Changes for page LSS-P - Communication Protocol
Last modified by Eric Nantel on 2024/07/03 09:42
Change comment: There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,6 +1,7 @@ 1 1 {{warningBox warningText="More information coming soon"/}} 2 2 3 3 4 + 4 4 (% class="wikigeneratedid" id="HTableofContents" %) 5 5 **Page Contents** 6 6 ... ... @@ -29,104 +29,88 @@ 29 29 30 30 == Modifiers == 31 31 32 -{{html clean="false" wiki="true"}} 33 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 34 -Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div> 33 +Modifiers can only be used with certain **action commands**. The format to include a modifier is: 35 35 36 -1. Start with a number sign 35 +1. Start with a number sign **#** (Unicode Character: U+0023) 37 37 1. Servo ID number as an integer 38 38 1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below) 39 39 1. Action value in the correct units with no decimal 40 -1. Modifier command (one or two letters from 39 +1. Modifier command (one or two letters from the list of modifiers below) 41 41 1. Modifier value in the correct units with no decimal 42 -1. End with a carriage return \r**<cr>**41 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 43 43 44 -Ex: #5D13000T1500 <cr><divclass="wikimodel-emptyline"></div>43 +Ex: #5D13000T1500<cr>This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds). 45 45 46 -This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div> 47 -<div class="wikimodel-emptyline"></div></div></div> 45 +== Queries == 48 48 49 -<h2>Queries</h2> 50 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 51 -Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div> 47 +Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format: 52 52 53 -1. Start with a number sign 49 +1. Start with a number sign **#** (Unicode Character: U+0023) 54 54 1. Servo ID number as an integer 55 55 1. Query command (one to four letters, no spaces, capital or lower case) 56 -1. End with a carriage return \r**<cr>**<div class="wikimodel-emptyline"></div>52 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 57 57 58 -Ex: #5QD <cr>Query the position in (hundredths of) degrees for servo with ID #5<divclass="wikimodel-emptyline"></div>54 +Ex: #5QD<cr> Query the position in (hundredths of) degrees for servo with ID #5The query will return a serial string (almost instantaneously) via the servo's Tx in the following format: 59 59 60 -The query will return a serial string (almost instantaneously) via the servo's Tx in the following format: 61 - 62 62 1. Start with an asterisk * (Unicode Character: U+0023) 63 63 1. Servo ID number as an integer 64 64 1. Query command (one to four letters, no spaces, capital letters) 65 65 1. The reported value in the units described, no decimals. 66 -1. End with a carriage return \r**<cr>**<div class="wikimodel-emptyline"></div>60 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 67 67 68 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be: <div class="wikimodel-emptyline"></div>62 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be: 69 69 70 -Ex: *5QD13000 <cr><divclass="wikimodel-emptyline"></div>64 +Ex: *5QD13000<cr> 71 71 72 72 This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees). 73 -<div class="wikimodel-emptyline"></div></div></div> 74 74 75 - <h2>Configurations</h2>68 +== Configurations == 76 76 77 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 78 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div> 70 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored. 79 79 80 -The seconfigurations are retained inmemoryafter theservo is resetrpower iscut / lost. Someconfiguration commandsaffectthe session, while others do not. In the Command table below, thecolumn"Session" denotes ifthe configuration commandaffects the session. Not all action commandshave a corresponding configuration commandand viceversa. Configurationcommands are not cumulative;thismeansthatif twoofthe same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>72 +The format to send a configuration command is identical to that of an action command: 81 81 82 -The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div> 83 - 84 -1. Start with a number sign **#** (Unicode Character: U+0023) 74 +1. Start with a number sign **#** (Unicode Character: U+0023) 85 85 1. Servo ID number as an integer 86 86 1. Configuration command (two to four letters, no spaces, capital or lower case) 87 87 1. Configuration value in the correct units with no decimal 88 -1. End with a carriage return \r**<cr>**<div class="wikimodel-emptyline"></div>78 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 89 89 90 -Ex: #5CO-500 <cr><divclass="wikimodel-emptyline"></div>80 +Ex: #5CO-500<cr> 91 91 92 -This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below). <div class="wikimodel-emptyline"></div>82 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below). 93 93 94 -**Session vs Configuration Query** <div class="wikimodel-emptyline"></div>84 +**Session vs Configuration Query** 95 95 96 -By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command: <div class="wikimodel-emptyline"></div>86 +By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command: 97 97 98 -Ex: #5CSR10 <cr>immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>88 +Ex: #5CSR10<cr> immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory. 99 99 100 -After RESET, a command of #5SR4 <cr>sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>90 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore: 101 101 102 -#5QSR <cr>or #5QSR0<cr><cr>which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>92 +#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas 103 103 104 -#5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM 105 -<div class="wikimodel-emptyline"></div></div></div> 94 +#5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM 106 106 107 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 108 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div> 96 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset). 109 109 110 -[[image:LSS-servo-positions.jpg ]]<div class="wikimodel-emptyline"></div>98 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]] 111 111 112 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: <div class="wikimodel-emptyline"></div>100 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: 113 113 114 -#1D-3000 <cr>This causes the servo to move to -30.00 degrees (green arrow)<div class="wikimodel-emptyline"></div>102 +#1D-3000<cr> This causes the servo to move to -30.00 degrees (green arrow) 115 115 116 -#1D21000 <cr>This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)<div class="wikimodel-emptyline"></div>104 +#1D21000<cr> This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow) 117 117 118 -#1D-42000 <cr>This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div>106 +#1D-42000<cr> This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees. 119 119 120 -Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees. <div class="wikimodel-emptyline"></div>108 +Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees. 121 121 122 -#1D48000 <cr>This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div>110 +#1D48000<cr> This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations. 123 123 124 -#1D33000 <cr>would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>112 +#1D33000<cr> would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow). 125 125 126 126 If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.00 degrees before power is cycled, upon power up the servo's position will be read as +120.00 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.00°, 180.00°]. 127 -<div class="wikimodel-emptyline"></div></div></div> 128 - 129 -{{/html}} 130 130 ))) 131 131 132 132 = Command List = ... ... @@ -205,14 +205,47 @@ 205 205 206 206 == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) == 207 207 193 +====== (% style="color:inherit; font-family:inherit" %)__Reset__(%%) ====== 208 208 209 -====== ====== 195 +(% style="color:inherit; font-family:inherit" %)Ex: #5RESET<cr> 196 +This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See Session, note #2 for more details. 210 210 198 +====== (% style="color:inherit; font-family:inherit" %)__Default & confirm__(%%) ====== 199 + 200 +(% style="color:inherit; font-family:inherit" %)Ex: #5DEFAULT<cr> 201 + 202 +(% style="color:inherit; font-family:inherit" %)This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 203 + 204 +(% style="color:inherit; font-family:inherit" %)EX: #5DEFAULT<cr> followed by #5CONFIRM<cr> 205 + 206 +(% style="color:inherit; font-family:inherit" %)Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command. 207 + 208 +(% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET. 209 + 210 +====== (% style="color:inherit; font-family:inherit" %)__Update & confirm__(%%) ====== 211 + 212 +(% style="color:inherit; font-family:inherit" %)Ex: #5UPDATE<cr> 213 + 214 +(% style="color:inherit; font-family:inherit" %)This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function. 215 + 216 +(% style="color:inherit; font-family:inherit" %)EX: #5UPDATE<cr> followed by #5CONFIRM<cr> 217 + 218 +(% style="color:inherit; font-family:inherit" %)Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 219 + 220 +(% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET. 221 + 222 +====== (% style="color:inherit; font-family:inherit" %)__Confirm__(%%) ====== 223 + 224 +(% style="color:inherit; font-family:inherit" %)Ex: #5CONFIRM<cr> 225 + 226 +(% style="color:inherit; font-family:inherit" %)This command is used to confirm changes after a Default or Update command. 227 +Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.(%%) 228 + 229 + 211 211 == Motion == 212 212 213 213 ====== __Position in Degrees (**D**)__ ====== 214 214 215 - 216 216 Example: #5D1456<cr> 217 217 218 218 This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. ... ... @@ -240,7 +240,6 @@ 240 240 241 241 ====== __Wheel Mode in Degrees (**WD**)__ ====== 242 242 243 - 244 244 Ex: #5WD90<cr> 245 245 246 246 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations). ... ... @@ -253,7 +253,6 @@ 253 253 254 254 ====== __Wheel Mode in RPM (**WR**)__ ====== 255 255 256 - 257 257 Ex: #5WR40<cr> 258 258 259 259 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). ... ... @@ -264,19 +264,16 @@ 264 264 265 265 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 266 266 267 -====== ====== 268 - 269 269 ====== __(Relative) Move in Degrees (**MD**)__ ====== 270 270 271 -== ====272 -Example: #5M1500<cr> ======285 +(% class="wikigeneratedid" id="HExample:235M15003Ccr3E" %) 286 +Example: #5M1500<cr> 273 273 274 -(% class="wikigeneratedid" %) 275 - ======The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.======288 +(% class="wikigeneratedid" id="HTherelativemoveinPWMcommandcausestheservotoreaditscurrentpositionandmovebythespecifiednumberofPWMsignal.ForexampleiftheservoissettorotateCW28default29andanMcommandof1500issenttotheservo2Citwillcausetheservotorotateclockwiseby90degrees.NegativePWMvaluewouldcausetheservotorotateintheoppositeconfigureddirection." %) 289 +The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 276 276 277 277 ====== __Query Status (**Q**)__ ====== 278 278 279 - 280 280 The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below. 281 281 282 282 Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. ... ... @@ -300,7 +300,6 @@ 300 300 301 301 If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 302 302 303 - 304 304 |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description** 305 305 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 306 306 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long ... ... @@ -309,7 +309,6 @@ 309 309 310 310 ====== __Limp (**L**)__ ====== 311 311 312 - 313 313 Example: #5L<cr> 314 314 315 315 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. ... ... @@ -316,7 +316,6 @@ 316 316 317 317 ====== __Halt & Hold (**H**)__ ====== 318 318 319 - 320 320 Example: #5H<cr> 321 321 322 322 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) ... ... @@ -323,485 +323,205 @@ 323 323 324 324 == Motion Setup == 325 325 326 -====== __Enable Motion Profile (**EM**)__ ====== 327 - 328 -{{html clean="false" wiki="true"}} 329 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 330 -EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div> 331 - 332 -Ex: #5EM1<cr><div class="wikimodel-emptyline"></div> 333 - 334 -This command enables a trapezoidal motion profile for servo #5 <div class="wikimodel-emptyline"></div> 335 - 336 -Ex: #5EM0<cr><div class="wikimodel-emptyline"></div> 337 - 338 -This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command). 339 - 340 -<div class="wikimodel-emptyline"></div> 341 - 342 -Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div> 343 - 344 -Ex: #5QEM<cr> might return *5QEM1<cr><div class="wikimodel-emptyline"></div> 345 - 346 -This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div> 347 - 348 -Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div> 349 - 350 -Ex: #5CEM0<cr><div class="wikimodel-emptyline"></div> 351 - 352 -This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 353 -<div class="wikimodel-emptyline"></div></div></div> 354 -{{/html}} 355 - 356 -====== __Filter Position Count (**FPC**)__ ====== 357 - 358 -{{html clean="false" wiki="true"}} 359 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 360 -The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default. 361 -<div class="wikimodel-emptyline"></div> 362 -Ex: #5FPC10<cr><div class="wikimodel-emptyline"></div> 363 -This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div> 364 - 365 -Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div> 366 - 367 -Ex: #5QFPC<cr> might return *5QFPC10<cr><div class="wikimodel-emptyline"></div> 368 - 369 -This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div> 370 - 371 -Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div> 372 - 373 -Ex: #5CFPC10<cr><div class="wikimodel-emptyline"></div> 374 - 375 -This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 376 -<div class="wikimodel-emptyline"></div></div></div> 377 -{{/html}} 378 - 379 379 ====== __Origin Offset (**O**)__ ====== 380 380 381 -{{html wiki="true" clean="false"}} 382 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 383 -Example: #5O2400<cr><div class="wikimodel-emptyline"></div> 338 +Example: #5O2400<cr>This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered). 384 384 385 - This command allows you to changethe originfthe servoin relationtothefactory zero positionforthat session. Aswith allactioncommands,thesetting will be lost upon servoreset /powercycle. Originoffsetcommands are notcumulative and alwaysrelate tofactory zero. In theirst image,the originatfactory offset '0' (centered).<divclass="wikimodel-emptyline"></div>340 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]] 386 386 387 -[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div> 388 388 389 -In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees: <div class="wikimodel-emptyline"></div>343 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees: 390 390 391 -[[image:LSS-servo-origin.jpg ]]<div class="wikimodel-emptyline"></div>345 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]] 392 392 393 -Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div> 394 394 395 - Example: #5QO<cr> mightreturn*5QO-13<div class="wikimodel-emptyline"></div>348 +Origin Offset Query (**QO**) 396 396 397 - Thisallows you to querythe angle (in tenths of degrees)of the origin in relation to the factoryzero position. In thisexample,the new originis at-1.3degrees from the factory zero.<div class="wikimodel-emptyline"></div>350 +Example: #5QO<cr> might return *5QO-13 398 398 399 - ConfigureOriginOffset(**CO**)<divclass="wikimodel-emptyline"></div>352 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero. 400 400 401 - Example:#5CO-24<cr><divclass="wikimodel-emptyline"></div>354 +Configure Origin Offset (**CO**) 402 402 356 +Example: #5CO-24<cr> 357 + 403 403 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 404 -<div class="wikimodel-emptyline"></div></div></div> 405 -{{/html}} 406 406 407 407 ====== __Angular Range (**AR**)__ ====== 408 408 409 -{{html wiki="true" clean="false"}} 410 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 411 -Example: #5AR1800<cr><div class="wikimodel-emptyline"></div> 362 +Example: #5AR1800<cr> 412 412 413 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: <div class="wikimodel-emptyline"></div>364 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: 414 414 415 -[[image:LSS-servo-default.jpg ]]<div class="wikimodel-emptyline"></div>366 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]] 416 416 417 -Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. <div class="wikimodel-emptyline"></div>368 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 418 418 419 -[[image:LSS-servo-ar.jpg ]]<div class="wikimodel-emptyline"></div>370 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]] 420 420 421 -Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div> 422 422 423 - [[image:LSS-servo-ar-o-1.jpg]]<divclass="wikimodel-emptyline"></div>373 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range: 424 424 425 - Query Angular Range(**QAR**)<div class="wikimodel-emptyline"></div>375 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]] 426 426 427 -Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div> 428 428 429 - Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div>378 +Query Angular Range (**QAR**) 430 430 431 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 432 -<div class="wikimodel-emptyline"></div></div></div> 433 -{{/html}} 380 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees. 434 434 435 - ======__AngularStiffness(**AS**)__ ======382 +Configure Angular Range (**CAR**) 436 436 437 -{{html wiki="true" clean="false"}} 438 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 439 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div> 384 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 440 440 441 -A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div> 442 - 443 -* The more torque will be applied to try to keep the desired position against external input / changes 444 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div> 445 - 446 -A lower value on the other hand:<div class="wikimodel-emptyline"></div> 447 - 448 -* Causes a slower acceleration to the travel speed, and a slower deceleration 449 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div> 450 - 451 -The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 452 - 453 -Ex: #5AS-2<cr><div class="wikimodel-emptyline"></div> 454 - 455 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div> 456 - 457 -Ex: #5QAS<cr><div class="wikimodel-emptyline"></div> 458 - 459 -Queries the value being used.<div class="wikimodel-emptyline"></div> 460 - 461 -Ex: #5CAS-2<cr><div class="wikimodel-emptyline"></div> 462 - 463 -Writes the desired angular stiffness value to EEPROM. 464 -<div class="wikimodel-emptyline"></div></div></div> 465 -{{/html}} 466 - 467 -====== __Angular Holding Stiffness (**AH**)__ ====== 468 - 469 -{{html wiki="true" clean="false"}} 470 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 471 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 472 - 473 -Ex: #5AH3<cr><div class="wikimodel-emptyline"></div> 474 - 475 -This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div> 476 - 477 -Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div> 478 - 479 -Ex: #5QAH<cr> might return *5QAH3<cr><div class="wikimodel-emptyline"></div> 480 - 481 -This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div> 482 - 483 -Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div> 484 - 485 -Ex: #5CAH2<cr><div class="wikimodel-emptyline"></div> 486 - 487 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM. 488 -<div class="wikimodel-emptyline"></div></div></div> 489 -{{/html}} 490 - 491 491 ====== __Angular Acceleration (**AA**)__ ====== 492 492 493 -{{html wiki="true" clean="false"}} 494 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 495 -The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 388 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 496 496 497 -Ex: #5AA30 <cr><divclass="wikimodel-emptyline"></div>390 +Ex: #5AA30<cr> 498 498 499 -This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). <div class="wikimodel-emptyline"></div>392 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). 500 500 501 -Query Angular Acceleration (**QAA**) <div class="wikimodel-emptyline"></div>394 +Query Angular Acceleration (**QAA**) 502 502 503 -Ex: #5QAA <cr>might return *5QAA30<cr><divclass="wikimodel-emptyline"></div>396 +Ex: #5QAA<cr> might return *5QAA30<cr> 504 504 505 -This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^). <div class="wikimodel-emptyline"></div>398 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^). 506 506 507 -Configure Angular Acceleration (**CAA**) <div class="wikimodel-emptyline"></div>400 +Configure Angular Acceleration (**CAA**) 508 508 509 -Ex: #5CAA30 <cr><divclass="wikimodel-emptyline"></div>402 +Ex: #5CAA30<cr> 510 510 511 511 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 512 -<div class="wikimodel-emptyline"></div></div></div> 513 -{{/html}} 514 514 515 515 ====== __Angular Deceleration (**AD**)__ ====== 516 516 517 -{{html wiki="true" clean="false"}} 518 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 519 -The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 408 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 520 520 521 -Ex: #5AD30 <cr><divclass="wikimodel-emptyline"></div>410 +Ex: #5AD30<cr> 522 522 523 -This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). <div class="wikimodel-emptyline"></div>412 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). 524 524 525 -Query Angular Deceleration (**QAD**) <div class="wikimodel-emptyline"></div>414 +Query Angular Deceleration (**QAD**) 526 526 527 -Ex: #5QAD <cr>might return *5QAD30<cr><divclass="wikimodel-emptyline"></div>416 +Ex: #5QAD<cr> might return *5QAD30<cr> 528 528 529 -This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^). <div class="wikimodel-emptyline"></div>418 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^). 530 530 531 -Configure Angular Deceleration (**CAD**) <div class="wikimodel-emptyline"></div>420 +Configure Angular Deceleration (**CAD**) 532 532 533 -Ex: #5CAD30 <cr><divclass="wikimodel-emptyline"></div>422 +Ex: #5CAD30<cr> 534 534 535 -This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 536 -<div class="wikimodel-emptyline"></div></div></div> 537 -{{/html}} 424 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 538 538 539 539 ====== __Gyre Direction (**G**)__ ====== 540 540 541 -{{html wiki="true" clean="false"}} 542 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 543 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div> 428 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1. 544 544 545 -Ex: #5G-1 <cr><divclass="wikimodel-emptyline"></div>430 +Ex: #5G-1<cr> 546 546 547 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. <div class="wikimodel-emptyline"></div>432 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 548 548 549 -Query Gyre Direction (**QG**) <divclass="wikimodel-emptyline"></div>434 +Query Gyre Direction (**QG**)Ex: #5QG<cr> might return *5QG-1<cr> 550 550 551 - Ex:#5QG<cr>mightreturn*5QG-1<cr><divclass="wikimodel-emptyline"></div>436 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM. 552 552 553 - The value returned above means the servois in a counter-clockwisegyration. Sending a #5WR30 command will rotate the servo in a counter-clockwisegyration at 30 RPM.<div class="wikimodel-emptyline"></div>438 +Configure Gyre (**CG**) 554 554 555 - ConfigureGyre (**CG**)<divclass="wikimodel-emptyline"></div>440 +Ex: #5CG-1<cr> 556 556 557 -Ex: #5CG-1<cr><div class="wikimodel-emptyline"></div> 558 - 559 559 This changes the gyre direction as described above and also writes to EEPROM. 560 -<div class="wikimodel-emptyline"></div></div></div> 561 -{{/html}} 562 562 563 563 ====== __First Position__ ====== 564 564 565 -{{html wiki="true" clean="false"}} 566 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 567 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div> 446 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.Query First Position in Degrees (**QFD**)Ex: #5QFD<cr> might return *5QFD900<cr>The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.Configure First Position in Degrees (**CFD**)Ex: #5CFD900<cr>This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 568 568 569 -Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div> 570 - 571 -Ex: #5QFD<cr> might return *5QFD900<cr> <div class="wikimodel-emptyline"></div> 572 - 573 -The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div> 574 - 575 -Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div> 576 - 577 -Ex: #5CFD900<cr><div class="wikimodel-emptyline"></div> 578 - 579 -This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 580 -<div class="wikimodel-emptyline"></div></div></div> 581 -{{/html}} 582 - 583 -====== __Maximum Motor Duty (**MMD**)__ ====== 584 - 585 -{{html wiki="true" clean="false"}} 586 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 587 -This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div> 588 - 589 -Ex: #5MMD512<cr><div class="wikimodel-emptyline"></div> 590 - 591 -This will set the duty-cycle to 512 for servo with ID 5 for that session.<div class="wikimodel-emptyline"></div> 592 - 593 -Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div> 594 - 595 -Ex: #5QMMDD<cr> might return *5QMMD512<cr> <div class="wikimodel-emptyline"></div> 596 - 597 -This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023. 598 -<div class="wikimodel-emptyline"></div></div></div> 599 -{{/html}} 600 - 601 601 ====== __Maximum Speed in Degrees (**SD**)__ ====== 602 602 603 -{{html wiki="true" clean="false"}} 604 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 605 -Ex: #5SD1800<cr><div class="wikimodel-emptyline"></div> 606 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 450 +Ex: #5SD1800<cr>This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in Degrees (**QSD**)Ex: #5QSD<cr> might return *5QSD1800<cr>By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 607 607 608 -Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div> 609 - 610 -Ex: #5QSD<cr> might return *5QSD1800<cr><div class="wikimodel-emptyline"></div> 611 - 612 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 613 - 614 614 |**Command sent**|**Returned value (1/10 °)** 615 -|ex: #5QSD <cr>|Session value for maximum speed (set by latest SD/SR command)616 -|ex: #5QSD1 <cr>|Configured maximum speed in EEPROM (set by CSD/CSR)617 -|ex: #5QSD2 <cr>|Instantaneous speed (same as QWD)618 -|ex: #5QSD3 <cr>|Target travel speed<div class="wikimodel-emptyline"></div>453 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 454 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 455 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 456 +|ex: #5QSD3<cr>|Target travel speed 619 619 620 -Configure Speed in Degrees (**CSD**)< div class="wikimodel-emptyline"></div>458 +Configure Speed in Degrees (**CSD**)Ex: #5CSD1800<cr>Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 621 621 622 -Ex: #5CSD1800<cr><div class="wikimodel-emptyline"></div> 623 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 624 -</div></div> 625 -{{/html}} 626 - 627 627 ====== __Maximum Speed in RPM (**SR**)__ ====== 628 628 629 -{{html wiki="true" clean="false"}} 630 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 631 -Ex: #5SR45<cr><div class="wikimodel-emptyline"></div> 632 -This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 462 +Ex: #5SR45<cr>This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in RPM (**QSR**)Ex: #5QSR<cr> might return *5QSR45<cr>By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 633 633 634 -Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div> 635 - 636 -Ex: #5QSR<cr> might return *5QSR45<cr><div class="wikimodel-emptyline"></div> 637 - 638 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 639 - 640 640 |**Command sent**|**Returned value (1/10 °)** 641 -|ex: #5QSR <cr>|Session value for maximum speed (set by latest SD/SR command)642 -|ex: #5QSR1 <cr>|Configured maximum speed in EEPROM (set by CSD/CSR)643 -|ex: #5QSR2 <cr>|Instantaneous speed (same as QWD)644 -|ex: #5QSR3 <cr>|Target travel speed<div class="wikimodel-emptyline"></div>465 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 466 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 467 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 468 +|ex: #5QSR3<cr>|Target travel speed 645 645 646 -Configure Speed in RPM (**CSR**)< divclass="wikimodel-emptyline"></div>470 +Configure Speed in RPM (**CSR**)Ex: #5CSR45<cr>Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 647 647 648 -Ex: #5CSR45<cr><div class="wikimodel-emptyline"></div> 649 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 650 -</div></div> 651 -{{/html}} 652 - 653 653 == Modifiers == 654 654 655 -====== __Speed (**S **, **SD**) modifier__ ======474 +====== __Speed (**SD**) modifier__ ====== 656 656 657 -{{html clean="false" wiki="true"}} 658 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 659 -Example: #5P1500S750<cr><div class="wikimodel-emptyline"></div> 660 -Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 661 -Example: #5D0SD180<cr><div class="wikimodel-emptyline"></div> 662 -Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.<div class="wikimodel-emptyline"></div> 663 -Query Speed (**QS**)<div class="wikimodel-emptyline"></div> 664 -Example: #5QS<cr> might return *5QS300<cr><div class="wikimodel-emptyline"></div> 665 -This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div> 666 -</div></div> 667 -{{/html}} 476 +(% class="wikigeneratedid" id="HTimedmove28T29modifier" %) 477 +Example: #5D0SD180<cr> 668 668 669 -====== __Timed move (**T**) modifier__ ====== 479 +(% class="wikigeneratedid" %) 480 +Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second. 670 670 671 -{{html wiki="true" clean="false"}} 672 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 673 -Example: #5P1500T2500<cr><div class="wikimodel-emptyline"></div> 482 +(% class="wikigeneratedid" %) 483 +Query Speed (**QS**) 674 674 675 -Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 676 -**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div> 677 -</div></div> 678 -{{/html}} 485 +(% class="wikigeneratedid" %) 486 +Example: #5QS<cr> might return *5QS300<cr> 679 679 680 -====== __Current Halt & Hold (**CH**) modifier__ ====== 488 +(% class="wikigeneratedid" %) 489 +This command queries the current speed in microseconds per second. 681 681 682 -{{html wiki="true" clean="false"}} 683 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 684 -Example: #5D1423CH400<cr><div class="wikimodel-emptyline"></div> 491 +====== __Timed move (**T**) modifier__ ====== 685 685 686 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div> 687 -This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 688 -</div></div> 689 -{{/html}} 493 +Example: #5D15000T2500<cr> 690 690 691 - ======__CurrentLimp(**CL**)modifier__======495 +Timed move can be used only as a modifier for a position (D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 692 692 693 -{{html wiki="true" clean="false"}} 694 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 695 -Example: #5D1423CL400<cr><div class="wikimodel-emptyline"></div> 497 +**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested 696 696 697 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div> 698 -This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 699 -</div></div> 700 -{{/html}} 499 +====== ====== 701 701 702 702 == Telemetry == 703 703 704 704 ====== __Query Voltage (**QV**)__ ====== 705 705 706 -{{html wiki="true" clean="false"}} 707 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 708 -Ex: #5QV<cr> might return *5QV11200<cr><div class="wikimodel-emptyline"></div> 709 -The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div> 710 -</div></div> 711 -{{/html}} 505 +Ex: #5QV<cr> might return *5QV11200<cr> 712 712 507 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V. 508 + 713 713 ====== __Query Temperature (**QT**)__ ====== 714 714 715 -{{html wiki="true" clean="false"}} 716 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 717 -Ex: #5QT<cr> might return *5QT564<cr><div class="wikimodel-emptyline"></div> 718 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div> 719 -</div></div> 720 -{{/html}} 511 +Ex: #5QT<cr> might return *5QT564<cr> 721 721 722 - ======__QueryCurrent(**QC**)__======513 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 723 723 724 -{{html wiki="true" clean="false"}} 725 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 726 -Ex: #5QC<cr> might return *5QC140<cr><div class="wikimodel-emptyline"></div> 727 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div> 728 -</div></div> 729 -{{/html}} 515 +====== __Query Motor Driver Current (**QC**)__ ====== 730 730 731 - ======__QueryModelString(**QMS**)__ ======517 +Ex: #5QC<cr> might return *5QC140<cr> 732 732 733 -{{html wiki="true" clean="false"}} 734 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 735 -Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr><div class="wikimodel-emptyline"></div> 736 -This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div> 737 -</div></div> 738 -{{/html}} 519 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value. 739 739 740 -====== __Query Firmware (**QF**)__ ======521 +====== __Query Model String (**QMS**)__ ====== 741 741 742 -{{html wiki="true" clean="false"}} 743 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 744 -Ex: #5QF<cr> might return *5QF368<cr><div class="wikimodel-emptyline"></div> 745 -The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div> 746 -The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div> 747 -</div></div> 748 -{{/html}} 523 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr> 749 749 750 - ======__QuerySerialNumber(**QN**)__======525 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision. 751 751 752 -{{html wiki="true" clean="false"}} 753 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 754 -Ex: #5QN<cr> might return *5QN12345678<cr><div class="wikimodel-emptyline"></div> 755 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div> 756 -</div></div> 757 -{{/html}} 527 +====== __Query Firmware (**QF**)__ ====== 758 758 759 - ==RGBLED==529 +Ex: #5QF<cr> might return *5QF368<cr> 760 760 761 - ======__LEDColor(**LED**)__======531 +The number in the reply represents the firmware version, in this example being 368.The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14 762 762 763 -{{html wiki="true" clean="false"}} 764 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 765 -Ex: #5LED3<cr><div class="wikimodel-emptyline"></div> 766 -This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div> 767 -0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div> 768 -Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div> 769 -Ex: #5QLED<cr> might return *5QLED5<cr><div class="wikimodel-emptyline"></div> 770 -This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div> 771 -Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div> 772 -Ex: #5CLED3<cr><div class="wikimodel-emptyline"></div> 773 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div> 774 -</div></div> 775 -{{/html}} 533 +====== __Query Serial Number (**QN**)__ ====== 776 776 777 - ======__ConfigureLED Blinking(**CLB**)__ ======535 +Ex: #5QN<cr> might return *5QN12345678<cr> 778 778 779 -{{html wiki="true" clean="false"}} 780 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 781 -This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div> 782 - 783 -(% style="width:195px" %) 784 -|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 785 -|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 786 -|(% style="width:134px" %)Limp|(% style="width:58px" %)1 787 -|(% style="width:134px" %)Holding|(% style="width:58px" %)2 788 -|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 789 -|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 790 -|(% style="width:134px" %)Free|(% style="width:58px" %)16 791 -|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 792 -|(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div> 793 - 794 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div> 795 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div> 796 -Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div> 797 -Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div> 798 -Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div> 799 -Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div> 800 -Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div> 801 -RESETTING the servo is needed.<div class="wikimodel-emptyline"></div> 802 -</div></div> 803 -{{/html}} 804 - 805 -== RGB LED == 806 - 807 -The LED can be 537 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.