Last modified by Eric Nantel on 2024/07/03 09:42

From version < 22.1 >
edited by Coleman Benson
on 2023/07/18 09:47
To version < 29.1 >
edited by Coleman Benson
on 2023/07/25 15:16
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -14,7 +14,7 @@
14 14  
15 15  = Action Commands =
16 16  
17 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]] (described below). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
17 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]] (described below). Action commands are sent serially to the servo and must be sent in the following format:
18 18  
19 19  1. Start with a number sign **#** (Unicode Character: U+0023)
20 20  1. Servo ID number as an integer (assigning an ID described below)
... ... @@ -29,7 +29,7 @@
29 29  
30 30  == Modifiers ==
31 31  
32 -{{html clean="false" wiki="true" __cke_selected_macro="true"}}
32 +{{html clean="false" wiki="true"}}
33 33  <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
34 34  Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div>
35 35  
... ... @@ -46,8 +46,9 @@
46 46  This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div>
47 47  <div class="wikimodel-emptyline"></div></div></div>
48 48  
49 +<h2>Queries</h2>
49 49  <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
50 -Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div>
51 +Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div>
51 51  
52 52  1. Start with a number sign **#** (Unicode Character: U+0023)
53 53  1. Servo ID number as an integer
... ... @@ -71,10 +71,12 @@
71 71  This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees).
72 72  <div class="wikimodel-emptyline"></div></div></div>
73 73  
75 +<h2>Configurations</h2>
76 +
74 74  <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
75 75  Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div>
76 76  
77 -These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative. This means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>
80 +These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>
78 78  
79 79  The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div>
80 80  
... ... @@ -84,43 +84,43 @@
84 84  1. Configuration value in the correct units with no decimal
85 85  1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
86 86  
87 -Ex: #5CO-50&lt;cr&gt;<div class="wikimodel-emptyline"></div>
90 +Ex: #5CO-500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
88 88  
89 -This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div>
92 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div>
90 90  
91 91  **Session vs Configuration Query**<div class="wikimodel-emptyline"></div>
92 92  
93 93  By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div>
94 94  
95 -Ex: #5CSR20&lt;cr&gt; immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>
98 +Ex: #5CSR10&lt;cr&gt; immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>
96 96  
97 97  After RESET, a command of #5SR4&lt;cr&gt; sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>
98 98  
99 99  #5QSR&lt;cr&gt; or #5QSR0&lt;cr&gt; would return *5QSR4&lt;cr&gt; which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>
100 100  
101 -#5QSR1&lt;cr&gt; would return *5QSR20&lt;cr&gt; which represents the value in EEPROM
104 +#5QSR1&lt;cr&gt; would return *5QSR10&lt;cr&gt; which represents the value in EEPROM
102 102  <div class="wikimodel-emptyline"></div></div></div>
103 103  
104 104  <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
105 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div>
108 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div>
106 106  
107 107  [[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div>
108 108  
109 109  In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div>
110 110  
111 -#1D-300&lt;cr&gt; This causes the servo to move to -30.0 degrees (green arrow)<div class="wikimodel-emptyline"></div>
114 +#1D-3000&lt;cr&gt; This causes the servo to move to -30.00 degrees (green arrow)<div class="wikimodel-emptyline"></div>
112 112  
113 -#1D2100&lt;cr&gt; This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)<div class="wikimodel-emptyline"></div>
116 +#1D21000&lt;cr&gt; This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)<div class="wikimodel-emptyline"></div>
114 114  
115 -#1D-4200&lt;cr&gt; This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div>
118 +#1D-42000&lt;cr&gt; This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div>
116 116  
117 -Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.<div class="wikimodel-emptyline"></div>
120 +Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees.<div class="wikimodel-emptyline"></div>
118 118  
119 -#1D4800&lt;cr&gt; This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div>
122 +#1D48000&lt;cr&gt; This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div>
120 120  
121 -#1D3300&lt;cr&gt; would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>
124 +#1D33000&lt;cr&gt; would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>
122 122  
123 -If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°].
126 +If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.00 degrees before power is cycled, upon power up the servo's position will be read as +120.00 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.00°, 180.00°].
124 124  <div class="wikimodel-emptyline"></div></div></div>
125 125  
126 126  {{/html}}
... ... @@ -202,250 +202,82 @@
202 202  
203 203  == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
204 204  
205 -====== __Reset__ ======
206 206  
207 -{{html wiki="true" clean="false"}}
208 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
209 -Ex: #5RESET&lt;cr&gt;<div class="wikimodel-emptyline"></div>
210 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands).
211 -Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div>
212 -</div></div>
213 -{{/html}}
214 -
215 -====== __Default & confirm__ ======
216 -
217 -{{html wiki="true" clean="false"}}
218 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
219 -Ex: #5DEFAULT&lt;cr&gt;<div class="wikimodel-emptyline"></div>
220 -
221 -This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.<div class="wikimodel-emptyline"></div>
222 -
223 -EX: #5DEFAULT&lt;cr&gt; followed by #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
224 -
225 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<div class="wikimodel-emptyline"></div>
226 -
227 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
228 -</div></div>
229 -{{/html}}
230 -
231 -====== __Update & confirm__ ======
232 -
233 -{{html wiki="true" clean="false"}}
234 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
235 -Ex: #5UPDATE&lt;cr&gt;<div class="wikimodel-emptyline"></div>
236 -
237 -This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<div class="wikimodel-emptyline"></div>
238 -
239 -EX: #5UPDATE&lt;cr&gt; followed by #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
240 -
241 -Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div>
242 -
243 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
244 -</div></div>
245 -{{/html}}
246 -
247 -====== __Confirm__ ======
248 -
249 -{{html wiki="true" clean="false"}}
250 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
251 -Ex: #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
252 -
253 -This command is used to confirm changes after a Default or Update command.<div class="wikimodel-emptyline"></div>
254 -
255 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
256 -</div></div>
257 -{{/html}}
258 -
259 259  ====== ======
260 260  
261 -====== __Identification Number (**ID**)__ ======
262 -
263 -{{html wiki="true" clean="false"}}
264 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
265 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div>
266 -
267 -Query Identification (**QID**)<div class="wikimodel-emptyline"></div>
268 -
269 -EX: #254QID&lt;cr&gt; might return *QID5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
270 -
271 -When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.<div class="wikimodel-emptyline"></div>
272 -
273 -Configure ID (**CID**)<div class="wikimodel-emptyline"></div>
274 -
275 -Ex: #4CID5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
276 -
277 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div>
278 -</div></div>
279 -{{/html}}
280 -
281 -====== __Baud Rate__ ======
282 -
283 -{{html clean="false" wiki="true"}}
284 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
285 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div>
286 -
287 -Query Baud Rate (**QB**)<div class="wikimodel-emptyline"></div>
288 -
289 -Ex: #5QB&lt;cr&gt; might return *5QB115200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
290 -
291 -Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.<div class="wikimodel-emptyline"></div>
292 -
293 -Configure Baud Rate (**CB**)<div class="wikimodel-emptyline"></div>
294 -
295 -**Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.<div class="wikimodel-emptyline"></div>
296 -
297 -Ex: #5CB9600&lt;cr&gt;<div class="wikimodel-emptyline"></div>
298 -
299 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div>
300 -</div></div>
301 -{{/html}}
302 -
303 -====== __Automatic Baud Rate__ ======
304 -
305 -{{html clean="false" wiki="true"}}
306 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
307 -This option allows the LSS to listen to it's serial input and select the right baudrate automatically.<div class="wikimodel-emptyline"></div>
308 -
309 -Query Automatic Baud Rate (**QABR**)<div class="wikimodel-emptyline"></div>
310 -
311 -Ex: #5QABR&lt;cr&gt; might return *5ABR0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
312 -
313 -Enable Baud Rate (**ABR**)<div class="wikimodel-emptyline"></div>
314 -
315 -Ex: #5QABR1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
316 -Enable baudrate detection on first byte received after power-up.<div class="wikimodel-emptyline"></div>
317 -
318 -Ex: #5QABR2,30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
319 -Enable baudrate detection on first byte received after power-up. If no data for 30 seconds enable detection again on next byte.<div class="wikimodel-emptyline"></div>
320 -
321 -Warning: ABR doesnt work well with LSS Config at the moment.<div class="wikimodel-emptyline"></div>
322 -</div></div>
323 -{{/html}}
324 -
325 325  == Motion ==
326 326  
327 327  ====== __Position in Degrees (**D**)__ ======
328 328  
329 -{{html wiki="true" clean="false"}}
330 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
331 -Example: #5D1456&lt;cr&gt;<div class="wikimodel-emptyline"></div>
332 332  
333 -This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. <div class="wikimodel-emptyline"></div>
216 +Example: #5D1456<cr>
334 334  
335 -Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). <div class="wikimodel-emptyline"></div>
218 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction.
336 336  
337 -Query Position in Degrees (**QD**)<div class="wikimodel-emptyline"></div>
220 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above).
338 338  
339 -Example: #5QD&lt;cr&gt; might return *5QD132&lt;cr&gt;<div class="wikimodel-emptyline"></div>
222 +Query Position in Degrees (**QD**)
340 340  
341 -This means the servo is located at 13.2 degrees.<div class="wikimodel-emptyline"></div>
224 +Example: #5QD<cr> might return *5QD132<cr>
342 342  
343 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %)
344 -Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div>
226 +This means the servo is located at 13.2 degrees.
345 345  
346 -Ex: #5QDT&lt;cr&gt; might return *5QDT6783&lt;cr&gt;<div class="wikimodel-emptyline"></div>
228 +Query Target Position in Degrees (**QDT**)
347 347  
230 +Ex: #5QDT<cr> might return *5QDT6783<cr>
231 +
348 348  The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
349 -<div class="wikimodel-emptyline"></div></div></div>
350 -{{/html}}
351 351  
352 352  ====== __(Relative) Move in Degrees (**MD**)__ ======
353 353  
354 -{{html wiki="true" clean="false"}}
355 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
356 -Example: #5MD123&lt;cr&gt;<div class="wikimodel-emptyline"></div>
357 357  
237 +Example: #5MD123<cr>
238 +
358 358  The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
359 -<div class="wikimodel-emptyline"></div></div></div>
360 -{{/html}}
361 361  
362 362  ====== __Wheel Mode in Degrees (**WD**)__ ======
363 363  
364 -{{html wiki="true" clean="false"}}
365 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
366 -Ex: #5WD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
367 367  
368 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
244 +Ex: #5WD90<cr>
369 369  
370 -Query Wheel Mode in Degrees (**QWD**)<div class="wikimodel-emptyline"></div>
246 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
371 371  
372 -Ex: #5QWD&lt;cr&gt; might return *5QWD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
248 +Query Wheel Mode in Degrees (**QWD**)
373 373  
250 +Ex: #5QWD<cr> might return *5QWD90<cr>
251 +
374 374  The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
375 -<div class="wikimodel-emptyline"></div></div></div>
376 -{{/html}}
377 377  
378 378  ====== __Wheel Mode in RPM (**WR**)__ ======
379 379  
380 -{{html wiki="true" clean="false"}}
381 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
382 -Ex: #5WR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
383 383  
384 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
257 +Ex: #5WR40<cr>
385 385  
386 -Query Wheel Mode in RPM (**QWR**)<div class="wikimodel-emptyline"></div>
259 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
387 387  
388 -Ex: #5QWR&lt;cr&gt; might return *5QWR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
261 +Query Wheel Mode in RPM (**QWR**)
389 389  
263 +Ex: #5QWR<cr> might return *5QWR40<cr>
264 +
390 390  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
391 -<div class="wikimodel-emptyline"></div></div></div>
392 -{{/html}}
393 393  
394 -====== __Position in PWM (**P**)__ ======
267 +====== ======
395 395  
396 -{{html wiki="true" clean="false"}}
397 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
398 -Example: #5P2334&lt;cr&gt;<div class="wikimodel-emptyline"></div>
269 +====== __(Relative) Move in Degrees (**MD**)__ ======
399 399  
400 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.<div class="wikimodel-emptyline"></div>
271 +======
272 +Example: #5M1500<cr> ======
401 401  
402 -Query Position in Pulse (**QP**)<div class="wikimodel-emptyline"></div>
274 +(% class="wikigeneratedid" %)
275 +====== The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. ======
403 403  
404 -Example: #5QP&lt;cr&gt; might return *5QP2334<div class="wikimodel-emptyline"></div>
405 -
406 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle.
407 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
408 -<div class="wikimodel-emptyline"></div></div></div>
409 -{{/html}}
410 -
411 -====== __(Relative) Move in PWM (**M**)__ ======
412 -
413 -{{html wiki="true" clean="false"}}
414 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
415 -Example: #5M1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
416 -
417 -The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
418 -<div class="wikimodel-emptyline"></div></div></div>
419 -{{/html}}
420 -
421 -====== __Raw Duty-cycle Move (**RDM**)__ ======
422 -
423 -{{html wiki="true" clean="false"}}
424 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
425 -Example: #5RDM512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
426 -
427 -The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.<div class="wikimodel-emptyline"></div>
428 -
429 -The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).<div class="wikimodel-emptyline"></div>
430 -
431 -Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div>
432 -
433 -Example: #5QMD&lt;cr&gt; might return *5QMD512<div class="wikimodel-emptyline"></div>
434 -
435 -This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle.
436 -<div class="wikimodel-emptyline"></div></div></div>
437 -{{/html}}
438 -
439 439  ====== __Query Status (**Q**)__ ======
440 440  
441 -{{html wiki="true" clean="false"}}
442 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
443 -The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div>
444 444  
445 -Ex: #5Q&lt;cr&gt; might return *5Q6&lt;cr&gt;, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div>
446 -</div></div>
447 -{{/html}}
280 +The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.
448 448  
282 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
283 +
449 449  |(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description**
450 450  | |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
451 451  | |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
... ... @@ -463,12 +463,9 @@
463 463  Send a Q1 command to know which limit has been reached (described below).
464 464  )))
465 465  
466 -{{html wiki="true" clean="false"}}
467 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
468 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div>
469 -</div></div>
470 -{{/html}}
301 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
471 471  
303 +
472 472  |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
473 473  | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
474 474  | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
... ... @@ -477,353 +477,157 @@
477 477  
478 478  ====== __Limp (**L**)__ ======
479 479  
480 -{{html wiki="true" clean="false"}}
481 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
482 -Example: #5L&lt;cr&gt;<div class="wikimodel-emptyline"></div>
483 483  
484 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L&lt;cr&gt;.
485 -<div class="wikimodel-emptyline"></div></div></div>
486 -{{/html}}
313 +Example: #5L<cr>
487 487  
315 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
316 +
488 488  ====== __Halt & Hold (**H**)__ ======
489 489  
490 -{{html wiki="true" clean="false"}}
491 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
492 -Example: #5H&lt;cr&gt;<div class="wikimodel-emptyline"></div>
493 493  
320 +Example: #5H<cr>
321 +
494 494  This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
495 -<div class="wikimodel-emptyline"></div></div></div>
496 -{{/html}}
497 497  
498 498  == Motion Setup ==
499 499  
500 -====== __Enable Motion Profile (**EM**)__ ======
326 +====== __Origin Offset (**O**)__ ======
501 501  
502 -{{html clean="false" wiki="true"}}
503 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
504 -EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div>
505 505  
506 -Ex: #5EM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
329 +Example: #5O2400<cr>This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
507 507  
508 -This command enables a trapezoidal motion profile for servo #5 <div class="wikimodel-emptyline"></div>
331 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
509 509  
510 -Ex: #5EM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
511 511  
512 -This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command).
334 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
513 513  
514 -<div class="wikimodel-emptyline"></div>
336 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]
515 515  
516 -Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div>
517 517  
518 -Ex: #5QEM&lt;cr&gt; might return *5QEM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
339 +Origin Offset Query (**QO**)
519 519  
520 -This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div>
341 +Example: #5QO<cr> might return *5QO-13
521 521  
522 -Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div>
343 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
523 523  
524 -Ex: #5CEM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
345 +Configure Origin Offset (**CO**)
525 525  
526 -This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
527 -<div class="wikimodel-emptyline"></div></div></div>
528 -{{/html}}
347 +Example: #5CO-24<cr>
529 529  
530 -====== __Filter Position Count (**FPC**)__ ======
531 -
532 -{{html clean="false" wiki="true"}}
533 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
534 -The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default.
535 -<div class="wikimodel-emptyline"></div>
536 -Ex: #5FPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
537 -This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div>
538 -
539 -Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div>
540 -
541 -Ex: #5QFPC&lt;cr&gt; might return *5QFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
542 -
543 -This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div>
544 -
545 -Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div>
546 -
547 -Ex: #5CFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
548 -
549 -This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
550 -<div class="wikimodel-emptyline"></div></div></div>
551 -{{/html}}
552 -
553 -====== __Origin Offset (**O**)__ ======
554 -
555 -{{html wiki="true" clean="false"}}
556 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
557 -Example: #5O2400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
558 -
559 -This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div>
560 -
561 -[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
562 -
563 -In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div>
564 -
565 -[[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div>
566 -
567 -Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div>
568 -
569 -Example: #5QO&lt;cr&gt; might return *5QO-13<div class="wikimodel-emptyline"></div>
570 -
571 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div>
572 -
573 -Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div>
574 -
575 -Example: #5CO-24&lt;cr&gt;<div class="wikimodel-emptyline"></div>
576 -
577 577  This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
578 -<div class="wikimodel-emptyline"></div></div></div>
579 -{{/html}}
580 580  
581 581  ====== __Angular Range (**AR**)__ ======
582 582  
583 -{{html wiki="true" clean="false"}}
584 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
585 -Example: #5AR1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
353 +Example: #5AR1800<cr>
586 586  
587 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div>
355 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
588 588  
589 -[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
357 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
590 590  
591 -Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div>
359 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
592 592  
593 -[[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div>
361 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]
594 594  
595 -Finally, the angular range action command (ex. #5AR1800&lt;cr&gt;) and origin offset action command (ex. #5O-1200&lt;cr&gt;) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div>
596 596  
597 -[[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div>
364 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
598 598  
599 -Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div>
366 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]
600 600  
601 -Example: #5QAR&lt;cr&gt; might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div>
602 602  
603 -Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div>
369 +Query Angular Range (**QAR**)
604 604  
605 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
606 -<div class="wikimodel-emptyline"></div></div></div>
607 -{{/html}}
371 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
608 608  
609 -====== __Angular Stiffness (**AS**)__ ======
373 +Configure Angular Range (**CAR**)
610 610  
611 -{{html wiki="true" clean="false"}}
612 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
613 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div>
375 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
614 614  
615 -A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div>
616 -
617 -* The more torque will be applied to try to keep the desired position against external input / changes
618 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div>
619 -
620 -A lower value on the other hand:<div class="wikimodel-emptyline"></div>
621 -
622 -* Causes a slower acceleration to the travel speed, and a slower deceleration
623 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div>
624 -
625 -The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
626 -
627 -Ex: #5AS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
628 -
629 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div>
630 -
631 -Ex: #5QAS&lt;cr&gt;<div class="wikimodel-emptyline"></div>
632 -
633 -Queries the value being used.<div class="wikimodel-emptyline"></div>
634 -
635 -Ex: #5CAS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
636 -
637 -Writes the desired angular stiffness value to EEPROM.
638 -<div class="wikimodel-emptyline"></div></div></div>
639 -{{/html}}
640 -
641 -====== __Angular Holding Stiffness (**AH**)__ ======
642 -
643 -{{html wiki="true" clean="false"}}
644 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
645 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
646 -
647 -Ex: #5AH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
648 -
649 -This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div>
650 -
651 -Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div>
652 -
653 -Ex: #5QAH&lt;cr&gt; might return *5QAH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
654 -
655 -This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div>
656 -
657 -Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div>
658 -
659 -Ex: #5CAH2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
660 -
661 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM.
662 -<div class="wikimodel-emptyline"></div></div></div>
663 -{{/html}}
664 -
665 665  ====== __Angular Acceleration (**AA**)__ ======
666 666  
667 -{{html wiki="true" clean="false"}}
668 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
669 -The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
379 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
670 670  
671 -Ex: #5AA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
381 +Ex: #5AA30<cr>
672 672  
673 -This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
383 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
674 674  
675 -Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div>
385 +Query Angular Acceleration (**QAA**)
676 676  
677 -Ex: #5QAA&lt;cr&gt; might return *5QAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
387 +Ex: #5QAA<cr> might return *5QAA30<cr>
678 678  
679 -This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
389 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).
680 680  
681 -Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div>
391 +Configure Angular Acceleration (**CAA**)
682 682  
683 -Ex: #5CAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
393 +Ex: #5CAA30<cr>
684 684  
685 685  This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
686 -<div class="wikimodel-emptyline"></div></div></div>
687 -{{/html}}
688 688  
689 689  ====== __Angular Deceleration (**AD**)__ ======
690 690  
691 -{{html wiki="true" clean="false"}}
692 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
693 -The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
399 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
694 694  
695 -Ex: #5AD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
401 +Ex: #5AD30<cr>
696 696  
697 -This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
403 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
698 698  
699 -Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div>
405 +Query Angular Deceleration (**QAD**)
700 700  
701 -Ex: #5QAD&lt;cr&gt; might return *5QAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
407 +Ex: #5QAD<cr> might return *5QAD30<cr>
702 702  
703 -This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
409 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).
704 704  
705 -Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div>
411 +Configure Angular Deceleration (**CAD**)
706 706  
707 -Ex: #5CAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
413 +Ex: #5CAD30<cr>
708 708  
709 -This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
710 -<div class="wikimodel-emptyline"></div></div></div>
711 -{{/html}}
415 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
712 712  
713 713  ====== __Gyre Direction (**G**)__ ======
714 714  
715 -{{html wiki="true" clean="false"}}
716 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
717 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div>
419 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.
718 718  
719 -Ex: #5G-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
421 +Ex: #5G-1<cr>
720 720  
721 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div>
423 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
722 722  
723 -Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div>
425 +Query Gyre Direction (**QG**)Ex: #5QG<cr> might return *5QG-1<cr>
724 724  
725 -Ex: #5QG&lt;cr&gt; might return *5QG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
427 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.
726 726  
727 -The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div>
429 +Configure Gyre (**CG**)
728 728  
729 -Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div>
431 +Ex: #5CG-1<cr>
730 730  
731 -Ex: #5CG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
732 -
733 733  This changes the gyre direction as described above and also writes to EEPROM.
734 -<div class="wikimodel-emptyline"></div></div></div>
735 -{{/html}}
736 736  
737 737  ====== __First Position__ ======
738 738  
739 -{{html wiki="true" clean="false"}}
740 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
741 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div>
437 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.Query First Position in Degrees (**QFD**)Ex: #5QFD<cr> might return *5QFD900<cr>The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.Configure First Position in Degrees (**CFD**)Ex: #5CFD900<cr>This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
742 742  
743 -Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div>
744 -
745 -Ex: #5QFD&lt;cr&gt; might return *5QFD900&lt;cr&gt; <div class="wikimodel-emptyline"></div>
746 -
747 -The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div>
748 -
749 -Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div>
750 -
751 -Ex: #5CFD900&lt;cr&gt;<div class="wikimodel-emptyline"></div>
752 -
753 -This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD&lt;cr&gt;) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD&lt;cr&gt;
754 -<div class="wikimodel-emptyline"></div></div></div>
755 -{{/html}}
756 -
757 -====== __Maximum Motor Duty (**MMD**)__ ======
758 -
759 -{{html wiki="true" clean="false"}}
760 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
761 -This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div>
762 -
763 -Ex: #5MMD512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
764 -
765 -This will set the duty-cycle to 512 for servo with ID 5 for that session.<div class="wikimodel-emptyline"></div>
766 -
767 -Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div>
768 -
769 -Ex: #5QMMDD&lt;cr&gt; might return *5QMMD512&lt;cr&gt; <div class="wikimodel-emptyline"></div>
770 -
771 -This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023.
772 -<div class="wikimodel-emptyline"></div></div></div>
773 -{{/html}}
774 -
775 775  ====== __Maximum Speed in Degrees (**SD**)__ ======
776 776  
777 -{{html wiki="true" clean="false"}}
778 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
779 -Ex: #5SD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
780 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
441 +Ex: #5SD1800<cr>This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in Degrees (**QSD**)Ex: #5QSD<cr> might return *5QSD1800<cr>By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
781 781  
782 -Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div>
783 -
784 -Ex: #5QSD&lt;cr&gt; might return *5QSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
785 -
786 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1&lt;cr&gt; is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
787 -
788 788  |**Command sent**|**Returned value (1/10 °)**
789 -|ex: #5QSD&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
790 -|ex: #5QSD1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
791 -|ex: #5QSD2&lt;cr&gt;|Instantaneous speed (same as QWD)
792 -|ex: #5QSD3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
444 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
445 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
446 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
447 +|ex: #5QSD3<cr>|Target travel speed
793 793  
794 -Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div>
449 +Configure Speed in Degrees (**CSD**)Ex: #5CSD1800<cr>Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
795 795  
796 -Ex: #5CSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
797 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
798 -</div></div>
799 -{{/html}}
800 -
801 801  ====== __Maximum Speed in RPM (**SR**)__ ======
802 802  
803 -{{html wiki="true" clean="false"}}
804 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
805 -Ex: #5SR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
806 -This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
453 +Ex: #5SR45<cr>This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in RPM (**QSR**)Ex: #5QSR<cr> might return *5QSR45<cr>By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
807 807  
808 -Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div>
809 -
810 -Ex: #5QSR&lt;cr&gt; might return *5QSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
811 -
812 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1&lt;cr&gt; is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
813 -
814 814  |**Command sent**|**Returned value (1/10 °)**
815 -|ex: #5QSR&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
816 -|ex: #5QSR1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
817 -|ex: #5QSR2&lt;cr&gt;|Instantaneous speed (same as QWD)
818 -|ex: #5QSR3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
456 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
457 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
458 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWD)
459 +|ex: #5QSR3<cr>|Target travel speed
819 819  
820 -Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div>
461 +Configure Speed in RPM (**CSR**)Ex: #5CSR45<cr>Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
821 821  
822 -Ex: #5CSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
823 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
824 -</div></div>
825 -{{/html}}
826 -
827 827  == Modifiers ==
828 828  
829 829  ====== __Speed (**S**, **SD**) modifier__ ======
Copyright RobotShop 2018