class="wikimodel-emptyline"></div> 646 - 647 -Ex: #5CAS-2<cr><div class="wikimodel-emptyline"></div> 648 - 649 -Writes the desired angular stiffness value to EEPROM. 650 -<div class="wikimodel-emptyline"></div></div></div> 651 -{{/html}} 652 - 653 -====== __Angular Holding Stiffness (**AH**)__ ====== 654 - 655 -{{html wiki="true" clean="false"}} 656 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 657 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 658 - 659 -Ex: #5AH3<cr><div class="wikimodel-emptyline"></div> 660 - 661 -This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div> 662 - 663 -Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div> 664 - 665 -Ex: #5QAH<cr> might return *5QAH3<cr><div class="wikimodel-emptyline"></div> 666 - 667 -This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div> 668 - 669 -Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div> 670 - 671 -Ex: #5CAH2<cr><div class="wikimodel-emptyline"></div> 672 - 673 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM. 674 -<div class="wikimodel-emptyline"></div></div></div> 675 -{{/html}} 676 - 677 677 ====== __Angular Acceleration (**AA**)__ ====== 678 678 679 -{{html wiki="true" clean="false"}} 680 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 681 -The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 379 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 682 682 683 -Ex: #5AA30 <cr><divclass="wikimodel-emptyline"></div>381 +Ex: #5AA30<cr> 684 684 685 -This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). <div class="wikimodel-emptyline"></div>383 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). 686 686 687 -Query Angular Acceleration (**QAA**) <div class="wikimodel-emptyline"></div>385 +Query Angular Acceleration (**QAA**) 688 688 689 -Ex: #5QAA <cr>might return *5QAA30<cr><divclass="wikimodel-emptyline"></div>387 +Ex: #5QAA<cr> might return *5QAA30<cr> 690 690 691 -This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^). <div class="wikimodel-emptyline"></div>389 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^). 692 692 693 -Configure Angular Acceleration (**CAA**) <div class="wikimodel-emptyline"></div>391 +Configure Angular Acceleration (**CAA**) 694 694 695 -Ex: #5CAA30 <cr><divclass="wikimodel-emptyline"></div>393 +Ex: #5CAA30<cr> 696 696 697 697 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 698 -<div class="wikimodel-emptyline"></div></div></div> 699 -{{/html}} 700 700 701 701 ====== __Angular Deceleration (**AD**)__ ====== 702 702 703 -{{html wiki="true" clean="false"}} 704 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 705 -The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 399 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 706 706 707 -Ex: #5AD30 <cr><divclass="wikimodel-emptyline"></div>401 +Ex: #5AD30<cr> 708 708 709 -This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). <div class="wikimodel-emptyline"></div>403 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). 710 710 711 -Query Angular Deceleration (**QAD**) <div class="wikimodel-emptyline"></div>405 +Query Angular Deceleration (**QAD**) 712 712 713 -Ex: #5QAD <cr>might return *5QAD30<cr><divclass="wikimodel-emptyline"></div>407 +Ex: #5QAD<cr> might return *5QAD30<cr> 714 714 715 -This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^). <div class="wikimodel-emptyline"></div>409 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^). 716 716 717 -Configure Angular Deceleration (**CAD**) <div class="wikimodel-emptyline"></div>411 +Configure Angular Deceleration (**CAD**) 718 718 719 -Ex: #5CAD30 <cr><divclass="wikimodel-emptyline"></div>413 +Ex: #5CAD30<cr> 720 720 721 -This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 722 -<div class="wikimodel-emptyline"></div></div></div> 723 -{{/html}} 415 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 724 724 725 725 ====== __Gyre Direction (**G**)__ ====== 726 726 727 -{{html wiki="true" clean="false"}} 728 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 729 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div> 419 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1. 730 730 731 -Ex: #5G-1 <cr><divclass="wikimodel-emptyline"></div>421 +Ex: #5G-1<cr> 732 732 733 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. <div class="wikimodel-emptyline"></div>423 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 734 734 735 -Query Gyre Direction (**QG**) <divclass="wikimodel-emptyline"></div>425 +Query Gyre Direction (**QG**)Ex: #5QG<cr> might return *5QG-1<cr> 736 736 737 - Ex:#5QG<cr>mightreturn*5QG-1<cr><divclass="wikimodel-emptyline"></div>427 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM. 738 738 739 - The value returned above means the servois in a counter-clockwisegyration. Sending a #5WR30 command will rotate the servo in a counter-clockwisegyration at 30 RPM.<div class="wikimodel-emptyline"></div>429 +Configure Gyre (**CG**) 740 740 741 - ConfigureGyre (**CG**)<divclass="wikimodel-emptyline"></div>431 +Ex: #5CG-1<cr> 742 742 743 -Ex: #5CG-1<cr><div class="wikimodel-emptyline"></div> 744 - 745 745 This changes the gyre direction as described above and also writes to EEPROM. 746 -<div class="wikimodel-emptyline"></div></div></div> 747 -{{/html}} 748 748 749 749 ====== __First Position__ ====== 750 750 751 -{{html wiki="true" clean="false"}} 752 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 753 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div> 437 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.Query First Position in Degrees (**QFD**)Ex: #5QFD<cr> might return *5QFD900<cr>The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.Configure First Position in Degrees (**CFD**)Ex: #5CFD900<cr>This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 754 754 755 -Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div> 756 - 757 -Ex: #5QFD<cr> might return *5QFD900<cr> <div class="wikimodel-emptyline"></div> 758 - 759 -The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div> 760 - 761 -Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div> 762 - 763 -Ex: #5CFD900<cr><div class="wikimodel-emptyline"></div> 764 - 765 -This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 766 -<div class="wikimodel-emptyline"></div></div></div> 767 -{{/html}} 768 - 769 -====== __Maximum Motor Duty (**MMD**)__ ====== 770 - 771 -{{html wiki="true" clean="false"}} 772 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 773 -This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div> 774 - 775 -Ex: #5MMD512<cr><div class="wikimodel-emptyline"></div> 776 - 777 -This will set the duty-cycle to 512 for servo with ID 5 for that session.<div class="wikimodel-emptyline"></div> 778 - 779 -Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div> 780 - 781 -Ex: #5QMMDD<cr> might return *5QMMD512<cr> <div class="wikimodel-emptyline"></div> 782 - 783 -This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023. 784 -<div class="wikimodel-emptyline"></div></div></div> 785 -{{/html}} 786 - 787 787 ====== __Maximum Speed in Degrees (**SD**)__ ====== 788 788 789 -{{html wiki="true" clean="false"}} 790 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 791 -Ex: #5SD1800<cr><div class="wikimodel-emptyline"></div> 792 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 441 +Ex: #5SD1800<cr>This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in Degrees (**QSD**)Ex: #5QSD<cr> might return *5QSD1800<cr>By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 793 793 794 -Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div> 795 - 796 -Ex: #5QSD<cr> might return *5QSD1800<cr><div class="wikimodel-emptyline"></div> 797 - 798 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 799 - 800 800 |**Command sent**|**Returned value (1/10 °)** 801 -|ex: #5QSD <cr>|Session value for maximum speed (set by latest SD/SR command)802 -|ex: #5QSD1 <cr>|Configured maximum speed in EEPROM (set by CSD/CSR)803 -|ex: #5QSD2 <cr>|Instantaneous speed (same as QWD)804 -|ex: #5QSD3 <cr>|Target travel speed<div class="wikimodel-emptyline"></div>444 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 445 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 446 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 447 +|ex: #5QSD3<cr>|Target travel speed 805 805 806 -Configure Speed in Degrees (**CSD**)< div class="wikimodel-emptyline"></div>449 +Configure Speed in Degrees (**CSD**)Ex: #5CSD1800<cr>Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 807 807 808 -Ex: #5CSD1800<cr><div class="wikimodel-emptyline"></div> 809 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 810 -</div></div> 811 -{{/html}} 812 - 813 813 ====== __Maximum Speed in RPM (**SR**)__ ====== 814 814 815 -{{html wiki="true" clean="false"}} 816 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 817 -Ex: #5SR45<cr><div class="wikimodel-emptyline"></div> 818 -This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 453 +Ex: #5SR45<cr>This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in RPM (**QSR**)Ex: #5QSR<cr> might return *5QSR45<cr>By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 819 819 820 -Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div> 821 - 822 -Ex: #5QSR<cr> might return *5QSR45<cr><div class="wikimodel-emptyline"></div> 823 - 824 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 825 - 826 826 |**Command sent**|**Returned value (1/10 °)** 827 -|ex: #5QSR <cr>|Session value for maximum speed (set by latest SD/SR command)828 -|ex: #5QSR1 <cr>|Configured maximum speed in EEPROM (set by CSD/CSR)829 -|ex: #5QSR2 <cr>|Instantaneous speed (same as QWD)830 -|ex: #5QSR3 <cr>|Target travel speed<div class="wikimodel-emptyline"></div>456 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 457 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 458 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 459 +|ex: #5QSR3<cr>|Target travel speed 831 831 832 -Configure Speed in RPM (**CSR**)< divclass="wikimodel-emptyline"></div>461 +Configure Speed in RPM (**CSR**)Ex: #5CSR45<cr>Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 833 833 834 -Ex: #5CSR45<cr><div class="wikimodel-emptyline"></div> 835 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 836 -</div></div> 837 -{{/html}} 838 - 839 839 == Modifiers == 840 840 841 -====== __Speed (**S **, **SD**) modifier__ ======465 +====== __Speed (**SD**) modifier__ ====== 842 842 843 -{{html clean="false" wiki="true"}} 844 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 845 -Example: #5P1500S750<cr><div class="wikimodel-emptyline"></div> 846 -Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 847 -Example: #5D0SD180<cr><div class="wikimodel-emptyline"></div> 848 -Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.<div class="wikimodel-emptyline"></div> 849 -Query Speed (**QS**)<div class="wikimodel-emptyline"></div> 850 -Example: #5QS<cr> might return *5QS300<cr><div class="wikimodel-emptyline"></div> 851 -This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div> 852 -</div></div> 853 -{{/html}} 467 +(% class="wikigeneratedid" id="HTimedmove28T29modifier" %) 468 +Example: #5D0SD180<cr> 854 854 855 -====== __Timed move (**T**) modifier__ ====== 470 +(% class="wikigeneratedid" %) 471 +Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second. 856 856 857 -{{html wiki="true" clean="false"}} 858 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 859 -Example: #5P1500T2500<cr><div class="wikimodel-emptyline"></div> 473 +(% class="wikigeneratedid" %) 474 +Query Speed (**QS**) 860 860 861 -Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 862 -**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div> 863 -</div></div> 864 -{{/html}} 476 +(% class="wikigeneratedid" %) 477 +Example: #5QS<cr> might return *5QS300<cr> 865 865 866 -====== __Current Halt & Hold (**CH**) modifier__ ====== 479 +(% class="wikigeneratedid" %) 480 +This command queries the current speed in microseconds per second. 867 867 868 -{{html wiki="true" clean="false"}} 869 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 870 -Example: #5D1423CH400<cr><div class="wikimodel-emptyline"></div> 482 +(% class="wikigeneratedid" %) 483 +====== __Timed move (**T**) modifier__ ====== 871 871 872 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div> 873 -This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 874 -</div></div> 875 -{{/html}} 485 +Example: #5D15000T2500<cr> 876 876 877 - ======__CurrentLimp(**CL**)modifier__======487 +Timed move can be used only as a modifier for a position (D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 878 878 879 -{{html wiki="true" clean="false"}} 880 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 881 -Example: #5D1423CL400<cr><div class="wikimodel-emptyline"></div> 489 +**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested 882 882 883 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div> 884 -This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 885 -</div></div> 886 -{{/html}} 491 +====== ====== 887 887 888 888 == Telemetry == 889 889 890 890 ====== __Query Voltage (**QV**)__ ====== 891 891 892 -{{html wiki="true" clean="false"}} 893 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 894 -Ex: #5QV<cr> might return *5QV11200<cr><div class="wikimodel-emptyline"></div> 895 -The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div> 896 -</div></div> 897 -{{/html}} 497 +Ex: #5QV<cr> might return *5QV11200<cr> 898 898 499 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V. 500 + 899 899 ====== __Query Temperature (**QT**)__ ====== 900 900 901 -{{html wiki="true" clean="false"}} 902 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 903 -Ex: #5QT<cr> might return *5QT564<cr><div class="wikimodel-emptyline"></div> 904 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div> 905 -</div></div> 906 -{{/html}} 503 +Ex: #5QT<cr> might return *5QT564<cr> 907 907 908 - ======__QueryCurrent(**QC**)__======505 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 909 909 910 -{{html wiki="true" clean="false"}} 911 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 912 -Ex: #5QC<cr> might return *5QC140<cr><div class="wikimodel-emptyline"></div> 913 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div> 914 -</div></div> 915 -{{/html}} 507 +====== __Query Motor Driver Current (**QC**)__ ====== 916 916 509 +Ex: #5QC<cr> might return *5QC140<cr> 510 + 511 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value. 512 + 917 917 ====== __Query Model String (**QMS**)__ ====== 918 918 919 -{{html wiki="true" clean="false"}} 920 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 921 -Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr><div class="wikimodel-emptyline"></div> 922 -This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div> 923 -</div></div> 924 -{{/html}} 515 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr> 925 925 517 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision. 518 + 926 926 ====== __Query Firmware (**QF**)__ ====== 927 927 928 -{{html wiki="true" clean="false"}} 929 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 930 -Ex: #5QF<cr> might return *5QF368<cr><div class="wikimodel-emptyline"></div> 931 -The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div> 932 -The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div> 933 -</div></div> 934 -{{/html}} 521 +Ex: #5QF<cr> might return *5QF368<cr> 935 935 523 +The number in the reply represents the firmware version, in this example being 368.The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14 524 + 936 936 ====== __Query Serial Number (**QN**)__ ====== 937 937 938 -{{html wiki="true" clean="false"}} 939 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 940 -Ex: #5QN<cr> might return *5QN12345678<cr><div class="wikimodel-emptyline"></div> 941 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div> 942 -</div></div> 943 -{{/html}} 527 +Ex: #5QN<cr> might return *5QN12345678<cr> 944 944 529 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user. 530 + 945 945 == RGB LED == 946 946 947 947 ====== __LED Color (**LED**)__ ====== ... ... @@ -990,6 +990,4 @@ 990 990 991 991 == RGB LED == 992 992 993 -The LED can be 994 - 995 - 579 +More information to come.