Last modified by Eric Nantel on 2024/07/03 09:42

From version < 57.1 >
edited by Coleman Benson
on 2023/07/27 13:46
To version < 28.1 >
edited by Coleman Benson
on 2023/07/25 15:05
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,7 +1,6 @@
1 1  {{warningBox warningText="More information coming soon"/}}
2 2  
3 3  
4 -
5 5  (% class="wikigeneratedid" id="HTableofContents" %)
6 6  **Page Contents**
7 7  
... ... @@ -30,88 +30,104 @@
30 30  
31 31  == Modifiers ==
32 32  
33 -Modifiers can only be used with certain **action commands**. The format to include a modifier is:
32 +{{html clean="false" wiki="true"}}
33 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
34 +Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div>
34 34  
35 -1. Start with a number sign **#** (Unicode Character: U+0023)
36 +1. Start with a number sign **#** (Unicode Character: U+0023)
36 36  1. Servo ID number as an integer
37 37  1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
38 38  1. Action value in the correct units with no decimal
39 -1. Modifier command (one or two letters from the list of modifiers below)
40 +1. Modifier command (one or two letters from the list of modifiers below)
40 40  1. Modifier value in the correct units with no decimal
41 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
42 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)
42 42  
43 -Ex: #5D13000T1500<cr>This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).
44 +Ex: #5D13000T1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
44 44  
45 -== Queries ==
46 +This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div>
47 +<div class="wikimodel-emptyline"></div></div></div>
46 46  
47 -Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:
49 +<h2>Queries</h2>
50 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
51 +Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div>
48 48  
49 -1. Start with a number sign **#** (Unicode Character: U+0023)
53 +1. Start with a number sign **#** (Unicode Character: U+0023)
50 50  1. Servo ID number as an integer
51 51  1. Query command (one to four letters, no spaces, capital or lower case)
52 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
56 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
53 53  
54 -Ex: #5QD<cr> Query the position in (hundredths of) degrees for servo with ID #5The query will return a serial string (almost instantaneously) via the servo's Tx in the following format:
58 +Ex: #5QD&lt;cr&gt; Query the position in (hundredths of) degrees for servo with ID #5<div class="wikimodel-emptyline"></div>
55 55  
60 +The query will return a serial string (almost instantaneously) via the servo's Tx in the following format:
61 +
56 56  1. Start with an asterisk * (Unicode Character: U+0023)
57 57  1. Servo ID number as an integer
58 58  1. Query command (one to four letters, no spaces, capital letters)
59 59  1. The reported value in the units described, no decimals.
60 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
66 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
61 61  
62 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:
68 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div>
63 63  
64 -Ex: *5QD13000<cr>
70 +Ex: *5QD13000&lt;cr&gt;<div class="wikimodel-emptyline"></div>
65 65  
66 66  This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees).
73 +<div class="wikimodel-emptyline"></div></div></div>
67 67  
68 -== Configurations ==
75 +<h2>Configurations</h2>
69 69  
70 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.
77 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
78 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div>
71 71  
72 -The format to send a configuration command is identical to that of an action command:
80 +These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>
73 73  
74 -1. Start with a number sign **#** (Unicode Character: U+0023)
82 +The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div>
83 +
84 +1. Start with a number sign **#** (Unicode Character: U+0023)
75 75  1. Servo ID number as an integer
76 76  1. Configuration command (two to four letters, no spaces, capital or lower case)
77 77  1. Configuration value in the correct units with no decimal
78 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
88 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
79 79  
80 -Ex: #5CO-500<cr>
90 +Ex: #5CO-500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
81 81  
82 -This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).
92 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div>
83 83  
84 -**Session vs Configuration Query**
94 +**Session vs Configuration Query**<div class="wikimodel-emptyline"></div>
85 85  
86 -By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
96 +By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div>
87 87  
88 -Ex: #5CSR10<cr> immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.
98 +Ex: #5CSR10&lt;cr&gt; immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>
89 89  
90 -After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
100 +After RESET, a command of #5SR4&lt;cr&gt; sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>
91 91  
92 -#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas
102 +#5QSR&lt;cr&gt; or #5QSR0&lt;cr&gt; would return *5QSR4&lt;cr&gt; which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>
93 93  
94 -#5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM
104 +#5QSR1&lt;cr&gt; would return *5QSR10&lt;cr&gt; which represents the value in EEPROM
105 +<div class="wikimodel-emptyline"></div></div></div>
95 95  
96 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).
107 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
108 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div>
97 97  
98 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]
110 +[[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div>
99 99  
100 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
112 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div>
101 101  
102 -#1D-3000<cr> This causes the servo to move to -30.00 degrees (green arrow)
114 +#1D-3000&lt;cr&gt; This causes the servo to move to -30.00 degrees (green arrow)<div class="wikimodel-emptyline"></div>
103 103  
104 -#1D21000<cr> This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)
116 +#1D21000&lt;cr&gt; This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)<div class="wikimodel-emptyline"></div>
105 105  
106 -#1D-42000<cr> This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.
118 +#1D-42000&lt;cr&gt; This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div>
107 107  
108 -Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees.
120 +Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees.<div class="wikimodel-emptyline"></div>
109 109  
110 -#1D48000<cr> This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
122 +#1D48000&lt;cr&gt; This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div>
111 111  
112 -#1D33000<cr> would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).
124 +#1D33000&lt;cr&gt; would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>
113 113  
114 114  If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.00 degrees before power is cycled, upon power up the servo's position will be read as +120.00 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.00°, 180.00°].
127 +<div class="wikimodel-emptyline"></div></div></div>
128 +
129 +{{/html}}
115 115  )))
116 116  
117 117  = Command List =
... ... @@ -124,10 +124,10 @@
124 124  | |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Revert to firmware default values. See command for details
125 125  | |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Update firmware. See command for details.
126 126  | |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) | | |
127 -| |[[**ID** Number >>||anchor="HIDNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
128 -| |[[**E**nable CAN **T**erminal>>doc:||anchor="HEnableCANTerminalResistor28ET29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0 or 1|0: Disable  1: Enable
129 -| |[[**U**SB **C**onnection Status>>||anchor="HUSBConnectionStatus28UC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected
130 -| |[[**Q**uery **F**irmware **R**elease>>doc:||anchor="HFirmwareRelease28FR29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | |
142 +| |[[**E**nable CAN **T**erminal>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0 or 1|0: Disable  1: Enable
143 +| |[[**ID** Number >>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
144 +| |[[**U**SB **C**onnection State>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected
145 +| |**Q**uery **F**irmware **R**elease|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | |
131 131  
132 132  |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]]
133 133  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
... ... @@ -141,15 +141,19 @@
141 141  
142 142  |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]]
143 143  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
159 +| |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|1| |EM1: trapezoidal motion profile / EM0: no motion profile
160 +| |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|5| |Affects motion only when motion profile is disabled (EM0)
144 144  | |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|0|1/10°|
145 145  | |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|1800|1/10°|
163 +| |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|0|-4 to +4 integer|Suggested values are between 0 to +4
164 +| |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|4|-10 to +10 integer|
146 146  | |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
147 147  | |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
148 148  | |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
149 149  | |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|No value|1/10°|Reset required after change.
169 +| |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |1023|255 to 1023 integer|
150 150  | |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
151 151  | |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
152 -| |[[Step Mode>>doc:||anchor="HStepMode28SM29"]]|(% style="text-align:center" %)SM|(% style="text-align:center" %)QM|(% style="text-align:center" %)CSM|2|1, 2, 4|Numbers represent fractions: full step, &frac12; step, &frac14; step
153 153  
154 154  |(% colspan="8" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]]
155 155  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
... ... @@ -163,123 +163,37 @@
163 163  | |[[**Q**uery **M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) | | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
164 164  | |[[**Q**uery **F**irmware Version>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) | | |
165 165  | |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) | | |Returns the unique serial number for the servo
166 -| |[[**Q**uery **T**emperature **P**robe>>doc:||anchor="HQueryTemperatureProbe28QTP29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | | |Queries temperature probe fixed to the stepper motor
167 -| |[[**Q**uery **T**emp of **M**CU>>doc:||anchor="HQueryMCUTemperature28QTM29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTM|(% style="text-align:center" %) | | |
168 -| |[[**Q**uery **T**emp of **C**ontroller>>doc:||anchor="HQueryTempofController28QTCW29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW, QTCE|(% style="text-align:center" %) | | |(((
185 +| |**Q**uery **T**emperature **P**robe|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | | |Queries temperature probe fixed to stepper motor
186 +| |**Q**uery **T**emp of **C**ontroller|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW, QTCE|(% style="text-align:center" %) | | |(((
169 169  QTCW: Queries the temperature status of the motor controller (pre-warning)
170 170  
171 171  QTCE: Queries the temperature status of the motor controller (over-temp error)
172 172  )))
173 -| |[[**Q**uery **I**MU Linear **X**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2|
174 -| |[[**Q**uery **I**MU Linear **Y**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2|
175 -| |[[**Q**uery **I**MU Linear **Z**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2|
176 -| |[[**Q**uery **I**MU Angular Accel **α** >>doc:||anchor="HQueryIMUAngular28QIAQIBQIC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha)
177 -| |[[**Q**uery **I**MU Angular Accel **β**>>doc:||anchor="HQueryIMUAngular28QIAQIBQIC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta)
178 -| |[[**Q**uery **I**MU Angular Accel **γ**>>doc:||anchor="HQueryIMUAngular28QIAQIBQIC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIC / QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma)
191 +| |**Q**uery **C**urrent **S**peed |(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | | |Queries the motor controller's calculated speed
192 +| |**Q**uery **I**MU Linear **X**|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2|
193 +| |**Q**uery **I**MU Linear **Y**|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2|
194 +| |**Q**uery **I**MU Linear **Z**|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2|
195 +| |**Q**uery **I**MU Angular Accel **α** |(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha)
196 +| |**Q**uery **I**MU Angular Accel **β**|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta)
197 +| |**Q**uery **I**MU Angular Accel **γ**|(% style="text-align:center" %) |(% style="text-align:center" %)QIC / QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma)
179 179  
180 180  |(% colspan="8" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]]
181 181  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
182 182  | |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
202 +| |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB| |0 to 63 integer|Reset required after change. See command for details.
183 183  
184 184  = (% style="color:inherit; font-family:inherit" %)Details(%%) =
185 185  
186 186  == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
187 187  
188 -|(% colspan="2" %)(((
189 -====== __Reset__ ======
190 -)))
191 -| |(((
192 -Ex: #5RESET<cr>
193 193  
194 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See Session, note #2 for more details.
195 -)))
196 -
197 -|(% colspan="2" %)(((
198 -====== (% style="color:inherit; font-family:inherit" %)__Default & confirm__(%%) ======
199 -)))
200 -| |(((
201 -Ex: #5RESET<cr>
202 -
203 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See Session, note #2 for more details.
204 -)))
205 -
206 206  ====== ======
207 207  
208 -(% style="color:inherit; font-family:inherit" %)Ex: #5DEFAULT<cr>
209 -
210 -(% style="color:inherit; font-family:inherit" %)This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
211 -
212 -(% style="color:inherit; font-family:inherit" %)EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
213 -
214 -(% style="color:inherit; font-family:inherit" %)Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
215 -
216 -(% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
217 -
218 -====== (% style="color:inherit; font-family:inherit" %)__Update & confirm__(%%) ======
219 -
220 -(% style="color:inherit; font-family:inherit" %)Ex: #5UPDATE<cr>
221 -
222 -(% style="color:inherit; font-family:inherit" %)This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
223 -
224 -(% style="color:inherit; font-family:inherit" %)EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
225 -
226 -(% style="color:inherit; font-family:inherit" %)Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
227 -
228 -(% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
229 -
230 -====== (% style="color:inherit; font-family:inherit" %)__Confirm__(%%) ======
231 -
232 -(% style="color:inherit; font-family:inherit" %)Ex: #5CONFIRM<cr>
233 -
234 -(% style="color:inherit; font-family:inherit" %)This command is used to confirm changes after a Default or Update command.
235 -Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
236 -
237 -====== (% style="color:inherit; font-family:inherit" %)__ID Number (**ID**)__(%%) ======
238 -
239 -(% style="color:inherit; font-family:inherit" %)Configure ID Number (**CID**)
240 -
241 -(% style="color:inherit; font-family:inherit" %)Ex: #0CID5<cr>
242 -
243 -The default ID is 0, so this sets the servo to ID 5.
244 -
245 -Query ID Number (**QID**)
246 -
247 -Ex: #254QID<cr> might return *254QID5<cr>
248 -
249 -In this case, the broadcast ID is used to ensure the servo connected will reply with the ID. This can be used in case the ID assigned to a servo is forgotten.
250 -
251 -====== (% style="color:inherit; font-family:inherit" %)__Enable CAN Terminal Resistor (**ET**)__(%%) ======
252 -
253 -Query Enable CAN Terminal Resistor (**QET**)
254 -
255 -Ex: #5QET<cr> might return *QET0<cr>
256 -
257 -This means that servo with ID 5 is NOT configured as the last servo in the CAN bus.
258 -
259 -Configure Enable CAN Terminal Resistor (**CET**)
260 -
261 -(% style="color:inherit; font-family:inherit" %)Ex: #5CET1<cr>
262 -
263 -(% style="color:inherit; font-family:inherit" %)This commands sets servo with ID 5 as being the last in the CAN Bus. The last servo in a CAN bus must be configured this way.
264 -
265 -====== __USB Connection Status (**UC**)__ ======
266 -
267 -Query USB Connection Status (**QUC**)
268 -
269 -Ex: #5QUC<cr> might return *5QUC1<cr> meaning the servo is connected via USB
270 -
271 -====== __Firmware Release (**FR**)__ ======
272 -
273 -Query Firmware Release (**QFR**)
274 -
275 -Ex: #5QFR<cr> might return *QFR11<cr> meaning it has a (random) firmware release version number 11.
276 -
277 -This is used to verify if the firmware on the servos is up to date, or which version is running on the microcontroller.
278 -
279 279  == Motion ==
280 280  
281 281  ====== __Position in Degrees (**D**)__ ======
282 282  
215 +
283 283  Example: #5D1456<cr>
284 284  
285 285  This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction.
... ... @@ -307,6 +307,7 @@
307 307  
308 308  ====== __Wheel Mode in Degrees (**WD**)__ ======
309 309  
243 +
310 310  Ex: #5WD90<cr>
311 311  
312 312  This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
... ... @@ -319,6 +319,7 @@
319 319  
320 320  ====== __Wheel Mode in RPM (**WR**)__ ======
321 321  
256 +
322 322  Ex: #5WR40<cr>
323 323  
324 324  This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
... ... @@ -329,16 +329,19 @@
329 329  
330 330  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
331 331  
267 +====== ======
268 +
332 332  ====== __(Relative) Move in Degrees (**MD**)__ ======
333 333  
334 -(% class="wikigeneratedid" id="HExample:235M15003Ccr3E" %)
335 -Example: #5M1500<cr>
271 +======
272 +Example: #5M1500<cr> ======
336 336  
337 -(% class="wikigeneratedid" id="HTherelativemoveinPWMcommandcausestheservotoreaditscurrentpositionandmovebythespecifiednumberofPWMsignal.ForexampleiftheservoissettorotateCW28default29andanMcommandof1500issenttotheservo2Citwillcausetheservotorotateclockwiseby90degrees.NegativePWMvaluewouldcausetheservotorotateintheoppositeconfigureddirection." %)
338 -The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
274 +(% class="wikigeneratedid" %)
275 +====== The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. ======
339 339  
340 340  ====== __Query Status (**Q**)__ ======
341 341  
279 +
342 342  The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.
343 343  
344 344  Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
... ... @@ -362,6 +362,7 @@
362 362  
363 363  If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
364 364  
303 +
365 365  |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
366 366  | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
367 367  | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
... ... @@ -370,6 +370,7 @@
370 370  
371 371  ====== __Limp (**L**)__ ======
372 372  
312 +
373 373  Example: #5L<cr>
374 374  
375 375  This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
... ... @@ -376,6 +376,7 @@
376 376  
377 377  ====== __Halt & Hold (**H**)__ ======
378 378  
319 +
379 379  Example: #5H<cr>
380 380  
381 381  This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
... ... @@ -382,243 +382,485 @@
382 382  
383 383  == Motion Setup ==
384 384  
385 -====== __Origin Offset (**O**)__ ======
326 +====== __Enable Motion Profile (**EM**)__ ======
386 386  
387 -Example: #5O2400<cr>This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
328 +{{html clean="false" wiki="true"}}
329 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
330 +EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div>
388 388  
389 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
332 +Ex: #5EM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
390 390  
334 +This command enables a trapezoidal motion profile for servo #5 <div class="wikimodel-emptyline"></div>
391 391  
392 -In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
336 +Ex: #5EM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
393 393  
394 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]
338 +This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command).
395 395  
340 +<div class="wikimodel-emptyline"></div>
396 396  
397 -Origin Offset Query (**QO**)
342 +Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div>
398 398  
399 -Example: #5QO<cr> might return *5QO-13
344 +Ex: #5QEM&lt;cr&gt; might return *5QEM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
400 400  
401 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
346 +This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div>
402 402  
403 -Configure Origin Offset (**CO**)
348 +Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div>
404 404  
405 -Example: #5CO-24<cr>
350 +Ex: #5CEM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
406 406  
352 +This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
353 +<div class="wikimodel-emptyline"></div></div></div>
354 +{{/html}}
355 +
356 +====== __Filter Position Count (**FPC**)__ ======
357 +
358 +{{html clean="false" wiki="true"}}
359 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
360 +The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default.
361 +<div class="wikimodel-emptyline"></div>
362 +Ex: #5FPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
363 +This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div>
364 +
365 +Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div>
366 +
367 +Ex: #5QFPC&lt;cr&gt; might return *5QFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
368 +
369 +This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div>
370 +
371 +Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div>
372 +
373 +Ex: #5CFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
374 +
375 +This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
376 +<div class="wikimodel-emptyline"></div></div></div>
377 +{{/html}}
378 +
379 +====== __Origin Offset (**O**)__ ======
380 +
381 +{{html wiki="true" clean="false"}}
382 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
383 +Example: #5O2400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
384 +
385 +This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div>
386 +
387 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
388 +
389 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div>
390 +
391 +[[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div>
392 +
393 +Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div>
394 +
395 +Example: #5QO&lt;cr&gt; might return *5QO-13<div class="wikimodel-emptyline"></div>
396 +
397 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div>
398 +
399 +Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div>
400 +
401 +Example: #5CO-24&lt;cr&gt;<div class="wikimodel-emptyline"></div>
402 +
407 407  This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
404 +<div class="wikimodel-emptyline"></div></div></div>
405 +{{/html}}
408 408  
409 409  ====== __Angular Range (**AR**)__ ======
410 410  
411 -Example: #5AR1800<cr>
409 +{{html wiki="true" clean="false"}}
410 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
411 +Example: #5AR1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
412 412  
413 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
413 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div>
414 414  
415 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
415 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
416 416  
417 -Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
417 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div>
418 418  
419 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]
419 +[[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div>
420 420  
421 +Finally, the angular range action command (ex. #5AR1800&lt;cr&gt;) and origin offset action command (ex. #5O-1200&lt;cr&gt;) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div>
421 421  
422 -Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
423 +[[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div>
423 423  
424 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]
425 +Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div>
425 425  
427 +Example: #5QAR&lt;cr&gt; might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div>
426 426  
427 -Query Angular Range (**QAR**)
429 +Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div>
428 428  
429 -Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
431 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
432 +<div class="wikimodel-emptyline"></div></div></div>
433 +{{/html}}
430 430  
431 -Configure Angular Range (**CAR**)
435 +====== __Angular Stiffness (**AS**)__ ======
432 432  
433 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
437 +{{html wiki="true" clean="false"}}
438 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
439 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div>
434 434  
441 +A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div>
442 +
443 +* The more torque will be applied to try to keep the desired position against external input / changes
444 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div>
445 +
446 +A lower value on the other hand:<div class="wikimodel-emptyline"></div>
447 +
448 +* Causes a slower acceleration to the travel speed, and a slower deceleration
449 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div>
450 +
451 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
452 +
453 +Ex: #5AS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
454 +
455 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div>
456 +
457 +Ex: #5QAS&lt;cr&gt;<div class="wikimodel-emptyline"></div>
458 +
459 +Queries the value being used.<div class="wikimodel-emptyline"></div>
460 +
461 +Ex: #5CAS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
462 +
463 +Writes the desired angular stiffness value to EEPROM.
464 +<div class="wikimodel-emptyline"></div></div></div>
465 +{{/html}}
466 +
467 +====== __Angular Holding Stiffness (**AH**)__ ======
468 +
469 +{{html wiki="true" clean="false"}}
470 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
471 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
472 +
473 +Ex: #5AH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
474 +
475 +This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div>
476 +
477 +Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div>
478 +
479 +Ex: #5QAH&lt;cr&gt; might return *5QAH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
480 +
481 +This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div>
482 +
483 +Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div>
484 +
485 +Ex: #5CAH2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
486 +
487 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM.
488 +<div class="wikimodel-emptyline"></div></div></div>
489 +{{/html}}
490 +
435 435  ====== __Angular Acceleration (**AA**)__ ======
436 436  
437 -The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
493 +{{html wiki="true" clean="false"}}
494 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
495 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
438 438  
439 -Ex: #5AA30<cr>
497 +Ex: #5AA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
440 440  
441 -This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
499 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
442 442  
443 -Query Angular Acceleration (**QAA**)
501 +Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div>
444 444  
445 -Ex: #5QAA<cr> might return *5QAA30<cr>
503 +Ex: #5QAA&lt;cr&gt; might return *5QAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
446 446  
447 -This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).
505 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
448 448  
449 -Configure Angular Acceleration (**CAA**)
507 +Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div>
450 450  
451 -Ex: #5CAA30<cr>
509 +Ex: #5CAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
452 452  
453 453  This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
512 +<div class="wikimodel-emptyline"></div></div></div>
513 +{{/html}}
454 454  
455 455  ====== __Angular Deceleration (**AD**)__ ======
456 456  
457 -The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
517 +{{html wiki="true" clean="false"}}
518 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
519 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
458 458  
459 -Ex: #5AD30<cr>
521 +Ex: #5AD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
460 460  
461 -This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
523 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
462 462  
463 -Query Angular Deceleration (**QAD**)
525 +Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div>
464 464  
465 -Ex: #5QAD<cr> might return *5QAD30<cr>
527 +Ex: #5QAD&lt;cr&gt; might return *5QAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
466 466  
467 -This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).
529 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
468 468  
469 -Configure Angular Deceleration (**CAD**)
531 +Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div>
470 470  
471 -Ex: #5CAD30<cr>
533 +Ex: #5CAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
472 472  
473 -This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
535 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
536 +<div class="wikimodel-emptyline"></div></div></div>
537 +{{/html}}
474 474  
475 475  ====== __Gyre Direction (**G**)__ ======
476 476  
477 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.
541 +{{html wiki="true" clean="false"}}
542 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
543 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div>
478 478  
479 -Ex: #5G-1<cr>
545 +Ex: #5G-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
480 480  
481 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
547 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div>
482 482  
483 -Query Gyre Direction (**QG**)
549 +Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div>
484 484  
485 -Ex: #5QG<cr> might return *5QG-1<cr>
551 +Ex: #5QG&lt;cr&gt; might return *5QG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
486 486  
487 -The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.
553 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div>
488 488  
489 -Configure Gyre (**CG**)
555 +Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div>
490 490  
491 -Ex: #5CG-1<cr>
557 +Ex: #5CG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
492 492  
493 493  This changes the gyre direction as described above and also writes to EEPROM.
560 +<div class="wikimodel-emptyline"></div></div></div>
561 +{{/html}}
494 494  
495 495  ====== __First Position__ ======
496 496  
497 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.Query First Position in Degrees (**QFD**)Ex: #5QFD<cr> might return *5QFD900<cr>The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.Configure First Position in Degrees (**CFD**)Ex: #5CFD900<cr>This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
565 +{{html wiki="true" clean="false"}}
566 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
567 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div>
498 498  
499 -====== __Maximum Speed in Degrees (**SD**)__ ======
569 +Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div>
500 500  
501 -Ex: #5SD1800<cr>This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in Degrees (**QSD**)Ex: #5QSD<cr> might return *5QSD1800<cr>By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
571 +Ex: #5QFD&lt;cr&gt; might return *5QFD900&lt;cr&gt; <div class="wikimodel-emptyline"></div>
502 502  
503 -|**Command sent**|**Returned value (1/10 °)**
504 -|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
505 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
506 -|ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
507 -|ex: #5QSD3<cr>|Target travel speed
573 +The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div>
508 508  
509 -Configure Speed in Degrees (**CSD**)Ex: #5CSD1800<cr>Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
575 +Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div>
510 510  
511 -====== __Maximum Speed in RPM (**SR**)__ ======
577 +Ex: #5CFD900&lt;cr&gt;<div class="wikimodel-emptyline"></div>
512 512  
513 -Ex: #5SR45<cr>This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in RPM (**QSR**)Ex: #5QSR<cr> might return *5QSR45<cr>By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
579 +This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD&lt;cr&gt;) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD&lt;cr&gt;
580 +<div class="wikimodel-emptyline"></div></div></div>
581 +{{/html}}
514 514  
515 -|**Command sent**|**Returned value (1/10 °)**
516 -|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
517 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
518 -|ex: #5QSR2<cr>|Instantaneous speed (same as QWD)
519 -|ex: #5QSR3<cr>|Target travel speed
583 +====== __Maximum Motor Duty (**MMD**)__ ======
520 520  
521 -Configure Speed in RPM (**CSR**)Ex: #5CSR45<cr>Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
585 +{{html wiki="true" clean="false"}}
586 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
587 +This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div>
522 522  
523 -====== __Step Mode (**SM**)__ ======
589 +Ex: #5MMD512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
524 524  
525 -Ex: #8SM2<cr>
591 +This will set the duty-cycle to 512 for servo with ID 5 for that session.<div class="wikimodel-emptyline"></div>
526 526  
527 -This sets servo with ID 8 to 1/2 step mode. Since this is an action as opposed to a configuration, it only affects that session.
593 +Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div>
528 528  
529 -Note that the torque and max RPM of the actuator will be affected.
595 +Ex: #5QMMDD&lt;cr&gt; might return *5QMMD512&lt;cr&gt; <div class="wikimodel-emptyline"></div>
530 530  
531 -Query Step Mode (**QSM**)
597 +This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023.
598 +<div class="wikimodel-emptyline"></div></div></div>
599 +{{/html}}
532 532  
533 -Ex: #8QSM<cr> might return *8QSM2<cr> meaning servo with ID 8 is set to half step mode.
601 +====== __Maximum Speed in Degrees (**SD**)__ ======
534 534  
535 -Configure Step Mode (**CSM**)
603 +{{html wiki="true" clean="false"}}
604 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
605 +Ex: #5SD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
606 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
536 536  
537 -Ex: #8SM2<cr>
608 +Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div>
538 538  
539 -This sets servo with ID 8 to 1/2 step mode. Since this is a configuration as opposed to a configuration and the servo will be in 1/2 step mode when powered.
610 +Ex: #5QSD&lt;cr&gt; might return *5QSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
540 540  
541 -== Modifiers ==
612 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1&lt;cr&gt; is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
542 542  
543 -====== __Speed (**SD**) modifier__ ======
614 +|**Command sent**|**Returned value (1/10 °)**
615 +|ex: #5QSD&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
616 +|ex: #5QSD1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
617 +|ex: #5QSD2&lt;cr&gt;|Instantaneous speed (same as QWD)
618 +|ex: #5QSD3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
544 544  
545 -(% class="wikigeneratedid" id="HTimedmove28T29modifier" %)
546 -Example: #5D0SD180<cr>
620 +Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div>
547 547  
548 -(% class="wikigeneratedid" %)
549 -Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.
622 +Ex: #5CSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
623 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
624 +</div></div>
625 +{{/html}}
550 550  
551 -(% class="wikigeneratedid" %)
552 -Query Speed (**QS**)
627 +====== __Maximum Speed in RPM (**SR**)__ ======
553 553  
554 -(% class="wikigeneratedid" %)
555 -Example: #5QS<cr> might return *5QS300<cr>
629 +{{html wiki="true" clean="false"}}
630 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
631 +Ex: #5SR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
632 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
556 556  
557 -(% class="wikigeneratedid" %)
558 -This command queries the current speed in microseconds per second.
634 +Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div>
559 559  
560 -====== __Timed move (**T**) modifier__ ======
636 +Ex: #5QSR&lt;cr&gt; might return *5QSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
561 561  
562 -Example: #5D15000T2500<cr>
638 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1&lt;cr&gt; is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
563 563  
564 -Timed move can be used only as a modifier for a position (D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
640 +|**Command sent**|**Returned value (1/10 °)**
641 +|ex: #5QSR&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
642 +|ex: #5QSR1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
643 +|ex: #5QSR2&lt;cr&gt;|Instantaneous speed (same as QWD)
644 +|ex: #5QSR3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
565 565  
566 -**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested
646 +Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div>
567 567  
568 -====== ======
648 +Ex: #5CSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
649 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
650 +</div></div>
651 +{{/html}}
569 569  
570 -== Telemetry ==
653 +== Modifiers ==
571 571  
572 -====== __Query PCB Temperature (**QT**)__ ======
655 +====== __Speed (**S**, **SD**) modifier__ ======
573 573  
574 -Ex: #5QT<cr> might return *5QT564<cr>
657 +{{html clean="false" wiki="true"}}
658 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
659 +Example: #5P1500S750&lt;cr&gt;<div class="wikimodel-emptyline"></div>
660 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
661 +Example: #5D0SD180&lt;cr&gt;<div class="wikimodel-emptyline"></div>
662 +Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.<div class="wikimodel-emptyline"></div>
663 +Query Speed (**QS**)<div class="wikimodel-emptyline"></div>
664 +Example: #5QS&lt;cr&gt; might return *5QS300&lt;cr&gt;<div class="wikimodel-emptyline"></div>
665 +This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div>
666 +</div></div>
667 +{{/html}}
575 575  
576 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
669 +====== __Timed move (**T**) modifier__ ======
577 577  
578 -====== __Query Temperature Probe (**QTP**)__ ======
671 +{{html wiki="true" clean="false"}}
672 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
673 +Example: #5P1500T2500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
579 579  
580 -Ex:
675 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
676 +**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div>
677 +</div></div>
678 +{{/html}}
581 581  
582 -====== __Query Temp of Controller (**QTCW**)__ ======
680 +====== __Current Halt & Hold (**CH**) modifier__ ======
583 583  
584 -Ex:
682 +{{html wiki="true" clean="false"}}
683 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
684 +Example: #5D1423CH400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
585 585  
586 -An alternative is QTCE
686 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div>
687 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
688 +</div></div>
689 +{{/html}}
587 587  
588 -====== __Query Current (**QC**)__ ======
691 +====== __Current Limp (**CL**) modifier__ ======
589 589  
590 -Ex: #5QC<cr> might return *5QC140<cr>
693 +{{html wiki="true" clean="false"}}
694 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
695 +Example: #5D1423CL400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
591 591  
592 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value. The query calculates the RMS value of the current sent from the motor driver to the stepper motor.
697 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div>
698 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
699 +</div></div>
700 +{{/html}}
593 593  
594 -====== __Query Model String (**QMS**)__ ======
702 +== Telemetry ==
595 595  
596 -Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
704 +====== __Query Voltage (**QV**)__ ======
597 597  
598 -This reply means that the servo model is LSS-HS1: a high speed servo, first revision.
706 +{{html wiki="true" clean="false"}}
707 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
708 +Ex: #5QV&lt;cr&gt; might return *5QV11200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
709 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div>
710 +</div></div>
711 +{{/html}}
599 599  
600 -====== __Query Firmware (**QF**)__ ======
713 +====== __Query Temperature (**QT**)__ ======
601 601  
602 -Ex: #5QF<cr> might return *5QF368<cr>
715 +{{html wiki="true" clean="false"}}
716 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
717 +Ex: #5QT&lt;cr&gt; might return *5QT564&lt;cr&gt;<div class="wikimodel-emptyline"></div>
718 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div>
719 +</div></div>
720 +{{/html}}
603 603  
604 -The number in the reply represents the firmware version, in this example being 368.The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14
722 +====== __Query Current (**QC**)__ ======
605 605  
724 +{{html wiki="true" clean="false"}}
725 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
726 +Ex: #5QC&lt;cr&gt; might return *5QC140&lt;cr&gt;<div class="wikimodel-emptyline"></div>
727 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div>
728 +</div></div>
729 +{{/html}}
730 +
731 +====== __Query Model String (**QMS**)__ ======
732 +
733 +{{html wiki="true" clean="false"}}
734 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
735 +Ex: #5QMS&lt;cr&gt; might return *5QMSLSS-HS1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
736 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div>
737 +</div></div>
738 +{{/html}}
739 +
740 +====== __Query Firmware (**QF**)__ ======
741 +
742 +{{html wiki="true" clean="false"}}
743 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
744 +Ex: #5QF&lt;cr&gt; might return *5QF368&lt;cr&gt;<div class="wikimodel-emptyline"></div>
745 +The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div>
746 +The command #5QF3&lt;cr&gt; can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div>
747 +</div></div>
748 +{{/html}}
749 +
606 606  ====== __Query Serial Number (**QN**)__ ======
607 607  
608 -Ex: #5QN<cr> might return *5QN12345678<cr>
752 +{{html wiki="true" clean="false"}}
753 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
754 +Ex: #5QN&lt;cr&gt; might return *5QN12345678&lt;cr&gt;<div class="wikimodel-emptyline"></div>
755 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div>
756 +</div></div>
757 +{{/html}}
609 609  
610 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
759 +== RGB LED ==
611 611  
612 -====== __Query IMU Linear (**QIX** **QIY** **QIZ**)__ ======
761 +====== __LED Color (**LED**)__ ======
613 613  
614 -Ex: #6QIX<cr> might return *6QIX30<cr>
763 +{{html wiki="true" clean="false"}}
764 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
765 +Ex: #5LED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
766 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div>
767 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div>
768 +Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div>
769 +Ex: #5QLED&lt;cr&gt; might return *5QLED5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
770 +This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div>
771 +Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div>
772 +Ex: #5CLED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
773 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div>
774 +</div></div>
775 +{{/html}}
615 615  
616 -This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 30mm per second squared.
777 +====== __Configure LED Blinking (**CLB**)__ ======
617 617  
618 -====== __Query IMU Angular (**QIA** **QIB** **QIC**)__ ======
779 +{{html wiki="true" clean="false"}}
780 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
781 +This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div>
619 619  
620 -Ex: #6QIB<cr> might return *6QIB44<cr>
783 +(% style="width:195px" %)
784 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
785 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0
786 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1
787 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2
788 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
789 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
790 +|(% style="width:134px" %)Free|(% style="width:58px" %)16
791 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32
792 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div>
621 621  
622 -This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 4.4 degrees per second squared.
794 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div>
795 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div>
796 +Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div>
797 +Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div>
798 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div>
799 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div>
800 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div>
801 +RESETTING the servo is needed.<div class="wikimodel-emptyline"></div>
802 +</div></div>
803 +{{/html}}
623 623  
624 -
805 +== RGB LED ==
806 +
807 +The LED can be
Copyright RobotShop 2018