Changes for page LSS-P - Communication Protocol
Last modified by Eric Nantel on 2024/07/03 09:42
Change comment: There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,6 +1,7 @@ 1 1 {{warningBox warningText="More information coming soon"/}} 2 2 3 3 4 + 4 4 (% class="wikigeneratedid" id="HTableofContents" %) 5 5 **Page Contents** 6 6 ... ... @@ -29,104 +29,88 @@ 29 29 30 30 == Modifiers == 31 31 32 -{{html clean="false" wiki="true"}} 33 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 34 -Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div> 33 +Modifiers can only be used with certain **action commands**. The format to include a modifier is: 35 35 36 -1. Start with a number sign 35 +1. Start with a number sign **#** (Unicode Character: U+0023) 37 37 1. Servo ID number as an integer 38 38 1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below) 39 39 1. Action value in the correct units with no decimal 40 -1. Modifier command (one or two letters from 39 +1. Modifier command (one or two letters from the list of modifiers below) 41 41 1. Modifier value in the correct units with no decimal 42 -1. End with a carriage return \r**<cr>**41 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 43 43 44 -Ex: #5D13000T1500 <cr><divclass="wikimodel-emptyline"></div>43 +Ex: #5D13000T1500<cr>This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds). 45 45 46 -This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div> 47 -<div class="wikimodel-emptyline"></div></div></div> 45 +== Queries == 48 48 49 -<h2>Queries</h2> 50 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 51 -Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div> 47 +Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format: 52 52 53 -1. Start with a number sign 49 +1. Start with a number sign **#** (Unicode Character: U+0023) 54 54 1. Servo ID number as an integer 55 55 1. Query command (one to four letters, no spaces, capital or lower case) 56 -1. End with a carriage return \r**<cr>**<div class="wikimodel-emptyline"></div>52 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 57 57 58 -Ex: #5QD <cr>Query the position in (hundredths of) degrees for servo with ID #5<divclass="wikimodel-emptyline"></div>54 +Ex: #5QD<cr> Query the position in (hundredths of) degrees for servo with ID #5The query will return a serial string (almost instantaneously) via the servo's Tx in the following format: 59 59 60 -The query will return a serial string (almost instantaneously) via the servo's Tx in the following format: 61 - 62 62 1. Start with an asterisk * (Unicode Character: U+0023) 63 63 1. Servo ID number as an integer 64 64 1. Query command (one to four letters, no spaces, capital letters) 65 65 1. The reported value in the units described, no decimals. 66 -1. End with a carriage return \r**<cr>**<div class="wikimodel-emptyline"></div>60 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 67 67 68 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be: <div class="wikimodel-emptyline"></div>62 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be: 69 69 70 -Ex: *5QD13000 <cr><divclass="wikimodel-emptyline"></div>64 +Ex: *5QD13000<cr> 71 71 72 72 This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees). 73 -<div class="wikimodel-emptyline"></div></div></div> 74 74 75 - <h2>Configurations</h2>68 +== Configurations == 76 76 77 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 78 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div> 70 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored. 79 79 80 -The seconfigurations are retained inmemoryafter theservo is resetrpower iscut / lost. Someconfiguration commandsaffectthe session, while others do not. In the Command table below, thecolumn"Session" denotes ifthe configuration commandaffects the session. Not all action commandshave a corresponding configuration commandand viceversa. Configurationcommands are not cumulative;thismeansthatif twoofthe same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>72 +The format to send a configuration command is identical to that of an action command: 81 81 82 -The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div> 83 - 84 -1. Start with a number sign **#** (Unicode Character: U+0023) 74 +1. Start with a number sign **#** (Unicode Character: U+0023) 85 85 1. Servo ID number as an integer 86 86 1. Configuration command (two to four letters, no spaces, capital or lower case) 87 87 1. Configuration value in the correct units with no decimal 88 -1. End with a carriage return \r**<cr>**<div class="wikimodel-emptyline"></div>78 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 89 89 90 -Ex: #5CO-500 <cr><divclass="wikimodel-emptyline"></div>80 +Ex: #5CO-500<cr> 91 91 92 -This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below). <div class="wikimodel-emptyline"></div>82 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below). 93 93 94 -**Session vs Configuration Query** <div class="wikimodel-emptyline"></div>84 +**Session vs Configuration Query** 95 95 96 -By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command: <div class="wikimodel-emptyline"></div>86 +By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command: 97 97 98 -Ex: #5CSR10 <cr>immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>88 +Ex: #5CSR10<cr> immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory. 99 99 100 -After RESET, a command of #5SR4 <cr>sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>90 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore: 101 101 102 -#5QSR <cr>or #5QSR0<cr><cr>which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>92 +#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas 103 103 104 -#5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM 105 -<div class="wikimodel-emptyline"></div></div></div> 94 +#5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM 106 106 107 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 108 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div> 96 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset). 109 109 110 -[[image:LSS-servo-positions.jpg ]]<div class="wikimodel-emptyline"></div>98 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]] 111 111 112 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: <div class="wikimodel-emptyline"></div>100 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: 113 113 114 -#1D-3000 <cr>This causes the servo to move to -30.00 degrees (green arrow)<div class="wikimodel-emptyline"></div>102 +#1D-3000<cr> This causes the servo to move to -30.00 degrees (green arrow) 115 115 116 -#1D21000 <cr>This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)<div class="wikimodel-emptyline"></div>104 +#1D21000<cr> This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow) 117 117 118 -#1D-42000 <cr>This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div>106 +#1D-42000<cr> This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees. 119 119 120 -Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees. <div class="wikimodel-emptyline"></div>108 +Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees. 121 121 122 -#1D48000 <cr>This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div>110 +#1D48000<cr> This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations. 123 123 124 -#1D33000 <cr>would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>112 +#1D33000<cr> would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow). 125 125 126 126 If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.00 degrees before power is cycled, upon power up the servo's position will be read as +120.00 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.00°, 180.00°]. 127 -<div class="wikimodel-emptyline"></div></div></div> 128 - 129 -{{/html}} 130 130 ))) 131 131 132 132 = Command List = ... ... @@ -139,8 +139,8 @@ 139 139 | |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Revert to firmware default values. See command for details 140 140 | |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Update firmware. See command for details. 141 141 | |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) | | | 127 +| |[[**ID** Number >>||anchor="HIDNumber"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 142 142 | |[[**E**nable CAN **T**erminal>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0 or 1|0: Disable 1: Enable 143 -| |[[**ID** Number >>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 144 144 | |[[**U**SB **C**onnection State>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected 145 145 | |**Q**uery **F**irmware **R**elease|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | | 146 146 ... ... @@ -205,132 +205,150 @@ 205 205 206 206 == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) == 207 207 193 +====== (% style="color:inherit; font-family:inherit" %)__Reset__(%%) ====== 208 208 209 -====== ====== 195 +(% style="color:inherit; font-family:inherit" %)Ex: #5RESET<cr> 196 +This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See Session, note #2 for more details. 210 210 211 -== Motion ==198 +====== (% style="color:inherit; font-family:inherit" %)__Default & confirm__(%%) ====== 212 212 213 - ======__Position inDegrees(**D**)__======200 +(% style="color:inherit; font-family:inherit" %)Ex: #5DEFAULT<cr> 214 214 215 -{{html wiki="true" clean="false"}} 216 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 217 -Example: #5D1456<cr><div class="wikimodel-emptyline"></div> 202 +(% style="color:inherit; font-family:inherit" %)This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 218 218 219 - Thismovesheservoto an angleof 145.6 degrees, wherethecenter (0) positionis centered. Negative values (ex. -176 representing -17.6 degrees)could also be used.Afullcirclewould befrom -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servowould movein adifferentdirection.<divclass="wikimodel-emptyline"></div>204 +(% style="color:inherit; font-family:inherit" %)EX: #5DEFAULT<cr> followed by #5CONFIRM<cr> 220 220 221 - Largervalues arepermittedandallowformulti-turnfunctionalityusingthe concept of virtualposition(explainedabove).<divclass="wikimodel-emptyline"></div>206 +(% style="color:inherit; font-family:inherit" %)Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command. 222 222 223 - QueryPosition inDegrees(**QD**)<divclass="wikimodel-emptyline"></div>208 +(% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET. 224 224 225 - Example:#5QD<cr> might return *5QD132<cr><divclass="wikimodel-emptyline"></div>210 +====== (% style="color:inherit; font-family:inherit" %)__Update & confirm__(%%) ====== 226 226 227 - Thismeansheservoislocated at 13.2 degrees.<divclass="wikimodel-emptyline"></div>212 +(% style="color:inherit; font-family:inherit" %)Ex: #5UPDATE<cr> 228 228 229 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 230 -Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div> 214 +(% style="color:inherit; font-family:inherit" %)This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function. 231 231 232 - Ex:#5QDT<cr> might return*5QDT6783<cr><divclass="wikimodel-emptyline"></div>216 +(% style="color:inherit; font-family:inherit" %)EX: #5UPDATE<cr> followed by #5CONFIRM<cr> 233 233 234 -The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 235 -<div class="wikimodel-emptyline"></div></div></div> 236 -{{/html}} 218 +(% style="color:inherit; font-family:inherit" %)Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 237 237 238 - ====== __(Relative) MoveinDegrees(**MD**)__======220 +(% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET. 239 239 240 -{{html wiki="true" clean="false"}} 241 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 242 -Example: #5MD123<cr><div class="wikimodel-emptyline"></div> 222 +====== (% style="color:inherit; font-family:inherit" %)__Confirm__(%%) ====== 243 243 244 -The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 245 -<div class="wikimodel-emptyline"></div></div></div> 246 -{{/html}} 224 +(% style="color:inherit; font-family:inherit" %)Ex: #5CONFIRM<cr> 247 247 248 -====== __Wheel Mode in Degrees (**WD**)__ ====== 226 +(% style="color:inherit; font-family:inherit" %)This command is used to confirm changes after a Default or Update command. 227 +Note: After the CONFIRM command is sent, the servo will automatically perform a RESET. 249 249 250 -{{html wiki="true" clean="false"}} 251 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 252 -Ex: #5WD90<cr><div class="wikimodel-emptyline"></div> 229 +====== (% style="color:inherit; font-family:inherit" %)__ID Number (**ID**)__(%%) ====== 253 253 254 - Thiscommandsets theservoto wheelmode whereit will rotate inthedesired directionatthe selected speed. The example above wouldhavethe servo rotate at 90.0 degrees per second clockwise (assuming factorydefault configurations).<divclass="wikimodel-emptyline"></div>231 +(% style="color:inherit; font-family:inherit" %)Configure ID Number (**CID**) 255 255 256 - QueryWheelModeinDegrees (**QWD**)<divclass="wikimodel-emptyline"></div>233 +(% style="color:inherit; font-family:inherit" %)Ex: #0CID5<cr> 257 257 258 - Ex: #5QWD<cr> mightreturn*5QWD90<cr><divclass="wikimodel-emptyline"></div>235 +The default ID is 0, so this sets the servo to ID 5. 259 259 260 -The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 261 -<div class="wikimodel-emptyline"></div></div></div> 262 -{{/html}} 237 +Query ID Number (**QID**) 263 263 264 - ======__WheelModeinRPM (**WR**)__ ======239 +Ex: #254QID<cr> might return *254QID5<cr> 265 265 266 -{{html wiki="true" clean="false"}} 267 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 268 -Ex: #5WR40<cr><div class="wikimodel-emptyline"></div> 241 +In this case, the broadcast ID is used to ensure the servo connected will reply with the ID. This can be used in case the ID assigned to a servo is forgotten. 269 269 270 - Thiscommandsets theservoto wheelmode whereit will rotate inthedesired directionatthe selected rpm. Wheelmode (a.k.a. "continuous rotation")has theservo operatelikea geared DCmotor.Theservo'smaximum rpm cannot be set higher than its physicallimit at a given voltage. The example above would have theservo rotate at 40 rpm clockwise (assuming factorydefault configurations).<div class="wikimodel-emptyline"></div>243 +(% style="color:inherit; font-family:inherit" %)__Enable CAN Terminal Resistor (**ET**)__ 271 271 272 -Query WheelMode in RPM(**QWR**)<div class="wikimodel-emptyline"></div>245 +Query Enable CAN Terminal Resistor (**QET**) 273 273 274 -Ex: #5Q WR<cr>might return *5QWR40<cr><divclass="wikimodel-emptyline"></div>247 +Ex: #5QET<cr> might return *QET0<cr> 275 275 276 -The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 277 -<div class="wikimodel-emptyline"></div></div></div> 278 -{{/html}} 249 +This means that servo with ID 5 is NOT configured as the last servo in the CAN bus. 279 279 280 - ====== __Position inPWM(**P**)__ ======251 +Configure Enable CAN Terminal Resistor (**CET**) 281 281 282 -{{html wiki="true" clean="false"}} 283 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 284 -Example: #5P2334<cr><div class="wikimodel-emptyline"></div> 253 +(% style="color:inherit; font-family:inherit" %)Ex: #5CET1<cr> 285 285 286 - Theposition in PWM pulses wasretainedinorderto be backward compatible withtheSSC-32 / 32U protocol.Thisrelatesthe desired angle with an RCstandardPWMsignal and is furtherexplained intheSSC-32and[[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]].Withoutany modificationsoconfigurationconsidered, and a ±90.0 degrees standard range where1500microsecondsis centered,aPWMsignal of 2334 would settheservoto 165.1 degrees. ValidvaluesforP are [500, 2500]. Valuesoutsidethisrangearecorrected/ restricted to end points.<divclass="wikimodel-emptyline"></div>255 +(% style="color:inherit; font-family:inherit" %)This commands sets servo with ID 5 as being the last in the CAN Bus. The last servo in a CAN bus must be configured this way. 287 287 288 - QueryPositionin Pulse(**QP**)<divclass="wikimodel-emptyline"></div>257 +====== __USB Connection Status (**UC**)__ ====== 289 289 290 - Example:#5QP<cr> mightreturn*5QP2334<div class="wikimodel-emptyline"></div>259 +Query USB Connection Status (**QUC**) 291 291 292 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 293 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 294 -<div class="wikimodel-emptyline"></div></div></div> 295 -{{/html}} 261 +Ex: #5QUC<cr> might return *5QUC1<cr> meaning the servo is connected via USB 296 296 297 -====== __ (Relative)Move in PWM(**M**)__ ======263 +====== __Firmware Release (**FR**)__ ====== 298 298 299 -{{html wiki="true" clean="false"}} 300 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 301 -Example: #5M1500<cr><div class="wikimodel-emptyline"></div> 265 +Query Firmware Release (**QFR**) 302 302 303 -The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 304 -<div class="wikimodel-emptyline"></div></div></div> 305 -{{/html}} 267 +Ex: #5QFR<cr> might return *QFR11<cr> meaning it has a (random) firmware release version number 11. 306 306 307 - ======__RawDuty-cycleMove(**RDM**)__======269 +This is used to verify if the firmware on the servos is up to date, or which version is running on the microcontroller. 308 308 309 -{{html wiki="true" clean="false"}} 310 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 311 -Example: #5RDM512<cr><div class="wikimodel-emptyline"></div> 271 +== Motion == 312 312 313 - Theraw duty-cycle move command (or free move command) will rotate theservo at a specified duty cycle valuein wheel mode (a.k.a. "continuousrotation")likeagearedDCmotor.<div class="wikimodel-emptyline"></div>273 +====== __Position in Degrees (**D**)__ ====== 314 314 315 - The duty values range from0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negativevalue would be counter clockwise).<divclass="wikimodel-emptyline"></div>275 +Example: #5D1456<cr> 316 316 317 - QueryMoveinDuty-cycle (**QMD**)<div class="wikimodel-emptyline"></div>277 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. 318 318 319 - Example:#5QMD<cr>might return*5QMD512<divclass="wikimodel-emptyline"></div>279 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). 320 320 321 -This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle. 322 -<div class="wikimodel-emptyline"></div></div></div> 323 -{{/html}} 281 +Query Position in Degrees (**QD**) 324 324 283 +Example: #5QD<cr> might return *5QD132<cr> 284 + 285 +This means the servo is located at 13.2 degrees. 286 + 287 +Query Target Position in Degrees (**QDT**) 288 + 289 +Ex: #5QDT<cr> might return *5QDT6783<cr> 290 + 291 +The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 292 + 293 +====== __(Relative) Move in Degrees (**MD**)__ ====== 294 + 295 + 296 +Example: #5MD123<cr> 297 + 298 +The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 299 + 300 +====== __Wheel Mode in Degrees (**WD**)__ ====== 301 + 302 +Ex: #5WD90<cr> 303 + 304 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations). 305 + 306 +Query Wheel Mode in Degrees (**QWD**) 307 + 308 +Ex: #5QWD<cr> might return *5QWD90<cr> 309 + 310 +The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 311 + 312 +====== __Wheel Mode in RPM (**WR**)__ ====== 313 + 314 +Ex: #5WR40<cr> 315 + 316 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). 317 + 318 +Query Wheel Mode in RPM (**QWR**) 319 + 320 +Ex: #5QWR<cr> might return *5QWR40<cr> 321 + 322 +The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 323 + 324 +====== __(Relative) Move in Degrees (**MD**)__ ====== 325 + 326 +(% class="wikigeneratedid" id="HExample:235M15003Ccr3E" %) 327 +Example: #5M1500<cr> 328 + 329 +(% class="wikigeneratedid" id="HTherelativemoveinPWMcommandcausestheservotoreaditscurrentpositionandmovebythespecifiednumberofPWMsignal.ForexampleiftheservoissettorotateCW28default29andanMcommandof1500issenttotheservo2Citwillcausetheservotorotateclockwiseby90degrees.NegativePWMvaluewouldcausetheservotorotateintheoppositeconfigureddirection." %) 330 +The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 331 + 325 325 ====== __Query Status (**Q**)__ ====== 326 326 327 -{{html wiki="true" clean="false"}} 328 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 329 -The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div> 334 +The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below. 330 330 331 -Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div> 332 -</div></div> 333 -{{/html}} 336 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 334 334 335 335 |(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description** 336 336 | |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state ... ... @@ -349,11 +349,7 @@ 349 349 Send a Q1 command to know which limit has been reached (described below). 350 350 ))) 351 351 352 -{{html wiki="true" clean="false"}} 353 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 354 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div> 355 -</div></div> 356 -{{/html}} 355 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 357 357 358 358 |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description** 359 359 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong ... ... @@ -363,505 +363,217 @@ 363 363 364 364 ====== __Limp (**L**)__ ====== 365 365 366 -{{html wiki="true" clean="false"}} 367 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 368 -Example: #5L<cr><div class="wikimodel-emptyline"></div> 365 +Example: #5L<cr> 369 369 370 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 371 -<div class="wikimodel-emptyline"></div></div></div> 372 -{{/html}} 367 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 373 373 374 374 ====== __Halt & Hold (**H**)__ ====== 375 375 376 -{{html wiki="true" clean="false"}} 377 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 378 -Example: #5H<cr><div class="wikimodel-emptyline"></div> 371 +Example: #5H<cr> 379 379 380 380 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 381 -<div class="wikimodel-emptyline"></div></div></div> 382 -{{/html}} 383 383 384 384 == Motion Setup == 385 385 386 -====== __Enable Motion Profile (**EM**)__ ====== 387 - 388 -{{html clean="false" wiki="true"}} 389 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 390 -EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div> 391 - 392 -Ex: #5EM1<cr><div class="wikimodel-emptyline"></div> 393 - 394 -This command enables a trapezoidal motion profile for servo #5 <div class="wikimodel-emptyline"></div> 395 - 396 -Ex: #5EM0<cr><div class="wikimodel-emptyline"></div> 397 - 398 -This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command). 399 - 400 -<div class="wikimodel-emptyline"></div> 401 - 402 -Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div> 403 - 404 -Ex: #5QEM<cr> might return *5QEM1<cr><div class="wikimodel-emptyline"></div> 405 - 406 -This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div> 407 - 408 -Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div> 409 - 410 -Ex: #5CEM0<cr><div class="wikimodel-emptyline"></div> 411 - 412 -This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 413 -<div class="wikimodel-emptyline"></div></div></div> 414 -{{/html}} 415 - 416 -====== __Filter Position Count (**FPC**)__ ====== 417 - 418 -{{html clean="false" wiki="true"}} 419 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 420 -The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default. 421 -<div class="wikimodel-emptyline"></div> 422 -Ex: #5FPC10<cr><div class="wikimodel-emptyline"></div> 423 -This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div> 424 - 425 -Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div> 426 - 427 -Ex: #5QFPC<cr> might return *5QFPC10<cr><div class="wikimodel-emptyline"></div> 428 - 429 -This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div> 430 - 431 -Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div> 432 - 433 -Ex: #5CFPC10<cr><div class="wikimodel-emptyline"></div> 434 - 435 -This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 436 -<div class="wikimodel-emptyline"></div></div></div> 437 -{{/html}} 438 - 439 439 ====== __Origin Offset (**O**)__ ====== 440 440 441 -{{html wiki="true" clean="false"}} 442 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 443 -Example: #5O2400<cr><div class="wikimodel-emptyline"></div> 379 +Example: #5O2400<cr>This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered). 444 444 445 - This command allows you to changethe originfthe servoin relationtothefactory zero positionforthat session. Aswith allactioncommands,thesetting will be lost upon servoreset /powercycle. Originoffsetcommands are notcumulative and alwaysrelate tofactory zero. In theirst image,the originatfactory offset '0' (centered).<divclass="wikimodel-emptyline"></div>381 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]] 446 446 447 -[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div> 448 448 449 -In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees: <div class="wikimodel-emptyline"></div>384 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees: 450 450 451 -[[image:LSS-servo-origin.jpg ]]<div class="wikimodel-emptyline"></div>386 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]] 452 452 453 -Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div> 454 454 455 - Example: #5QO<cr> mightreturn*5QO-13<div class="wikimodel-emptyline"></div>389 +Origin Offset Query (**QO**) 456 456 457 - Thisallows you to querythe angle (in tenths of degrees)of the origin in relation to the factoryzero position. In thisexample,the new originis at-1.3degrees from the factory zero.<div class="wikimodel-emptyline"></div>391 +Example: #5QO<cr> might return *5QO-13 458 458 459 - ConfigureOriginOffset(**CO**)<divclass="wikimodel-emptyline"></div>393 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero. 460 460 461 - Example:#5CO-24<cr><divclass="wikimodel-emptyline"></div>395 +Configure Origin Offset (**CO**) 462 462 397 +Example: #5CO-24<cr> 398 + 463 463 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 464 -<div class="wikimodel-emptyline"></div></div></div> 465 -{{/html}} 466 466 467 467 ====== __Angular Range (**AR**)__ ====== 468 468 469 -{{html wiki="true" clean="false"}} 470 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 471 -Example: #5AR1800<cr><div class="wikimodel-emptyline"></div> 403 +Example: #5AR1800<cr> 472 472 473 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: <div class="wikimodel-emptyline"></div>405 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: 474 474 475 -[[image:LSS-servo-default.jpg ]]<div class="wikimodel-emptyline"></div>407 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]] 476 476 477 -Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. <div class="wikimodel-emptyline"></div>409 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 478 478 479 -[[image:LSS-servo-ar.jpg ]]<div class="wikimodel-emptyline"></div>411 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]] 480 480 481 -Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div> 482 482 483 - [[image:LSS-servo-ar-o-1.jpg]]<divclass="wikimodel-emptyline"></div>414 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range: 484 484 485 - Query Angular Range(**QAR**)<div class="wikimodel-emptyline"></div>416 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]] 486 486 487 -Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div> 488 488 489 - Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div>419 +Query Angular Range (**QAR**) 490 490 491 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 492 -<div class="wikimodel-emptyline"></div></div></div> 493 -{{/html}} 421 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees. 494 494 495 - ======__AngularStiffness(**AS**)__ ======423 +Configure Angular Range (**CAR**) 496 496 497 -{{html wiki="true" clean="false"}} 498 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 499 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div> 425 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 500 500 501 -A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div> 502 - 503 -* The more torque will be applied to try to keep the desired position against external input / changes 504 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div> 505 - 506 -A lower value on the other hand:<div class="wikimodel-emptyline"></div> 507 - 508 -* Causes a slower acceleration to the travel speed, and a slower deceleration 509 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div> 510 - 511 -The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 512 - 513 -Ex: #5AS-2<cr><div class="wikimodel-emptyline"></div> 514 - 515 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div> 516 - 517 -Ex: #5QAS<cr><div class="wikimodel-emptyline"></div> 518 - 519 -Queries the value being used.<div class="wikimodel-emptyline"></div> 520 - 521 -Ex: #5CAS-2<cr><div class="wikimodel-emptyline"></div> 522 - 523 -Writes the desired angular stiffness value to EEPROM. 524 -<div class="wikimodel-emptyline"></div></div></div> 525 -{{/html}} 526 - 527 -====== __Angular Holding Stiffness (**AH**)__ ====== 528 - 529 -{{html wiki="true" clean="false"}} 530 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 531 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 532 - 533 -Ex: #5AH3<cr><div class="wikimodel-emptyline"></div> 534 - 535 -This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div> 536 - 537 -Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div> 538 - 539 -Ex: #5QAH<cr> might return *5QAH3<cr><div class="wikimodel-emptyline"></div> 540 - 541 -This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div> 542 - 543 -Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div> 544 - 545 -Ex: #5CAH2<cr><div class="wikimodel-emptyline"></div> 546 - 547 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM. 548 -<div class="wikimodel-emptyline"></div></div></div> 549 -{{/html}} 550 - 551 551 ====== __Angular Acceleration (**AA**)__ ====== 552 552 553 -{{html wiki="true" clean="false"}} 554 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 555 -The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 429 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 556 556 557 -Ex: #5AA30 <cr><divclass="wikimodel-emptyline"></div>431 +Ex: #5AA30<cr> 558 558 559 -This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). <div class="wikimodel-emptyline"></div>433 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). 560 560 561 -Query Angular Acceleration (**QAA**) <div class="wikimodel-emptyline"></div>435 +Query Angular Acceleration (**QAA**) 562 562 563 -Ex: #5QAA <cr>might return *5QAA30<cr><divclass="wikimodel-emptyline"></div>437 +Ex: #5QAA<cr> might return *5QAA30<cr> 564 564 565 -This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^). <div class="wikimodel-emptyline"></div>439 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^). 566 566 567 -Configure Angular Acceleration (**CAA**) <div class="wikimodel-emptyline"></div>441 +Configure Angular Acceleration (**CAA**) 568 568 569 -Ex: #5CAA30 <cr><divclass="wikimodel-emptyline"></div>443 +Ex: #5CAA30<cr> 570 570 571 571 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 572 -<div class="wikimodel-emptyline"></div></div></div> 573 -{{/html}} 574 574 575 575 ====== __Angular Deceleration (**AD**)__ ====== 576 576 577 -{{html wiki="true" clean="false"}} 578 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 579 -The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 449 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 580 580 581 -Ex: #5AD30 <cr><divclass="wikimodel-emptyline"></div>451 +Ex: #5AD30<cr> 582 582 583 -This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). <div class="wikimodel-emptyline"></div>453 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). 584 584 585 -Query Angular Deceleration (**QAD**) <div class="wikimodel-emptyline"></div>455 +Query Angular Deceleration (**QAD**) 586 586 587 -Ex: #5QAD <cr>might return *5QAD30<cr><divclass="wikimodel-emptyline"></div>457 +Ex: #5QAD<cr> might return *5QAD30<cr> 588 588 589 -This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^). <div class="wikimodel-emptyline"></div>459 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^). 590 590 591 -Configure Angular Deceleration (**CAD**) <div class="wikimodel-emptyline"></div>461 +Configure Angular Deceleration (**CAD**) 592 592 593 -Ex: #5CAD30 <cr><divclass="wikimodel-emptyline"></div>463 +Ex: #5CAD30<cr> 594 594 595 -This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 596 -<div class="wikimodel-emptyline"></div></div></div> 597 -{{/html}} 465 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 598 598 599 599 ====== __Gyre Direction (**G**)__ ====== 600 600 601 -{{html wiki="true" clean="false"}} 602 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 603 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div> 469 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1. 604 604 605 -Ex: #5G-1 <cr><divclass="wikimodel-emptyline"></div>471 +Ex: #5G-1<cr> 606 606 607 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. <div class="wikimodel-emptyline"></div>473 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 608 608 609 -Query Gyre Direction (**QG**) <divclass="wikimodel-emptyline"></div>475 +Query Gyre Direction (**QG**)Ex: #5QG<cr> might return *5QG-1<cr> 610 610 611 - Ex:#5QG<cr>mightreturn*5QG-1<cr><divclass="wikimodel-emptyline"></div>477 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM. 612 612 613 - The value returned above means the servois in a counter-clockwisegyration. Sending a #5WR30 command will rotate the servo in a counter-clockwisegyration at 30 RPM.<div class="wikimodel-emptyline"></div>479 +Configure Gyre (**CG**) 614 614 615 - ConfigureGyre (**CG**)<divclass="wikimodel-emptyline"></div>481 +Ex: #5CG-1<cr> 616 616 617 -Ex: #5CG-1<cr><div class="wikimodel-emptyline"></div> 618 - 619 619 This changes the gyre direction as described above and also writes to EEPROM. 620 -<div class="wikimodel-emptyline"></div></div></div> 621 -{{/html}} 622 622 623 623 ====== __First Position__ ====== 624 624 625 -{{html wiki="true" clean="false"}} 626 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 627 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div> 487 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.Query First Position in Degrees (**QFD**)Ex: #5QFD<cr> might return *5QFD900<cr>The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.Configure First Position in Degrees (**CFD**)Ex: #5CFD900<cr>This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 628 628 629 -Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div> 630 - 631 -Ex: #5QFD<cr> might return *5QFD900<cr> <div class="wikimodel-emptyline"></div> 632 - 633 -The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div> 634 - 635 -Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div> 636 - 637 -Ex: #5CFD900<cr><div class="wikimodel-emptyline"></div> 638 - 639 -This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 640 -<div class="wikimodel-emptyline"></div></div></div> 641 -{{/html}} 642 - 643 -====== __Maximum Motor Duty (**MMD**)__ ====== 644 - 645 -{{html wiki="true" clean="false"}} 646 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 647 -This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div> 648 - 649 -Ex: #5MMD512<cr><div class="wikimodel-emptyline"></div> 650 - 651 -This will set the duty-cycle to 512 for servo with ID 5 for that session.<div class="wikimodel-emptyline"></div> 652 - 653 -Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div> 654 - 655 -Ex: #5QMMDD<cr> might return *5QMMD512<cr> <div class="wikimodel-emptyline"></div> 656 - 657 -This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023. 658 -<div class="wikimodel-emptyline"></div></div></div> 659 -{{/html}} 660 - 661 661 ====== __Maximum Speed in Degrees (**SD**)__ ====== 662 662 663 -{{html wiki="true" clean="false"}} 664 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 665 -Ex: #5SD1800<cr><div class="wikimodel-emptyline"></div> 666 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 491 +Ex: #5SD1800<cr>This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in Degrees (**QSD**)Ex: #5QSD<cr> might return *5QSD1800<cr>By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 667 667 668 -Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div> 669 - 670 -Ex: #5QSD<cr> might return *5QSD1800<cr><div class="wikimodel-emptyline"></div> 671 - 672 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 673 - 674 674 |**Command sent**|**Returned value (1/10 °)** 675 -|ex: #5QSD <cr>|Session value for maximum speed (set by latest SD/SR command)676 -|ex: #5QSD1 <cr>|Configured maximum speed in EEPROM (set by CSD/CSR)677 -|ex: #5QSD2 <cr>|Instantaneous speed (same as QWD)678 -|ex: #5QSD3 <cr>|Target travel speed<div class="wikimodel-emptyline"></div>494 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 495 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 496 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 497 +|ex: #5QSD3<cr>|Target travel speed 679 679 680 -Configure Speed in Degrees (**CSD**)< div class="wikimodel-emptyline"></div>499 +Configure Speed in Degrees (**CSD**)Ex: #5CSD1800<cr>Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 681 681 682 -Ex: #5CSD1800<cr><div class="wikimodel-emptyline"></div> 683 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 684 -</div></div> 685 -{{/html}} 686 - 687 687 ====== __Maximum Speed in RPM (**SR**)__ ====== 688 688 689 -{{html wiki="true" clean="false"}} 690 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 691 -Ex: #5SR45<cr><div class="wikimodel-emptyline"></div> 692 -This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 503 +Ex: #5SR45<cr>This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in RPM (**QSR**)Ex: #5QSR<cr> might return *5QSR45<cr>By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 693 693 694 -Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div> 695 - 696 -Ex: #5QSR<cr> might return *5QSR45<cr><div class="wikimodel-emptyline"></div> 697 - 698 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 699 - 700 700 |**Command sent**|**Returned value (1/10 °)** 701 -|ex: #5QSR <cr>|Session value for maximum speed (set by latest SD/SR command)702 -|ex: #5QSR1 <cr>|Configured maximum speed in EEPROM (set by CSD/CSR)703 -|ex: #5QSR2 <cr>|Instantaneous speed (same as QWD)704 -|ex: #5QSR3 <cr>|Target travel speed<div class="wikimodel-emptyline"></div>506 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 507 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 508 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 509 +|ex: #5QSR3<cr>|Target travel speed 705 705 706 -Configure Speed in RPM (**CSR**)< divclass="wikimodel-emptyline"></div>511 +Configure Speed in RPM (**CSR**)Ex: #5CSR45<cr>Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 707 707 708 -Ex: #5CSR45<cr><div class="wikimodel-emptyline"></div> 709 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 710 -</div></div> 711 -{{/html}} 712 - 713 713 == Modifiers == 714 714 715 -====== __Speed (**S **, **SD**) modifier__ ======515 +====== __Speed (**SD**) modifier__ ====== 716 716 717 -{{html clean="false" wiki="true"}} 718 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 719 -Example: #5P1500S750<cr><div class="wikimodel-emptyline"></div> 720 -Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 721 -Example: #5D0SD180<cr><div class="wikimodel-emptyline"></div> 722 -Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.<div class="wikimodel-emptyline"></div> 723 -Query Speed (**QS**)<div class="wikimodel-emptyline"></div> 724 -Example: #5QS<cr> might return *5QS300<cr><div class="wikimodel-emptyline"></div> 725 -This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div> 726 -</div></div> 727 -{{/html}} 517 +(% class="wikigeneratedid" id="HTimedmove28T29modifier" %) 518 +Example: #5D0SD180<cr> 728 728 729 -====== __Timed move (**T**) modifier__ ====== 520 +(% class="wikigeneratedid" %) 521 +Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second. 730 730 731 -{{html wiki="true" clean="false"}} 732 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 733 -Example: #5P1500T2500<cr><div class="wikimodel-emptyline"></div> 523 +(% class="wikigeneratedid" %) 524 +Query Speed (**QS**) 734 734 735 -Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 736 -**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div> 737 -</div></div> 738 -{{/html}} 526 +(% class="wikigeneratedid" %) 527 +Example: #5QS<cr> might return *5QS300<cr> 739 739 740 -====== __Current Halt & Hold (**CH**) modifier__ ====== 529 +(% class="wikigeneratedid" %) 530 +This command queries the current speed in microseconds per second. 741 741 742 -{{html wiki="true" clean="false"}} 743 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 744 -Example: #5D1423CH400<cr><div class="wikimodel-emptyline"></div> 532 +====== __Timed move (**T**) modifier__ ====== 745 745 746 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div> 747 -This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 748 -</div></div> 749 -{{/html}} 534 +Example: #5D15000T2500<cr> 750 750 751 - ======__CurrentLimp(**CL**)modifier__======536 +Timed move can be used only as a modifier for a position (D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 752 752 753 -{{html wiki="true" clean="false"}} 754 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 755 -Example: #5D1423CL400<cr><div class="wikimodel-emptyline"></div> 538 +**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested 756 756 757 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div> 758 -This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 759 -</div></div> 760 -{{/html}} 540 +====== ====== 761 761 762 762 == Telemetry == 763 763 764 764 ====== __Query Voltage (**QV**)__ ====== 765 765 766 -{{html wiki="true" clean="false"}} 767 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 768 -Ex: #5QV<cr> might return *5QV11200<cr><div class="wikimodel-emptyline"></div> 769 -The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div> 770 -</div></div> 771 -{{/html}} 546 +Ex: #5QV<cr> might return *5QV11200<cr> 772 772 548 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V. 549 + 773 773 ====== __Query Temperature (**QT**)__ ====== 774 774 775 -{{html wiki="true" clean="false"}} 776 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 777 -Ex: #5QT<cr> might return *5QT564<cr><div class="wikimodel-emptyline"></div> 778 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div> 779 -</div></div> 780 -{{/html}} 552 +Ex: #5QT<cr> might return *5QT564<cr> 781 781 782 - ======__QueryCurrent(**QC**)__======554 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 783 783 784 -{{html wiki="true" clean="false"}} 785 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 786 -Ex: #5QC<cr> might return *5QC140<cr><div class="wikimodel-emptyline"></div> 787 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div> 788 -</div></div> 789 -{{/html}} 556 +====== __Query Motor Driver Current (**QC**)__ ====== 790 790 791 - ======__QueryModelString(**QMS**)__ ======558 +Ex: #5QC<cr> might return *5QC140<cr> 792 792 793 -{{html wiki="true" clean="false"}} 794 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 795 -Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr><div class="wikimodel-emptyline"></div> 796 -This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div> 797 -</div></div> 798 -{{/html}} 560 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value. 799 799 800 -====== __Query Firmware (**QF**)__ ======562 +====== __Query Model String (**QMS**)__ ====== 801 801 802 -{{html wiki="true" clean="false"}} 803 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 804 -Ex: #5QF<cr> might return *5QF368<cr><div class="wikimodel-emptyline"></div> 805 -The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div> 806 -The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div> 807 -</div></div> 808 -{{/html}} 564 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr> 809 809 810 - ======__QuerySerialNumber(**QN**)__======566 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision. 811 811 812 -{{html wiki="true" clean="false"}} 813 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 814 -Ex: #5QN<cr> might return *5QN12345678<cr><div class="wikimodel-emptyline"></div> 815 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div> 816 -</div></div> 817 -{{/html}} 568 +====== __Query Firmware (**QF**)__ ====== 818 818 819 - ==RGBLED==570 +Ex: #5QF<cr> might return *5QF368<cr> 820 820 821 - ======__LEDColor(**LED**)__======572 +The number in the reply represents the firmware version, in this example being 368.The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14 822 822 823 -{{html wiki="true" clean="false"}} 824 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 825 -Ex: #5LED3<cr><div class="wikimodel-emptyline"></div> 826 -This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div> 827 -0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div> 828 -Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div> 829 -Ex: #5QLED<cr> might return *5QLED5<cr><div class="wikimodel-emptyline"></div> 830 -This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div> 831 -Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div> 832 -Ex: #5CLED3<cr><div class="wikimodel-emptyline"></div> 833 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div> 834 -</div></div> 835 -{{/html}} 574 +====== __Query Serial Number (**QN**)__ ====== 836 836 837 - ======__ConfigureLED Blinking(**CLB**)__ ======576 +Ex: #5QN<cr> might return *5QN12345678<cr> 838 838 839 -{{html wiki="true" clean="false"}} 840 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 841 -This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div> 842 - 843 -(% style="width:195px" %) 844 -|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 845 -|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 846 -|(% style="width:134px" %)Limp|(% style="width:58px" %)1 847 -|(% style="width:134px" %)Holding|(% style="width:58px" %)2 848 -|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 849 -|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 850 -|(% style="width:134px" %)Free|(% style="width:58px" %)16 851 -|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 852 -|(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div> 853 - 854 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div> 855 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div> 856 -Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div> 857 -Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div> 858 -Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div> 859 -Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div> 860 -Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div> 861 -RESETTING the servo is needed.<div class="wikimodel-emptyline"></div> 862 -</div></div> 863 -{{/html}} 864 - 865 -== RGB LED == 866 - 867 -The LED can be 578 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.