Changes for page LSS-P - Communication Protocol
Last modified by Eric Nantel on 2024/07/03 09:42
Change comment: There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,6 +1,7 @@ 1 1 {{warningBox warningText="More information coming soon"/}} 2 2 3 3 4 + 4 4 (% class="wikigeneratedid" id="HTableofContents" %) 5 5 **Page Contents** 6 6 ... ... @@ -29,104 +29,88 @@ 29 29 30 30 == Modifiers == 31 31 32 -{{html clean="false" wiki="true"}} 33 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 34 -Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div> 33 +Modifiers can only be used with certain **action commands**. The format to include a modifier is: 35 35 36 -1. Start with a number sign 35 +1. Start with a number sign **#** (Unicode Character: U+0023) 37 37 1. Servo ID number as an integer 38 38 1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below) 39 39 1. Action value in the correct units with no decimal 40 -1. Modifier command (one or two letters from 39 +1. Modifier command (one or two letters from the list of modifiers below) 41 41 1. Modifier value in the correct units with no decimal 42 -1. End with a carriage return \r**<cr>**41 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 43 43 44 -Ex: #5D13000T1500 <cr><divclass="wikimodel-emptyline"></div>43 +Ex: #5D13000T1500<cr>This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds). 45 45 46 -This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div> 47 -<div class="wikimodel-emptyline"></div></div></div> 45 +== Queries == 48 48 49 -<h2>Queries</h2> 50 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 51 -Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div> 47 +Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format: 52 52 53 -1. Start with a number sign 49 +1. Start with a number sign **#** (Unicode Character: U+0023) 54 54 1. Servo ID number as an integer 55 55 1. Query command (one to four letters, no spaces, capital or lower case) 56 -1. End with a carriage return \r**<cr>**<div class="wikimodel-emptyline"></div>52 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 57 57 58 -Ex: #5QD <cr>Query the position in (hundredths of) degrees for servo with ID #5<divclass="wikimodel-emptyline"></div>54 +Ex: #5QD<cr> Query the position in (hundredths of) degrees for servo with ID #5The query will return a serial string (almost instantaneously) via the servo's Tx in the following format: 59 59 60 -The query will return a serial string (almost instantaneously) via the servo's Tx in the following format: 61 - 62 62 1. Start with an asterisk * (Unicode Character: U+0023) 63 63 1. Servo ID number as an integer 64 64 1. Query command (one to four letters, no spaces, capital letters) 65 65 1. The reported value in the units described, no decimals. 66 -1. End with a carriage return \r**<cr>**<div class="wikimodel-emptyline"></div>60 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 67 67 68 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be: <div class="wikimodel-emptyline"></div>62 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be: 69 69 70 -Ex: *5QD13000 <cr><divclass="wikimodel-emptyline"></div>64 +Ex: *5QD13000<cr> 71 71 72 72 This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees). 73 -<div class="wikimodel-emptyline"></div></div></div> 74 74 75 - <h2>Configurations</h2>68 +== Configurations == 76 76 77 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 78 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div> 70 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored. 79 79 80 -The seconfigurations are retained inmemoryafter theservo is resetrpower iscut / lost. Someconfiguration commandsaffectthe session, while others do not. In the Command table below, thecolumn"Session" denotes ifthe configuration commandaffects the session. Not all action commandshave a corresponding configuration commandand viceversa. Configurationcommands are not cumulative;thismeansthatif twoofthe same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>72 +The format to send a configuration command is identical to that of an action command: 81 81 82 -The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div> 83 - 84 -1. Start with a number sign **#** (Unicode Character: U+0023) 74 +1. Start with a number sign **#** (Unicode Character: U+0023) 85 85 1. Servo ID number as an integer 86 86 1. Configuration command (two to four letters, no spaces, capital or lower case) 87 87 1. Configuration value in the correct units with no decimal 88 -1. End with a carriage return \r**<cr>**<div class="wikimodel-emptyline"></div>78 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 89 89 90 -Ex: #5CO-500 <cr><divclass="wikimodel-emptyline"></div>80 +Ex: #5CO-500<cr> 91 91 92 -This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below). <div class="wikimodel-emptyline"></div>82 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below). 93 93 94 -**Session vs Configuration Query** <div class="wikimodel-emptyline"></div>84 +**Session vs Configuration Query** 95 95 96 -By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command: <div class="wikimodel-emptyline"></div>86 +By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command: 97 97 98 -Ex: #5CSR10 <cr>immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>88 +Ex: #5CSR10<cr> immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory. 99 99 100 -After RESET, a command of #5SR4 <cr>sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>90 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore: 101 101 102 -#5QSR <cr>or #5QSR0<cr><cr>which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>92 +#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas 103 103 104 -#5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM 105 -<div class="wikimodel-emptyline"></div></div></div> 94 +#5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM 106 106 107 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 108 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div> 96 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset). 109 109 110 -[[image:LSS-servo-positions.jpg ]]<div class="wikimodel-emptyline"></div>98 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]] 111 111 112 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: <div class="wikimodel-emptyline"></div>100 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: 113 113 114 -#1D-3000 <cr>This causes the servo to move to -30.00 degrees (green arrow)<div class="wikimodel-emptyline"></div>102 +#1D-3000<cr> This causes the servo to move to -30.00 degrees (green arrow) 115 115 116 -#1D21000 <cr>This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)<div class="wikimodel-emptyline"></div>104 +#1D21000<cr> This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow) 117 117 118 -#1D-42000 <cr>This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div>106 +#1D-42000<cr> This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees. 119 119 120 -Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees. <div class="wikimodel-emptyline"></div>108 +Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees. 121 121 122 -#1D48000 <cr>This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div>110 +#1D48000<cr> This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations. 123 123 124 -#1D33000 <cr>would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>112 +#1D33000<cr> would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow). 125 125 126 126 If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.00 degrees before power is cycled, upon power up the servo's position will be read as +120.00 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.00°, 180.00°]. 127 -<div class="wikimodel-emptyline"></div></div></div> 128 - 129 -{{/html}} 130 130 ))) 131 131 132 132 = Command List = ... ... @@ -205,188 +205,72 @@ 205 205 206 206 == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) == 207 207 208 -====== __Reset__ ====== 209 - 210 -{{html wiki="true" clean="false"}} 211 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 212 -Ex: #5RESET<cr><div class="wikimodel-emptyline"></div> 213 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). 214 -Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div> 215 -</div></div> 216 -{{/html}} 217 - 218 -====== __Default & confirm__ ====== 219 - 220 -{{html wiki="true" clean="false"}} 221 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 222 -Ex: #5DEFAULT<cr><div class="wikimodel-emptyline"></div> 223 - 224 -This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.<div class="wikimodel-emptyline"></div> 225 - 226 -EX: #5DEFAULT<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 227 - 228 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<div class="wikimodel-emptyline"></div> 229 - 230 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 231 -</div></div> 232 -{{/html}} 233 - 234 -====== __Update & confirm__ ====== 235 - 236 -{{html wiki="true" clean="false"}} 237 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 238 -Ex: #5UPDATE<cr><div class="wikimodel-emptyline"></div> 239 - 240 -This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<div class="wikimodel-emptyline"></div> 241 - 242 -EX: #5UPDATE<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 243 - 244 -Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div> 245 - 246 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 247 -</div></div> 248 -{{/html}} 249 - 250 -====== __Enable CAN Terminal__ ====== 251 - 252 -{{html clean="false" wiki="true"}} 253 -<div class="cmdcnt"> 254 -<div class="cmdpad"></div> 255 -<div class="cmdtxt">Ex: #5CET1<cr><div class="wikimodel-emptyline"></div> 256 - 257 -This sets servo with ID #5 to be the final servo in the bus. 258 - 259 -<div class="cmdtxt">Ex: #5QET<cr><div class="wikimodel-emptyline"></div> 260 - 261 -The reply to this query should be *5QET1 to indicate it is the last in the servo bus. 262 - 263 -<div class="wikimodel-emptyline"></div> 264 -</div></div> 265 -{{/html}} 266 - 267 267 == Motion == 268 268 269 269 ====== __Position in Degrees (**D**)__ ====== 270 270 271 -{{html wiki="true" clean="false"}} 272 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 273 -Example: #5D1456<cr><div class="wikimodel-emptyline"></div> 197 +Example: #5D1456<cr> 274 274 275 -This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. <div class="wikimodel-emptyline"></div>199 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. 276 276 277 -Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). <div class="wikimodel-emptyline"></div>201 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). 278 278 279 -Query Position in Degrees (**QD**) <div class="wikimodel-emptyline"></div>203 +Query Position in Degrees (**QD**) 280 280 281 -Example: #5QD <cr>might return *5QD132<cr><divclass="wikimodel-emptyline"></div>205 +Example: #5QD<cr> might return *5QD132<cr> 282 282 283 -This means the servo is located at 13.2 degrees. <div class="wikimodel-emptyline"></div>207 +This means the servo is located at 13.2 degrees. 284 284 285 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 286 -Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div> 209 +Query Target Position in Degrees (**QDT**) 287 287 288 -Ex: #5QDT <cr>might return *5QDT6783<cr><divclass="wikimodel-emptyline"></div>211 +Ex: #5QDT<cr> might return *5QDT6783<cr> 289 289 290 290 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 291 -<div class="wikimodel-emptyline"></div></div></div> 292 -{{/html}} 293 293 294 294 ====== __(Relative) Move in Degrees (**MD**)__ ====== 295 295 296 -{{html wiki="true" clean="false"}} 297 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 298 -Example: #5MD123<cr><div class="wikimodel-emptyline"></div> 299 299 218 +Example: #5MD123<cr> 219 + 300 300 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 301 -<div class="wikimodel-emptyline"></div></div></div> 302 -{{/html}} 303 303 304 304 ====== __Wheel Mode in Degrees (**WD**)__ ====== 305 305 306 -{{html wiki="true" clean="false"}} 307 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 308 -Ex: #5WD90<cr><div class="wikimodel-emptyline"></div> 224 +Ex: #5WD90<cr> 309 309 310 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations). <div class="wikimodel-emptyline"></div>226 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations). 311 311 312 -Query Wheel Mode in Degrees (**QWD**) <div class="wikimodel-emptyline"></div>228 +Query Wheel Mode in Degrees (**QWD**) 313 313 314 -Ex: #5QWD <cr>might return *5QWD90<cr><divclass="wikimodel-emptyline"></div>230 +Ex: #5QWD<cr> might return *5QWD90<cr> 315 315 316 316 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 317 -<div class="wikimodel-emptyline"></div></div></div> 318 -{{/html}} 319 319 320 320 ====== __Wheel Mode in RPM (**WR**)__ ====== 321 321 322 -{{html wiki="true" clean="false"}} 323 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 324 -Ex: #5WR40<cr><div class="wikimodel-emptyline"></div> 236 +Ex: #5WR40<cr> 325 325 326 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. <div class="wikimodel-emptyline"></div>238 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). 327 327 328 -Query Wheel Mode in RPM (**QWR**) <div class="wikimodel-emptyline"></div>240 +Query Wheel Mode in RPM (**QWR**) 329 329 330 -Ex: #5QWR <cr>might return *5QWR40<cr><divclass="wikimodel-emptyline"></div>242 +Ex: #5QWR<cr> might return *5QWR40<cr> 331 331 332 332 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 333 -<div class="wikimodel-emptyline"></div></div></div> 334 -{{/html}} 335 335 336 -====== __ PositioninPWM(**P**)__ ======246 +====== __(Relative) Move in Degrees (**MD**)__ ====== 337 337 338 -{{html wiki="true" clean="false"}} 339 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 340 -Example: #5P2334<cr><div class="wikimodel-emptyline"></div> 248 +(% class="wikigeneratedid" id="HExample:235M15003Ccr3E" %) 249 +Example: #5M1500<cr> 341 341 342 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.<div class="wikimodel-emptyline"></div> 343 - 344 -Query Position in Pulse (**QP**)<div class="wikimodel-emptyline"></div> 345 - 346 -Example: #5QP<cr> might return *5QP2334<div class="wikimodel-emptyline"></div> 347 - 348 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 349 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 350 -<div class="wikimodel-emptyline"></div></div></div> 351 -{{/html}} 352 - 353 -====== __(Relative) Move in PWM (**M**)__ ====== 354 - 355 -{{html wiki="true" clean="false"}} 356 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 357 -Example: #5M1500<cr><div class="wikimodel-emptyline"></div> 358 - 251 +(% class="wikigeneratedid" id="HTherelativemoveinPWMcommandcausestheservotoreaditscurrentpositionandmovebythespecifiednumberofPWMsignal.ForexampleiftheservoissettorotateCW28default29andanMcommandof1500issenttotheservo2Citwillcausetheservotorotateclockwiseby90degrees.NegativePWMvaluewouldcausetheservotorotateintheoppositeconfigureddirection." %) 359 359 The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 360 -<div class="wikimodel-emptyline"></div></div></div> 361 -{{/html}} 362 362 363 -====== __Raw Duty-cycle Move (**RDM**)__ ====== 364 - 365 -{{html wiki="true" clean="false"}} 366 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 367 -Example: #5RDM512<cr><div class="wikimodel-emptyline"></div> 368 - 369 -The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.<div class="wikimodel-emptyline"></div> 370 - 371 -The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).<div class="wikimodel-emptyline"></div> 372 - 373 -Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div> 374 - 375 -Example: #5QMD<cr> might return *5QMD512<div class="wikimodel-emptyline"></div> 376 - 377 -This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle. 378 -<div class="wikimodel-emptyline"></div></div></div> 379 -{{/html}} 380 - 381 381 ====== __Query Status (**Q**)__ ====== 382 382 383 -{{html wiki="true" clean="false"}} 384 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 385 -The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div> 256 +The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below. 386 386 387 -Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div> 388 -</div></div> 389 -{{/html}} 258 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 390 390 391 391 |(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description** 392 392 | |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state ... ... @@ -405,11 +405,7 @@ 405 405 Send a Q1 command to know which limit has been reached (described below). 406 406 ))) 407 407 408 -{{html wiki="true" clean="false"}} 409 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 410 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div> 411 -</div></div> 412 -{{/html}} 277 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 413 413 414 414 |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description** 415 415 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong ... ... @@ -419,505 +419,217 @@ 419 419 420 420 ====== __Limp (**L**)__ ====== 421 421 422 -{{html wiki="true" clean="false"}} 423 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 424 -Example: #5L<cr><div class="wikimodel-emptyline"></div> 287 +Example: #5L<cr> 425 425 426 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 427 -<div class="wikimodel-emptyline"></div></div></div> 428 -{{/html}} 289 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 429 429 430 430 ====== __Halt & Hold (**H**)__ ====== 431 431 432 -{{html wiki="true" clean="false"}} 433 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 434 -Example: #5H<cr><div class="wikimodel-emptyline"></div> 293 +Example: #5H<cr> 435 435 436 436 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 437 -<div class="wikimodel-emptyline"></div></div></div> 438 -{{/html}} 439 439 440 440 == Motion Setup == 441 441 442 -====== __Enable Motion Profile (**EM**)__ ====== 443 - 444 -{{html clean="false" wiki="true"}} 445 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 446 -EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div> 447 - 448 -Ex: #5EM1<cr><div class="wikimodel-emptyline"></div> 449 - 450 -This command enables a trapezoidal motion profile for servo #5 <div class="wikimodel-emptyline"></div> 451 - 452 -Ex: #5EM0<cr><div class="wikimodel-emptyline"></div> 453 - 454 -This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command). 455 - 456 -<div class="wikimodel-emptyline"></div> 457 - 458 -Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div> 459 - 460 -Ex: #5QEM<cr> might return *5QEM1<cr><div class="wikimodel-emptyline"></div> 461 - 462 -This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div> 463 - 464 -Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div> 465 - 466 -Ex: #5CEM0<cr><div class="wikimodel-emptyline"></div> 467 - 468 -This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 469 -<div class="wikimodel-emptyline"></div></div></div> 470 -{{/html}} 471 - 472 -====== __Filter Position Count (**FPC**)__ ====== 473 - 474 -{{html clean="false" wiki="true"}} 475 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 476 -The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default. 477 -<div class="wikimodel-emptyline"></div> 478 -Ex: #5FPC10<cr><div class="wikimodel-emptyline"></div> 479 -This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div> 480 - 481 -Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div> 482 - 483 -Ex: #5QFPC<cr> might return *5QFPC10<cr><div class="wikimodel-emptyline"></div> 484 - 485 -This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div> 486 - 487 -Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div> 488 - 489 -Ex: #5CFPC10<cr><div class="wikimodel-emptyline"></div> 490 - 491 -This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 492 -<div class="wikimodel-emptyline"></div></div></div> 493 -{{/html}} 494 - 495 495 ====== __Origin Offset (**O**)__ ====== 496 496 497 -{{html wiki="true" clean="false"}} 498 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 499 -Example: #5O2400<cr><div class="wikimodel-emptyline"></div> 301 +Example: #5O2400<cr>This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered). 500 500 501 - This command allows you to changethe originfthe servoin relationtothefactory zero positionforthat session. Aswith allactioncommands,thesetting will be lost upon servoreset /powercycle. Originoffsetcommands are notcumulative and alwaysrelate tofactory zero. In theirst image,the originatfactory offset '0' (centered).<divclass="wikimodel-emptyline"></div>303 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]] 502 502 503 -[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div> 504 504 505 -In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees: <div class="wikimodel-emptyline"></div>306 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees: 506 506 507 -[[image:LSS-servo-origin.jpg ]]<div class="wikimodel-emptyline"></div>308 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]] 508 508 509 -Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div> 510 510 511 - Example: #5QO<cr> mightreturn*5QO-13<div class="wikimodel-emptyline"></div>311 +Origin Offset Query (**QO**) 512 512 513 - Thisallows you to querythe angle (in tenths of degrees)of the origin in relation to the factoryzero position. In thisexample,the new originis at-1.3degrees from the factory zero.<div class="wikimodel-emptyline"></div>313 +Example: #5QO<cr> might return *5QO-13 514 514 515 - ConfigureOriginOffset(**CO**)<divclass="wikimodel-emptyline"></div>315 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero. 516 516 517 - Example:#5CO-24<cr><divclass="wikimodel-emptyline"></div>317 +Configure Origin Offset (**CO**) 518 518 319 +Example: #5CO-24<cr> 320 + 519 519 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 520 -<div class="wikimodel-emptyline"></div></div></div> 521 -{{/html}} 522 522 523 523 ====== __Angular Range (**AR**)__ ====== 524 524 525 -{{html wiki="true" clean="false"}} 526 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 527 -Example: #5AR1800<cr><div class="wikimodel-emptyline"></div> 325 +Example: #5AR1800<cr> 528 528 529 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: <div class="wikimodel-emptyline"></div>327 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: 530 530 531 -[[image:LSS-servo-default.jpg ]]<div class="wikimodel-emptyline"></div>329 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]] 532 532 533 -Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. <div class="wikimodel-emptyline"></div>331 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 534 534 535 -[[image:LSS-servo-ar.jpg ]]<div class="wikimodel-emptyline"></div>333 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]] 536 536 537 -Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div> 538 538 539 - [[image:LSS-servo-ar-o-1.jpg]]<divclass="wikimodel-emptyline"></div>336 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range: 540 540 541 - Query Angular Range(**QAR**)<div class="wikimodel-emptyline"></div>338 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]] 542 542 543 -Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div> 544 544 545 - Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div>341 +Query Angular Range (**QAR**) 546 546 547 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 548 -<div class="wikimodel-emptyline"></div></div></div> 549 -{{/html}} 343 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees. 550 550 551 - ======__AngularStiffness(**AS**)__ ======345 +Configure Angular Range (**CAR**) 552 552 553 -{{html wiki="true" clean="false"}} 554 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 555 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div> 347 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 556 556 557 -A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div> 558 - 559 -* The more torque will be applied to try to keep the desired position against external input / changes 560 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div> 561 - 562 -A lower value on the other hand:<div class="wikimodel-emptyline"></div> 563 - 564 -* Causes a slower acceleration to the travel speed, and a slower deceleration 565 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div> 566 - 567 -The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 568 - 569 -Ex: #5AS-2<cr><div class="wikimodel-emptyline"></div> 570 - 571 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div> 572 - 573 -Ex: #5QAS<cr><div class="wikimodel-emptyline"></div> 574 - 575 -Queries the value being used.<div class="wikimodel-emptyline"></div> 576 - 577 -Ex: #5CAS-2<cr><div class="wikimodel-emptyline"></div> 578 - 579 -Writes the desired angular stiffness value to EEPROM. 580 -<div class="wikimodel-emptyline"></div></div></div> 581 -{{/html}} 582 - 583 -====== __Angular Holding Stiffness (**AH**)__ ====== 584 - 585 -{{html wiki="true" clean="false"}} 586 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 587 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 588 - 589 -Ex: #5AH3<cr><div class="wikimodel-emptyline"></div> 590 - 591 -This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div> 592 - 593 -Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div> 594 - 595 -Ex: #5QAH<cr> might return *5QAH3<cr><div class="wikimodel-emptyline"></div> 596 - 597 -This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div> 598 - 599 -Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div> 600 - 601 -Ex: #5CAH2<cr><div class="wikimodel-emptyline"></div> 602 - 603 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM. 604 -<div class="wikimodel-emptyline"></div></div></div> 605 -{{/html}} 606 - 607 607 ====== __Angular Acceleration (**AA**)__ ====== 608 608 609 -{{html wiki="true" clean="false"}} 610 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 611 -The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 351 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 612 612 613 -Ex: #5AA30 <cr><divclass="wikimodel-emptyline"></div>353 +Ex: #5AA30<cr> 614 614 615 -This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). <div class="wikimodel-emptyline"></div>355 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). 616 616 617 -Query Angular Acceleration (**QAA**) <div class="wikimodel-emptyline"></div>357 +Query Angular Acceleration (**QAA**) 618 618 619 -Ex: #5QAA <cr>might return *5QAA30<cr><divclass="wikimodel-emptyline"></div>359 +Ex: #5QAA<cr> might return *5QAA30<cr> 620 620 621 -This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^). <div class="wikimodel-emptyline"></div>361 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^). 622 622 623 -Configure Angular Acceleration (**CAA**) <div class="wikimodel-emptyline"></div>363 +Configure Angular Acceleration (**CAA**) 624 624 625 -Ex: #5CAA30 <cr><divclass="wikimodel-emptyline"></div>365 +Ex: #5CAA30<cr> 626 626 627 627 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 628 -<div class="wikimodel-emptyline"></div></div></div> 629 -{{/html}} 630 630 631 631 ====== __Angular Deceleration (**AD**)__ ====== 632 632 633 -{{html wiki="true" clean="false"}} 634 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 635 -The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 371 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 636 636 637 -Ex: #5AD30 <cr><divclass="wikimodel-emptyline"></div>373 +Ex: #5AD30<cr> 638 638 639 -This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). <div class="wikimodel-emptyline"></div>375 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). 640 640 641 -Query Angular Deceleration (**QAD**) <div class="wikimodel-emptyline"></div>377 +Query Angular Deceleration (**QAD**) 642 642 643 -Ex: #5QAD <cr>might return *5QAD30<cr><divclass="wikimodel-emptyline"></div>379 +Ex: #5QAD<cr> might return *5QAD30<cr> 644 644 645 -This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^). <div class="wikimodel-emptyline"></div>381 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^). 646 646 647 -Configure Angular Deceleration (**CAD**) <div class="wikimodel-emptyline"></div>383 +Configure Angular Deceleration (**CAD**) 648 648 649 -Ex: #5CAD30 <cr><divclass="wikimodel-emptyline"></div>385 +Ex: #5CAD30<cr> 650 650 651 -This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 652 -<div class="wikimodel-emptyline"></div></div></div> 653 -{{/html}} 387 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 654 654 655 655 ====== __Gyre Direction (**G**)__ ====== 656 656 657 -{{html wiki="true" clean="false"}} 658 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 659 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div> 391 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1. 660 660 661 -Ex: #5G-1 <cr><divclass="wikimodel-emptyline"></div>393 +Ex: #5G-1<cr> 662 662 663 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. <div class="wikimodel-emptyline"></div>395 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 664 664 665 -Query Gyre Direction (**QG**) <divclass="wikimodel-emptyline"></div>397 +Query Gyre Direction (**QG**)Ex: #5QG<cr> might return *5QG-1<cr> 666 666 667 - Ex:#5QG<cr>mightreturn*5QG-1<cr><divclass="wikimodel-emptyline"></div>399 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM. 668 668 669 - The value returned above means the servois in a counter-clockwisegyration. Sending a #5WR30 command will rotate the servo in a counter-clockwisegyration at 30 RPM.<div class="wikimodel-emptyline"></div>401 +Configure Gyre (**CG**) 670 670 671 - ConfigureGyre (**CG**)<divclass="wikimodel-emptyline"></div>403 +Ex: #5CG-1<cr> 672 672 673 -Ex: #5CG-1<cr><div class="wikimodel-emptyline"></div> 674 - 675 675 This changes the gyre direction as described above and also writes to EEPROM. 676 -<div class="wikimodel-emptyline"></div></div></div> 677 -{{/html}} 678 678 679 679 ====== __First Position__ ====== 680 680 681 -{{html wiki="true" clean="false"}} 682 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 683 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div> 409 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.Query First Position in Degrees (**QFD**)Ex: #5QFD<cr> might return *5QFD900<cr>The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.Configure First Position in Degrees (**CFD**)Ex: #5CFD900<cr>This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 684 684 685 -Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div> 686 - 687 -Ex: #5QFD<cr> might return *5QFD900<cr> <div class="wikimodel-emptyline"></div> 688 - 689 -The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div> 690 - 691 -Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div> 692 - 693 -Ex: #5CFD900<cr><div class="wikimodel-emptyline"></div> 694 - 695 -This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 696 -<div class="wikimodel-emptyline"></div></div></div> 697 -{{/html}} 698 - 699 -====== __Maximum Motor Duty (**MMD**)__ ====== 700 - 701 -{{html wiki="true" clean="false"}} 702 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 703 -This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div> 704 - 705 -Ex: #5MMD512<cr><div class="wikimodel-emptyline"></div> 706 - 707 -This will set the duty-cycle to 512 for servo with ID 5 for that session.<div class="wikimodel-emptyline"></div> 708 - 709 -Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div> 710 - 711 -Ex: #5QMMDD<cr> might return *5QMMD512<cr> <div class="wikimodel-emptyline"></div> 712 - 713 -This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023. 714 -<div class="wikimodel-emptyline"></div></div></div> 715 -{{/html}} 716 - 717 717 ====== __Maximum Speed in Degrees (**SD**)__ ====== 718 718 719 -{{html wiki="true" clean="false"}} 720 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 721 -Ex: #5SD1800<cr><div class="wikimodel-emptyline"></div> 722 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 413 +Ex: #5SD1800<cr>This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in Degrees (**QSD**)Ex: #5QSD<cr> might return *5QSD1800<cr>By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 723 723 724 -Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div> 725 - 726 -Ex: #5QSD<cr> might return *5QSD1800<cr><div class="wikimodel-emptyline"></div> 727 - 728 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 729 - 730 730 |**Command sent**|**Returned value (1/10 °)** 731 -|ex: #5QSD <cr>|Session value for maximum speed (set by latest SD/SR command)732 -|ex: #5QSD1 <cr>|Configured maximum speed in EEPROM (set by CSD/CSR)733 -|ex: #5QSD2 <cr>|Instantaneous speed (same as QWD)734 -|ex: #5QSD3 <cr>|Target travel speed<div class="wikimodel-emptyline"></div>416 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 417 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 418 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 419 +|ex: #5QSD3<cr>|Target travel speed 735 735 736 -Configure Speed in Degrees (**CSD**)< div class="wikimodel-emptyline"></div>421 +Configure Speed in Degrees (**CSD**)Ex: #5CSD1800<cr>Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 737 737 738 -Ex: #5CSD1800<cr><div class="wikimodel-emptyline"></div> 739 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 740 -</div></div> 741 -{{/html}} 742 - 743 743 ====== __Maximum Speed in RPM (**SR**)__ ====== 744 744 745 -{{html wiki="true" clean="false"}} 746 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 747 -Ex: #5SR45<cr><div class="wikimodel-emptyline"></div> 748 -This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 425 +Ex: #5SR45<cr>This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in RPM (**QSR**)Ex: #5QSR<cr> might return *5QSR45<cr>By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 749 749 750 -Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div> 751 - 752 -Ex: #5QSR<cr> might return *5QSR45<cr><div class="wikimodel-emptyline"></div> 753 - 754 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 755 - 756 756 |**Command sent**|**Returned value (1/10 °)** 757 -|ex: #5QSR <cr>|Session value for maximum speed (set by latest SD/SR command)758 -|ex: #5QSR1 <cr>|Configured maximum speed in EEPROM (set by CSD/CSR)759 -|ex: #5QSR2 <cr>|Instantaneous speed (same as QWD)760 -|ex: #5QSR3 <cr>|Target travel speed<div class="wikimodel-emptyline"></div>428 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 429 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 430 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 431 +|ex: #5QSR3<cr>|Target travel speed 761 761 762 -Configure Speed in RPM (**CSR**)< divclass="wikimodel-emptyline"></div>433 +Configure Speed in RPM (**CSR**)Ex: #5CSR45<cr>Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 763 763 764 -Ex: #5CSR45<cr><div class="wikimodel-emptyline"></div> 765 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 766 -</div></div> 767 -{{/html}} 768 - 769 769 == Modifiers == 770 770 771 -====== __Speed (**S **, **SD**) modifier__ ======437 +====== __Speed (**SD**) modifier__ ====== 772 772 773 -{{html clean="false" wiki="true"}} 774 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 775 -Example: #5P1500S750<cr><div class="wikimodel-emptyline"></div> 776 -Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 777 -Example: #5D0SD180<cr><div class="wikimodel-emptyline"></div> 778 -Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.<div class="wikimodel-emptyline"></div> 779 -Query Speed (**QS**)<div class="wikimodel-emptyline"></div> 780 -Example: #5QS<cr> might return *5QS300<cr><div class="wikimodel-emptyline"></div> 781 -This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div> 782 -</div></div> 783 -{{/html}} 439 +(% class="wikigeneratedid" id="HTimedmove28T29modifier" %) 440 +Example: #5D0SD180<cr> 784 784 785 -====== __Timed move (**T**) modifier__ ====== 442 +(% class="wikigeneratedid" %) 443 +Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second. 786 786 787 -{{html wiki="true" clean="false"}} 788 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 789 -Example: #5P1500T2500<cr><div class="wikimodel-emptyline"></div> 445 +(% class="wikigeneratedid" %) 446 +Query Speed (**QS**) 790 790 791 -Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 792 -**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div> 793 -</div></div> 794 -{{/html}} 448 +(% class="wikigeneratedid" %) 449 +Example: #5QS<cr> might return *5QS300<cr> 795 795 796 -====== __Current Halt & Hold (**CH**) modifier__ ====== 451 +(% class="wikigeneratedid" %) 452 +This command queries the current speed in microseconds per second. 797 797 798 -{{html wiki="true" clean="false"}} 799 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 800 -Example: #5D1423CH400<cr><div class="wikimodel-emptyline"></div> 454 +====== __Timed move (**T**) modifier__ ====== 801 801 802 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div> 803 -This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 804 -</div></div> 805 -{{/html}} 456 +Example: #5D15000T2500<cr> 806 806 807 - ======__CurrentLimp(**CL**)modifier__======458 +Timed move can be used only as a modifier for a position (D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 808 808 809 -{{html wiki="true" clean="false"}} 810 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 811 -Example: #5D1423CL400<cr><div class="wikimodel-emptyline"></div> 460 +**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested 812 812 813 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div> 814 -This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 815 -</div></div> 816 -{{/html}} 462 +====== ====== 817 817 818 818 == Telemetry == 819 819 820 820 ====== __Query Voltage (**QV**)__ ====== 821 821 822 -{{html wiki="true" clean="false"}} 823 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 824 -Ex: #5QV<cr> might return *5QV11200<cr><div class="wikimodel-emptyline"></div> 825 -The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div> 826 -</div></div> 827 -{{/html}} 468 +Ex: #5QV<cr> might return *5QV11200<cr> 828 828 470 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V. 471 + 829 829 ====== __Query Temperature (**QT**)__ ====== 830 830 831 -{{html wiki="true" clean="false"}} 832 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 833 -Ex: #5QT<cr> might return *5QT564<cr><div class="wikimodel-emptyline"></div> 834 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div> 835 -</div></div> 836 -{{/html}} 474 +Ex: #5QT<cr> might return *5QT564<cr> 837 837 838 - ======__QueryCurrent(**QC**)__======476 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 839 839 840 -{{html wiki="true" clean="false"}} 841 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 842 -Ex: #5QC<cr> might return *5QC140<cr><div class="wikimodel-emptyline"></div> 843 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div> 844 -</div></div> 845 -{{/html}} 478 +====== __Query Motor Driver Current (**QC**)__ ====== 846 846 847 - ======__QueryModelString(**QMS**)__ ======480 +Ex: #5QC<cr> might return *5QC140<cr> 848 848 849 -{{html wiki="true" clean="false"}} 850 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 851 -Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr><div class="wikimodel-emptyline"></div> 852 -This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div> 853 -</div></div> 854 -{{/html}} 482 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value. 855 855 856 -====== __Query Firmware (**QF**)__ ======484 +====== __Query Model String (**QMS**)__ ====== 857 857 858 -{{html wiki="true" clean="false"}} 859 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 860 -Ex: #5QF<cr> might return *5QF368<cr><div class="wikimodel-emptyline"></div> 861 -The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div> 862 -The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div> 863 -</div></div> 864 -{{/html}} 486 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr> 865 865 866 - ======__QuerySerialNumber(**QN**)__======488 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision. 867 867 868 -{{html wiki="true" clean="false"}} 869 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 870 -Ex: #5QN<cr> might return *5QN12345678<cr><div class="wikimodel-emptyline"></div> 871 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div> 872 -</div></div> 873 -{{/html}} 490 +====== __Query Firmware (**QF**)__ ====== 874 874 875 - ==RGBLED==492 +Ex: #5QF<cr> might return *5QF368<cr> 876 876 877 - ======__LEDColor(**LED**)__======494 +The number in the reply represents the firmware version, in this example being 368.The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14 878 878 879 -{{html wiki="true" clean="false"}} 880 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 881 -Ex: #5LED3<cr><div class="wikimodel-emptyline"></div> 882 -This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div> 883 -0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div> 884 -Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div> 885 -Ex: #5QLED<cr> might return *5QLED5<cr><div class="wikimodel-emptyline"></div> 886 -This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div> 887 -Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div> 888 -Ex: #5CLED3<cr><div class="wikimodel-emptyline"></div> 889 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div> 890 -</div></div> 891 -{{/html}} 496 +====== __Query Serial Number (**QN**)__ ====== 892 892 893 - ======__ConfigureLED Blinking(**CLB**)__ ======498 +Ex: #5QN<cr> might return *5QN12345678<cr> 894 894 895 -{{html wiki="true" clean="false"}} 896 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 897 -This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div> 898 - 899 -(% style="width:195px" %) 900 -|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 901 -|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 902 -|(% style="width:134px" %)Limp|(% style="width:58px" %)1 903 -|(% style="width:134px" %)Holding|(% style="width:58px" %)2 904 -|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 905 -|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 906 -|(% style="width:134px" %)Free|(% style="width:58px" %)16 907 -|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 908 -|(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div> 909 - 910 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div> 911 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div> 912 -Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div> 913 -Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div> 914 -Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div> 915 -Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div> 916 -Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div> 917 -RESETTING the servo is needed.<div class="wikimodel-emptyline"></div> 918 -</div></div> 919 -{{/html}} 920 - 921 -== RGB LED == 922 - 923 -The LED can be 500 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.