Last modified by Eric Nantel on 2024/07/03 09:42

From version < 39.1 >
edited by Coleman Benson
on 2023/07/26 13:53
To version < 28.1 >
edited by Coleman Benson
on 2023/07/25 15:05
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,7 +1,6 @@
1 1  {{warningBox warningText="More information coming soon"/}}
2 2  
3 3  
4 -
5 5  (% class="wikigeneratedid" id="HTableofContents" %)
6 6  **Page Contents**
7 7  
... ... @@ -30,88 +30,104 @@
30 30  
31 31  == Modifiers ==
32 32  
33 -Modifiers can only be used with certain **action commands**. The format to include a modifier is:
32 +{{html clean="false" wiki="true"}}
33 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
34 +Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div>
34 34  
35 -1. Start with a number sign **#** (Unicode Character: U+0023)
36 +1. Start with a number sign **#** (Unicode Character: U+0023)
36 36  1. Servo ID number as an integer
37 37  1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
38 38  1. Action value in the correct units with no decimal
39 -1. Modifier command (one or two letters from the list of modifiers below)
40 +1. Modifier command (one or two letters from the list of modifiers below)
40 40  1. Modifier value in the correct units with no decimal
41 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
42 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)
42 42  
43 -Ex: #5D13000T1500<cr>This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).
44 +Ex: #5D13000T1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
44 44  
45 -== Queries ==
46 +This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div>
47 +<div class="wikimodel-emptyline"></div></div></div>
46 46  
47 -Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:
49 +<h2>Queries</h2>
50 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
51 +Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div>
48 48  
49 -1. Start with a number sign **#** (Unicode Character: U+0023)
53 +1. Start with a number sign **#** (Unicode Character: U+0023)
50 50  1. Servo ID number as an integer
51 51  1. Query command (one to four letters, no spaces, capital or lower case)
52 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
56 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
53 53  
54 -Ex: #5QD<cr> Query the position in (hundredths of) degrees for servo with ID #5The query will return a serial string (almost instantaneously) via the servo's Tx in the following format:
58 +Ex: #5QD&lt;cr&gt; Query the position in (hundredths of) degrees for servo with ID #5<div class="wikimodel-emptyline"></div>
55 55  
60 +The query will return a serial string (almost instantaneously) via the servo's Tx in the following format:
61 +
56 56  1. Start with an asterisk * (Unicode Character: U+0023)
57 57  1. Servo ID number as an integer
58 58  1. Query command (one to four letters, no spaces, capital letters)
59 59  1. The reported value in the units described, no decimals.
60 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
66 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
61 61  
62 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:
68 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div>
63 63  
64 -Ex: *5QD13000<cr>
70 +Ex: *5QD13000&lt;cr&gt;<div class="wikimodel-emptyline"></div>
65 65  
66 66  This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees).
73 +<div class="wikimodel-emptyline"></div></div></div>
67 67  
68 -== Configurations ==
75 +<h2>Configurations</h2>
69 69  
70 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.
77 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
78 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div>
71 71  
72 -The format to send a configuration command is identical to that of an action command:
80 +These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>
73 73  
74 -1. Start with a number sign **#** (Unicode Character: U+0023)
82 +The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div>
83 +
84 +1. Start with a number sign **#** (Unicode Character: U+0023)
75 75  1. Servo ID number as an integer
76 76  1. Configuration command (two to four letters, no spaces, capital or lower case)
77 77  1. Configuration value in the correct units with no decimal
78 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
88 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
79 79  
80 -Ex: #5CO-500<cr>
90 +Ex: #5CO-500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
81 81  
82 -This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).
92 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div>
83 83  
84 -**Session vs Configuration Query**
94 +**Session vs Configuration Query**<div class="wikimodel-emptyline"></div>
85 85  
86 -By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
96 +By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div>
87 87  
88 -Ex: #5CSR10<cr> immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.
98 +Ex: #5CSR10&lt;cr&gt; immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>
89 89  
90 -After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
100 +After RESET, a command of #5SR4&lt;cr&gt; sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>
91 91  
92 -#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas
102 +#5QSR&lt;cr&gt; or #5QSR0&lt;cr&gt; would return *5QSR4&lt;cr&gt; which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>
93 93  
94 -#5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM
104 +#5QSR1&lt;cr&gt; would return *5QSR10&lt;cr&gt; which represents the value in EEPROM
105 +<div class="wikimodel-emptyline"></div></div></div>
95 95  
96 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).
107 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
108 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div>
97 97  
98 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]
110 +[[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div>
99 99  
100 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
112 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div>
101 101  
102 -#1D-3000<cr> This causes the servo to move to -30.00 degrees (green arrow)
114 +#1D-3000&lt;cr&gt; This causes the servo to move to -30.00 degrees (green arrow)<div class="wikimodel-emptyline"></div>
103 103  
104 -#1D21000<cr> This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)
116 +#1D21000&lt;cr&gt; This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)<div class="wikimodel-emptyline"></div>
105 105  
106 -#1D-42000<cr> This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.
118 +#1D-42000&lt;cr&gt; This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div>
107 107  
108 -Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees.
120 +Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees.<div class="wikimodel-emptyline"></div>
109 109  
110 -#1D48000<cr> This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
122 +#1D48000&lt;cr&gt; This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div>
111 111  
112 -#1D33000<cr> would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).
124 +#1D33000&lt;cr&gt; would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>
113 113  
114 114  If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.00 degrees before power is cycled, upon power up the servo's position will be read as +120.00 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.00°, 180.00°].
127 +<div class="wikimodel-emptyline"></div></div></div>
128 +
129 +{{/html}}
115 115  )))
116 116  
117 117  = Command List =
... ... @@ -124,8 +124,8 @@
124 124  | |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Revert to firmware default values. See command for details
125 125  | |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Update firmware. See command for details.
126 126  | |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) | | |
127 -| |[[**ID** Number >>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
128 128  | |[[**E**nable CAN **T**erminal>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0 or 1|0: Disable  1: Enable
143 +| |[[**ID** Number >>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
129 129  | |[[**U**SB **C**onnection State>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected
130 130  | |**Q**uery **F**irmware **R**elease|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | |
131 131  
... ... @@ -190,88 +190,14 @@
190 190  
191 191  == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
192 192  
193 -====== (% style="color:inherit; font-family:inherit" %)__Reset__(%%) ======
194 194  
195 -(% style="color:inherit; font-family:inherit" %)Ex: #5RESET<cr>
196 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See Session, note #2 for more details.
209 +====== ======
197 197  
198 -====== (% style="color:inherit; font-family:inherit" %)__Default & confirm__(%%) ======
199 -
200 -(% style="color:inherit; font-family:inherit" %)Ex: #5DEFAULT<cr>
201 -
202 -(% style="color:inherit; font-family:inherit" %)This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
203 -
204 -(% style="color:inherit; font-family:inherit" %)EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
205 -
206 -(% style="color:inherit; font-family:inherit" %)Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
207 -
208 -(% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
209 -
210 -====== (% style="color:inherit; font-family:inherit" %)__Update & confirm__(%%) ======
211 -
212 -(% style="color:inherit; font-family:inherit" %)Ex: #5UPDATE<cr>
213 -
214 -(% style="color:inherit; font-family:inherit" %)This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
215 -
216 -(% style="color:inherit; font-family:inherit" %)EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
217 -
218 -(% style="color:inherit; font-family:inherit" %)Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
219 -
220 -(% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
221 -
222 -====== (% style="color:inherit; font-family:inherit" %)__Confirm__(%%) ======
223 -
224 -(% style="color:inherit; font-family:inherit" %)Ex: #5CONFIRM<cr>
225 -
226 -(% style="color:inherit; font-family:inherit" %)This command is used to confirm changes after a Default or Update command.
227 -Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
228 -
229 -====== (% style="color:inherit; font-family:inherit" %)__ID Number (**ID**)__(%%) ======
230 -
231 -(% style="color:inherit; font-family:inherit" %)Configure ID Number (**CID**)
232 -
233 -(% style="color:inherit; font-family:inherit" %)Ex: #0CID5<cr>
234 -
235 -The default ID is 0, so this sets the servo to ID 5.
236 -
237 -Query ID Number (**QID**)
238 -
239 -Ex: #254QID<cr> might return *254QID5<cr>
240 -
241 -In this case, the broadcast ID is used to ensure the servo connected will reply with the ID. This can be used in case the ID assigned to a servo is forgotten.
242 -
243 -(% style="color:inherit; font-family:inherit" %)__Enable CAN Terminal Resistor (**ET**)__
244 -
245 -Query Enable CAN Terminal Resistor (**QET**)
246 -
247 -Ex: #5QET<cr> might return *QET0<cr>
248 -
249 -This means that servo with ID 5 is NOT configured as the last servo in the CAN bus.
250 -
251 -Configure Enable CAN Terminal Resistor (**CET**)
252 -
253 -(% style="color:inherit; font-family:inherit" %)Ex: #5CET1<cr>
254 -
255 -(% style="color:inherit; font-family:inherit" %)This commands sets servo with ID 5 as being the last in the CAN Bus. The last servo in a CAN bus must be configured this way.
256 -
257 -====== __USB Connection Status (**UC**)__ ======
258 -
259 -Query USB Connection Status (**QUC**)
260 -
261 -Ex: #5QUC<cr> might return *5QUC1<cr> meaning the servo is connected via USB
262 -
263 -====== __Firmware Release (**FR**)__ ======
264 -
265 -Query Firmware Release (**QFR**)
266 -
267 -Ex: #5QFR<cr> might return *QFR11<cr> meaning it has a (random) firmware release version number 11.
268 -
269 -This is used to verify if the firmware on the servos is up to date, or which version is running on the microcontroller.
270 -
271 271  == Motion ==
272 272  
273 273  ====== __Position in Degrees (**D**)__ ======
274 274  
215 +
275 275  Example: #5D1456<cr>
276 276  
277 277  This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction.
... ... @@ -299,6 +299,7 @@
299 299  
300 300  ====== __Wheel Mode in Degrees (**WD**)__ ======
301 301  
243 +
302 302  Ex: #5WD90<cr>
303 303  
304 304  This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
... ... @@ -311,6 +311,7 @@
311 311  
312 312  ====== __Wheel Mode in RPM (**WR**)__ ======
313 313  
256 +
314 314  Ex: #5WR40<cr>
315 315  
316 316  This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
... ... @@ -321,16 +321,19 @@
321 321  
322 322  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
323 323  
267 +====== ======
268 +
324 324  ====== __(Relative) Move in Degrees (**MD**)__ ======
325 325  
326 -(% class="wikigeneratedid" id="HExample:235M15003Ccr3E" %)
327 -Example: #5M1500<cr>
271 +======
272 +Example: #5M1500<cr> ======
328 328  
329 -(% class="wikigeneratedid" id="HTherelativemoveinPWMcommandcausestheservotoreaditscurrentpositionandmovebythespecifiednumberofPWMsignal.ForexampleiftheservoissettorotateCW28default29andanMcommandof1500issenttotheservo2Citwillcausetheservotorotateclockwiseby90degrees.NegativePWMvaluewouldcausetheservotorotateintheoppositeconfigureddirection." %)
330 -The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
274 +(% class="wikigeneratedid" %)
275 +====== The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. ======
331 331  
332 332  ====== __Query Status (**Q**)__ ======
333 333  
279 +
334 334  The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.
335 335  
336 336  Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
... ... @@ -354,6 +354,7 @@
354 354  
355 355  If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
356 356  
303 +
357 357  |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
358 358  | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
359 359  | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
... ... @@ -362,6 +362,7 @@
362 362  
363 363  ====== __Limp (**L**)__ ======
364 364  
312 +
365 365  Example: #5L<cr>
366 366  
367 367  This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
... ... @@ -368,6 +368,7 @@
368 368  
369 369  ====== __Halt & Hold (**H**)__ ======
370 370  
319 +
371 371  Example: #5H<cr>
372 372  
373 373  This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
... ... @@ -374,205 +374,485 @@
374 374  
375 375  == Motion Setup ==
376 376  
377 -====== __Origin Offset (**O**)__ ======
326 +====== __Enable Motion Profile (**EM**)__ ======
378 378  
379 -Example: #5O2400<cr>This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
328 +{{html clean="false" wiki="true"}}
329 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
330 +EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div>
380 380  
381 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
332 +Ex: #5EM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
382 382  
334 +This command enables a trapezoidal motion profile for servo #5 <div class="wikimodel-emptyline"></div>
383 383  
384 -In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
336 +Ex: #5EM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
385 385  
386 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]
338 +This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command).
387 387  
340 +<div class="wikimodel-emptyline"></div>
388 388  
389 -Origin Offset Query (**QO**)
342 +Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div>
390 390  
391 -Example: #5QO<cr> might return *5QO-13
344 +Ex: #5QEM&lt;cr&gt; might return *5QEM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
392 392  
393 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
346 +This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div>
394 394  
395 -Configure Origin Offset (**CO**)
348 +Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div>
396 396  
397 -Example: #5CO-24<cr>
350 +Ex: #5CEM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
398 398  
352 +This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
353 +<div class="wikimodel-emptyline"></div></div></div>
354 +{{/html}}
355 +
356 +====== __Filter Position Count (**FPC**)__ ======
357 +
358 +{{html clean="false" wiki="true"}}
359 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
360 +The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default.
361 +<div class="wikimodel-emptyline"></div>
362 +Ex: #5FPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
363 +This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div>
364 +
365 +Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div>
366 +
367 +Ex: #5QFPC&lt;cr&gt; might return *5QFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
368 +
369 +This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div>
370 +
371 +Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div>
372 +
373 +Ex: #5CFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
374 +
375 +This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
376 +<div class="wikimodel-emptyline"></div></div></div>
377 +{{/html}}
378 +
379 +====== __Origin Offset (**O**)__ ======
380 +
381 +{{html wiki="true" clean="false"}}
382 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
383 +Example: #5O2400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
384 +
385 +This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div>
386 +
387 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
388 +
389 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div>
390 +
391 +[[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div>
392 +
393 +Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div>
394 +
395 +Example: #5QO&lt;cr&gt; might return *5QO-13<div class="wikimodel-emptyline"></div>
396 +
397 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div>
398 +
399 +Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div>
400 +
401 +Example: #5CO-24&lt;cr&gt;<div class="wikimodel-emptyline"></div>
402 +
399 399  This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
404 +<div class="wikimodel-emptyline"></div></div></div>
405 +{{/html}}
400 400  
401 401  ====== __Angular Range (**AR**)__ ======
402 402  
403 -Example: #5AR1800<cr>
409 +{{html wiki="true" clean="false"}}
410 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
411 +Example: #5AR1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
404 404  
405 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
413 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div>
406 406  
407 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
415 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
408 408  
409 -Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
417 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div>
410 410  
411 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]
419 +[[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div>
412 412  
421 +Finally, the angular range action command (ex. #5AR1800&lt;cr&gt;) and origin offset action command (ex. #5O-1200&lt;cr&gt;) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div>
413 413  
414 -Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
423 +[[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div>
415 415  
416 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]
425 +Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div>
417 417  
427 +Example: #5QAR&lt;cr&gt; might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div>
418 418  
419 -Query Angular Range (**QAR**)
429 +Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div>
420 420  
421 -Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
431 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
432 +<div class="wikimodel-emptyline"></div></div></div>
433 +{{/html}}
422 422  
423 -Configure Angular Range (**CAR**)
435 +====== __Angular Stiffness (**AS**)__ ======
424 424  
425 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
437 +{{html wiki="true" clean="false"}}
438 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
439 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div>
426 426  
441 +A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div>
442 +
443 +* The more torque will be applied to try to keep the desired position against external input / changes
444 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div>
445 +
446 +A lower value on the other hand:<div class="wikimodel-emptyline"></div>
447 +
448 +* Causes a slower acceleration to the travel speed, and a slower deceleration
449 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div>
450 +
451 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
452 +
453 +Ex: #5AS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
454 +
455 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div>
456 +
457 +Ex: #5QAS&lt;cr&gt;<div class="wikimodel-emptyline"></div>
458 +
459 +Queries the value being used.<div class="wikimodel-emptyline"></div>
460 +
461 +Ex: #5CAS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
462 +
463 +Writes the desired angular stiffness value to EEPROM.
464 +<div class="wikimodel-emptyline"></div></div></div>
465 +{{/html}}
466 +
467 +====== __Angular Holding Stiffness (**AH**)__ ======
468 +
469 +{{html wiki="true" clean="false"}}
470 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
471 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
472 +
473 +Ex: #5AH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
474 +
475 +This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div>
476 +
477 +Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div>
478 +
479 +Ex: #5QAH&lt;cr&gt; might return *5QAH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
480 +
481 +This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div>
482 +
483 +Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div>
484 +
485 +Ex: #5CAH2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
486 +
487 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM.
488 +<div class="wikimodel-emptyline"></div></div></div>
489 +{{/html}}
490 +
427 427  ====== __Angular Acceleration (**AA**)__ ======
428 428  
429 -The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
493 +{{html wiki="true" clean="false"}}
494 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
495 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
430 430  
431 -Ex: #5AA30<cr>
497 +Ex: #5AA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
432 432  
433 -This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
499 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
434 434  
435 -Query Angular Acceleration (**QAA**)
501 +Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div>
436 436  
437 -Ex: #5QAA<cr> might return *5QAA30<cr>
503 +Ex: #5QAA&lt;cr&gt; might return *5QAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
438 438  
439 -This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).
505 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
440 440  
441 -Configure Angular Acceleration (**CAA**)
507 +Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div>
442 442  
443 -Ex: #5CAA30<cr>
509 +Ex: #5CAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
444 444  
445 445  This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
512 +<div class="wikimodel-emptyline"></div></div></div>
513 +{{/html}}
446 446  
447 447  ====== __Angular Deceleration (**AD**)__ ======
448 448  
449 -The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
517 +{{html wiki="true" clean="false"}}
518 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
519 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
450 450  
451 -Ex: #5AD30<cr>
521 +Ex: #5AD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
452 452  
453 -This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
523 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
454 454  
455 -Query Angular Deceleration (**QAD**)
525 +Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div>
456 456  
457 -Ex: #5QAD<cr> might return *5QAD30<cr>
527 +Ex: #5QAD&lt;cr&gt; might return *5QAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
458 458  
459 -This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).
529 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
460 460  
461 -Configure Angular Deceleration (**CAD**)
531 +Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div>
462 462  
463 -Ex: #5CAD30<cr>
533 +Ex: #5CAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
464 464  
465 -This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
535 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
536 +<div class="wikimodel-emptyline"></div></div></div>
537 +{{/html}}
466 466  
467 467  ====== __Gyre Direction (**G**)__ ======
468 468  
469 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.
541 +{{html wiki="true" clean="false"}}
542 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
543 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div>
470 470  
471 -Ex: #5G-1<cr>
545 +Ex: #5G-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
472 472  
473 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
547 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div>
474 474  
475 -Query Gyre Direction (**QG**)Ex: #5QG<cr> might return *5QG-1<cr>
549 +Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div>
476 476  
477 -The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.
551 +Ex: #5QG&lt;cr&gt; might return *5QG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
478 478  
479 -Configure Gyre (**CG**)
553 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div>
480 480  
481 -Ex: #5CG-1<cr>
555 +Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div>
482 482  
557 +Ex: #5CG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
558 +
483 483  This changes the gyre direction as described above and also writes to EEPROM.
560 +<div class="wikimodel-emptyline"></div></div></div>
561 +{{/html}}
484 484  
485 485  ====== __First Position__ ======
486 486  
487 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.Query First Position in Degrees (**QFD**)Ex: #5QFD<cr> might return *5QFD900<cr>The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.Configure First Position in Degrees (**CFD**)Ex: #5CFD900<cr>This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
565 +{{html wiki="true" clean="false"}}
566 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
567 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div>
488 488  
569 +Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div>
570 +
571 +Ex: #5QFD&lt;cr&gt; might return *5QFD900&lt;cr&gt; <div class="wikimodel-emptyline"></div>
572 +
573 +The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div>
574 +
575 +Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div>
576 +
577 +Ex: #5CFD900&lt;cr&gt;<div class="wikimodel-emptyline"></div>
578 +
579 +This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD&lt;cr&gt;) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD&lt;cr&gt;
580 +<div class="wikimodel-emptyline"></div></div></div>
581 +{{/html}}
582 +
583 +====== __Maximum Motor Duty (**MMD**)__ ======
584 +
585 +{{html wiki="true" clean="false"}}
586 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
587 +This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div>
588 +
589 +Ex: #5MMD512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
590 +
591 +This will set the duty-cycle to 512 for servo with ID 5 for that session.<div class="wikimodel-emptyline"></div>
592 +
593 +Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div>
594 +
595 +Ex: #5QMMDD&lt;cr&gt; might return *5QMMD512&lt;cr&gt; <div class="wikimodel-emptyline"></div>
596 +
597 +This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023.
598 +<div class="wikimodel-emptyline"></div></div></div>
599 +{{/html}}
600 +
489 489  ====== __Maximum Speed in Degrees (**SD**)__ ======
490 490  
491 -Ex: #5SD1800<cr>This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in Degrees (**QSD**)Ex: #5QSD<cr> might return *5QSD1800<cr>By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
603 +{{html wiki="true" clean="false"}}
604 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
605 +Ex: #5SD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
606 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
492 492  
608 +Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div>
609 +
610 +Ex: #5QSD&lt;cr&gt; might return *5QSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
611 +
612 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1&lt;cr&gt; is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
613 +
493 493  |**Command sent**|**Returned value (1/10 °)**
494 -|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
495 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
496 -|ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
497 -|ex: #5QSD3<cr>|Target travel speed
615 +|ex: #5QSD&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
616 +|ex: #5QSD1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
617 +|ex: #5QSD2&lt;cr&gt;|Instantaneous speed (same as QWD)
618 +|ex: #5QSD3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
498 498  
499 -Configure Speed in Degrees (**CSD**)Ex: #5CSD1800<cr>Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
620 +Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div>
500 500  
622 +Ex: #5CSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
623 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
624 +</div></div>
625 +{{/html}}
626 +
501 501  ====== __Maximum Speed in RPM (**SR**)__ ======
502 502  
503 -Ex: #5SR45<cr>This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in RPM (**QSR**)Ex: #5QSR<cr> might return *5QSR45<cr>By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
629 +{{html wiki="true" clean="false"}}
630 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
631 +Ex: #5SR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
632 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
504 504  
634 +Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div>
635 +
636 +Ex: #5QSR&lt;cr&gt; might return *5QSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
637 +
638 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1&lt;cr&gt; is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
639 +
505 505  |**Command sent**|**Returned value (1/10 °)**
506 -|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
507 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
508 -|ex: #5QSR2<cr>|Instantaneous speed (same as QWD)
509 -|ex: #5QSR3<cr>|Target travel speed
641 +|ex: #5QSR&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
642 +|ex: #5QSR1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
643 +|ex: #5QSR2&lt;cr&gt;|Instantaneous speed (same as QWD)
644 +|ex: #5QSR3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
510 510  
511 -Configure Speed in RPM (**CSR**)Ex: #5CSR45<cr>Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
646 +Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div>
512 512  
648 +Ex: #5CSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
649 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
650 +</div></div>
651 +{{/html}}
652 +
513 513  == Modifiers ==
514 514  
515 -====== __Speed (**SD**) modifier__ ======
655 +====== __Speed (**S**, **SD**) modifier__ ======
516 516  
517 -(% class="wikigeneratedid" id="HTimedmove28T29modifier" %)
518 -Example: #5D0SD180<cr>
657 +{{html clean="false" wiki="true"}}
658 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
659 +Example: #5P1500S750&lt;cr&gt;<div class="wikimodel-emptyline"></div>
660 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
661 +Example: #5D0SD180&lt;cr&gt;<div class="wikimodel-emptyline"></div>
662 +Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.<div class="wikimodel-emptyline"></div>
663 +Query Speed (**QS**)<div class="wikimodel-emptyline"></div>
664 +Example: #5QS&lt;cr&gt; might return *5QS300&lt;cr&gt;<div class="wikimodel-emptyline"></div>
665 +This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div>
666 +</div></div>
667 +{{/html}}
519 519  
520 -(% class="wikigeneratedid" %)
521 -Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.
669 +====== __Timed move (**T**) modifier__ ======
522 522  
523 -(% class="wikigeneratedid" %)
524 -Query Speed (**QS**)
671 +{{html wiki="true" clean="false"}}
672 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
673 +Example: #5P1500T2500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
525 525  
526 -(% class="wikigeneratedid" %)
527 -Example: #5QS<cr> might return *5QS300<cr>
675 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
676 +**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div>
677 +</div></div>
678 +{{/html}}
528 528  
529 -(% class="wikigeneratedid" %)
530 -This command queries the current speed in microseconds per second.
680 +====== __Current Halt & Hold (**CH**) modifier__ ======
531 531  
532 -====== __Timed move (**T**) modifier__ ======
682 +{{html wiki="true" clean="false"}}
683 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
684 +Example: #5D1423CH400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
533 533  
534 -Example: #5D15000T2500<cr>
686 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div>
687 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
688 +</div></div>
689 +{{/html}}
535 535  
536 -Timed move can be used only as a modifier for a position (D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
691 +====== __Current Limp (**CL**) modifier__ ======
537 537  
538 -**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested
693 +{{html wiki="true" clean="false"}}
694 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
695 +Example: #5D1423CL400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
539 539  
540 -====== ======
697 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div>
698 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
699 +</div></div>
700 +{{/html}}
541 541  
542 542  == Telemetry ==
543 543  
544 544  ====== __Query Voltage (**QV**)__ ======
545 545  
546 -Ex: #5QV<cr> might return *5QV11200<cr>
706 +{{html wiki="true" clean="false"}}
707 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
708 +Ex: #5QV&lt;cr&gt; might return *5QV11200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
709 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div>
710 +</div></div>
711 +{{/html}}
547 547  
548 -The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.
549 -
550 550  ====== __Query Temperature (**QT**)__ ======
551 551  
552 -Ex: #5QT<cr> might return *5QT564<cr>
715 +{{html wiki="true" clean="false"}}
716 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
717 +Ex: #5QT&lt;cr&gt; might return *5QT564&lt;cr&gt;<div class="wikimodel-emptyline"></div>
718 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div>
719 +</div></div>
720 +{{/html}}
553 553  
554 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
722 +====== __Query Current (**QC**)__ ======
555 555  
556 -====== __Query Motor Driver Current (**QC**)__ ======
724 +{{html wiki="true" clean="false"}}
725 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
726 +Ex: #5QC&lt;cr&gt; might return *5QC140&lt;cr&gt;<div class="wikimodel-emptyline"></div>
727 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div>
728 +</div></div>
729 +{{/html}}
557 557  
558 -Ex: #5QC<cr> might return *5QC140<cr>
731 +====== __Query Model String (**QMS**)__ ======
559 559  
560 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value.
733 +{{html wiki="true" clean="false"}}
734 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
735 +Ex: #5QMS&lt;cr&gt; might return *5QMSLSS-HS1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
736 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div>
737 +</div></div>
738 +{{/html}}
561 561  
562 -====== __Query Model String (**QMS**)__ ======
740 +====== __Query Firmware (**QF**)__ ======
563 563  
564 -Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
742 +{{html wiki="true" clean="false"}}
743 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
744 +Ex: #5QF&lt;cr&gt; might return *5QF368&lt;cr&gt;<div class="wikimodel-emptyline"></div>
745 +The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div>
746 +The command #5QF3&lt;cr&gt; can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div>
747 +</div></div>
748 +{{/html}}
565 565  
566 -This reply means that the servo model is LSS-HS1: a high speed servo, first revision.
750 +====== __Query Serial Number (**QN**)__ ======
567 567  
568 -====== __Query Firmware (**QF**)__ ======
752 +{{html wiki="true" clean="false"}}
753 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
754 +Ex: #5QN&lt;cr&gt; might return *5QN12345678&lt;cr&gt;<div class="wikimodel-emptyline"></div>
755 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div>
756 +</div></div>
757 +{{/html}}
569 569  
570 -Ex: #5QF<cr> might return *5QF368<cr>
759 +== RGB LED ==
571 571  
572 -The number in the reply represents the firmware version, in this example being 368.The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14
761 +====== __LED Color (**LED**)__ ======
573 573  
574 -====== __Query Serial Number (**QN**)__ ======
763 +{{html wiki="true" clean="false"}}
764 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
765 +Ex: #5LED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
766 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div>
767 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div>
768 +Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div>
769 +Ex: #5QLED&lt;cr&gt; might return *5QLED5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
770 +This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div>
771 +Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div>
772 +Ex: #5CLED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
773 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div>
774 +</div></div>
775 +{{/html}}
575 575  
576 -Ex: #5QN<cr> might return *5QN12345678<cr>
777 +====== __Configure LED Blinking (**CLB**)__ ======
577 577  
578 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
779 +{{html wiki="true" clean="false"}}
780 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
781 +This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div>
782 +
783 +(% style="width:195px" %)
784 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
785 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0
786 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1
787 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2
788 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
789 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
790 +|(% style="width:134px" %)Free|(% style="width:58px" %)16
791 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32
792 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div>
793 +
794 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div>
795 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div>
796 +Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div>
797 +Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div>
798 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div>
799 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div>
800 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div>
801 +RESETTING the servo is needed.<div class="wikimodel-emptyline"></div>
802 +</div></div>
803 +{{/html}}
804 +
805 +== RGB LED ==
806 +
807 +The LED can be
Copyright RobotShop 2018