Changes for page FlowArm LSS
Last modified by Eric Nantel on 2024/07/03 09:39
Change comment: Upload new image "lss-flowarm-inspector.png", version 1.2
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 17 removed)
- LSS-Error-SafeMode.gif
- LSS-UserColor.png
- lss-flowarm-data-log.png
- lss-flowarm-gripper-view.png
- lss-flowarm-header.png
- lss-flowarm-inspector-frame.png
- lss-flowarm-left.png
- lss-flowarm-notification-current.png
- lss-flowarm-notification-firmware.png
- lss-flowarm-notification-limp.png
- lss-flowarm-notification-temperature.png
- lss-flowarm-offset-left.png
- lss-flowarm-offset-top.png
- lss-flowarm-positioning.png
- lss-flowarm-sequencer.png
- lss-flowarm-top.png
- lss-flowarm-wrist-view.png
- lss-flowarm-header.jpg
Details
- Page properties
-
- Hidden
-
... ... @@ -1,1 +1,1 @@ 1 - false1 +true - Content
-
... ... @@ -1,14 +1,14 @@ 1 1 {{lightbox image="LSS-FlowArm.png" width="400"/}} 2 2 3 -[[[[image:[email protected]]]>>https://www. robotshop.com/en/lss-flowarm-app-download.html||rel="noopener noreferrer" target="_blank"]]3 +[[[[image:[email protected]]]>>https://www.lynxmotion.com/tools/LSS_FlowArm.zip]] 4 4 5 5 **Page Contents** 6 6 7 -{{toc depth="2"/}}7 +{{toc/}} 8 8 9 9 = Description = 10 10 11 -The LSS FlowArm application is intended to allow easy control of the standard Lynxmotion Servo Erector Set (S.E.S.) v2 articulated robotic arm. The graphical interface shows multiple views of the arm which can be controlled via drag and drop, as well as by manually inputting coordinates. The full-featured built-in sequencer allows you create sequences which have the arm move automatically from one position ("frame") to the next. Make use of the "teach mode" to position the arm where you want and record frames which can be modified 11 +The LSS FlowArm application is intended to allow easy control of the standard Lynxmotion Servo Erector Set (S.E.S.) v2 articulated robotic arm. The graphical interface shows multiple views of the arm which can be controlled via drag and drop, as well as by manually inputting coordinates. The full-featured built-in sequencer allows you create sequences which have the arm move automatically from one position ("frame") to the next. Make use of the "teach mode" to position the arm where you want and record frames which can be modified and played back. Associating each pattern with input keys means you can easily play back and test multiple sequences. 12 12 13 13 FlowBotics Studio was used to create this app and includes hundreds of built-in components that allow you to interface your PC to many standard computer peripherals and robotics components, and you can quickly design new components for new hardware. Easily create new projects with custom GUI screens, knobs, buttons, switches, etc. that will run live from within FlowBotics Studio without needing to wait for compilation, or export as stand-alone executable files. FlowBotics Studio includes a powerful graphics engine that allows you to make custom graphical objects by using standard bitmaps or by drawing your own shapes on the screen. Using this system, you can build entirely custom interfaces like this one for your projects and integrate photographs, drawings, and graphs. 14 14 ... ... @@ -28,8 +28,7 @@ 28 28 29 29 Before assembling the arm, each of the IDs assigned to the servos must correspond with what is needed in the software. 30 30 31 -(% style="width:700px" %) 32 -|{{lightbox image="https://www.robotshop.com/info/wiki/lynxmotion/download/servo-erector-set-robots-kits/ses-v2-robots/ses-v2-arms/lss-4dof-arm/4dof-arm-quickstart/4dof-servo-setup/WebHome/SESV2-LSS-ARTICULATED-ARM-IDS.PNG" width="350"/}}|{{lightbox image="https://www.robotshop.com/info/wiki/lynxmotion/download/servo-erector-set-robots-kits/ses-v2-robots/ses-v2-arms/lss-3-dof-arm/3dof-arm-quickstart/3dof-servo-setup/WebHome/LSS-3DOF-IDS.PNG?=" width="350"/}} 31 +{{lightbox image="https://www.robotshop.com/info/wiki/lynxmotion/download/servo-erector-set-robots-kits/ses-v2-robots/ses-v2-arms/lss-articulated-arm/lss-articulated-arm-servo-setup/WebHome/SESV2-LSS-ARTICULATED-ARM-IDS.PNG" width="350"/}} 33 33 34 34 To do so, the [[LSS Configuration Software>>doc:lynxmotion-smart-servo.lss-configuration-software.WebHome]] is used. Follow the procedure outlined here: [[doc:lynxmotion-smart-servo.lss-configuration-software.lss-config-configure-ids.WebHome]] 35 35 ... ... @@ -56,20 +56,14 @@ 56 56 57 57 = Interface = 58 58 59 -Following are informations regarding the user interface of LSS FlowArm. 60 - 61 61 == Header == 62 62 63 -[[image:lss-flowarm-header.p ng||alt="lss-flowarm-header"]]60 +[[image:lss-flowarm-header.jpg]] 64 64 65 - ===Emergencystop ===62 +**STORE OFFSETS** 66 66 67 - Atanygiventimeyou canclickthisbuttonpthe arm.This willsenda"LIMP"commanddirectly toallservos.64 +The "STORE OFFSETS" button configures all of the servo offsets (this makes use of the CO command as part of the [[LSS Communication Protocol>>doc:lynxmotion-smart-servo.lss-communication-protocol.WebHome]]). Before pressing the button, orient the arm as shown below (with the gripper closed), and only then click the STORE OFFSETS button. 68 68 69 -=== Store offsets (calibration) === 70 - 71 -The "STORE OFFSETS" button configures all of the servo offsets (this makes use of the CO command as part of the [[LSS Communication Protocol>>doc:lynxmotion-smart-servo.lss-communication-protocol.WebHome]]). Before pressing the button, orient the arm as shown below (with the gripper closed), and only then click the STORE OFFSETS button. This setup only need to be done once when first setting up the arm. 72 - 73 73 * Base servo aligned with the x axis 74 74 * Shoulder to elbow along z axis (straight up) 75 75 * Elbow to wrist along R axis (horizontal at 90 degrees to shoulder to elbow) ... ... @@ -76,17 +76,17 @@ 76 76 * Wrist servo along R axis (parallel to elbow to wrist) 77 77 * Gripper servo closed 78 78 79 - |(% style="text-align:center; vertical-align:middle" %)[[image:lss-flowarm-offset-left.png||alt="lss-flowarm-left.png" height="300" width="300"]]|(% style="text-align:center; vertical-align:middle" %)[[image:lss-flowarm-offset-top.png||alt="lss-flowarm-top.png" height="300" width="300"]]|(% style="text-align:center; vertical-align:middle" %)[[image:lss-flowarm-offset-left.png||alt="lss-flowarm-left-3dof.png" height="300" width="300"]]|(% style="text-align:center; vertical-align:middle" %)[[image:lss-flowarm-offset-left.png||alt="lss-flowarm-left-3dof.png" height="300" width="300"]]72 +[[image:lss-flowarm-offsets.jpg]] 80 80 81 - ===Limp ===74 +**LIMP** 82 82 83 -Causes all servos to slowly go LIMP (i.e. lose torque),graduallyloosing torqueuntilhitting the ground. It's important to note that the software will not constantly query all servos for their position, and as such the virtual arm on screen will not update frequently if at all. If you want the virtual arm on screen to update as you move the real arm, use TEACH mode described below.76 +Causes all servos to immediately go LIMP (i.e. lose torque). The arm will collapse. It's important to note that the software will not constantly query all servos for their position, and as such the virtual arm on screen will not update frequently if at all. If you want the virtual arm on screen to update as you move the real arm, use TEACH mode described below. 84 84 85 - === Halt & hold ===78 +**STOP** 86 86 87 87 Causes all servos to immediately stop their motion and hold their position. 88 88 89 - ===Teach ===82 +**TEACH** 90 90 91 91 Teach mode allows a user to physically move the arm and have the virtual arm on screen follow. This is used primarily to manually add frames to sequences, determine the optimal closed position for the gripper etc. In order to ensure the arm does not collapse, pressing the TEACH button will start a 5 second countdown during which the arm will slowly lose torque (angular force) until all servos are limp. When in teach mode, an orange outline appears over all on-screen fields which would cause a conflict and therefore cannot be used. 92 92 ... ... @@ -94,15 +94,15 @@ 94 94 95 95 Once the arm is limp, it can be moved physically, and the application will regularly send position query commands to all of the servos and update the virtual arm on screen to match the servo's responses. Use the sequencer to record each position (frame) while in teach mode. For more information on the sequencer, refer to the sequencer section below. 96 96 97 - ===Grid/units===90 +**GRID / Units** 98 98 99 99 Grid spacing can be toggled between Metric or Imperial. Options include 2cm, 3cm, 5cm and 1in, 2in and 3in. 100 100 101 - ===Baud ===94 +**BAUD** 102 102 103 103 The default (and suggested) baud rate is 115200, which is the baud rate at which the servos are shipped. Should a user have changed the baud rate on the servos, it can be selected using the drop down. Note that the baud rate must be configured to the same value for all servos in order to work. 104 104 105 - ===COM===98 +**COM** 106 106 107 107 When the software is opened, a scan of all of your computer's COM ports is done automatically and a list of all available COM ports will be found in the drop down menu, along with OFF (stop searching for a COM port), and AUTO (the application tries to automatically find the correct COM port by sending a query command at the corresponding BAUD rate). Select which of your computer's COM ports is connected to the [[LSS Adapter>>doc:servo-erector-set-system.ses-electronics.ses-modules.lss-adapter-board.WebHome]] (which is provided with the standard SES v2 articulated robot arm). If you have a list of available COM ports and are unsure which is associated with the LSS Adapter, go to Device Manager in Windows, and view the list of USB devices connected. The LSS Adapter uses an FTDI USB to serial chip. Alternatively, simply unplug the USB from the arm and see which of the COM ports disappears from the list. 108 108 ... ... @@ -110,9 +110,9 @@ 110 110 * If the red light is solid, then no correct COM port has been located. 111 111 * If the green light is solid, the a COM port has been located. 112 112 113 - ===Windowsize===106 +**Window Size** 114 114 115 -[[image:lss-flowarm-size.jpg]] 108 +**[[image:lss-flowarm-size.jpg]]** 116 116 117 117 A the top right of the window, there are three dark rectangles allowing you to change the application's window size. 118 118 ... ... @@ -121,32 +121,20 @@ 121 121 (% class="wikigeneratedid" id="HArmConfiguration" %) 122 122 The arm shown on screen is based on the assembly guide. The aesthetics of the arms will be changing for the next release version of the LSS Flowarm software. 123 123 124 - ===Sideview===117 +**Side View** 125 125 126 -The left view is a representation of the arm, where the orange circles represent the location of each axis of rotation. You can move the arm in this view by clicking on and dragging anywhereinthatsideviewscreen.119 +The left view is a representation of the arm, where the orange circles represent the location of each axis of rotation. You can move the arm in this view by clicking on and dragging the wrist rotation servo. 127 127 128 - Keyboardshortcuts: (W, A, S, D)121 +[[image:lss-flowarm-side-view.jpg]] 129 129 130 - W, S: Up& down123 +**Top View** 131 131 132 - A,D:Left&right(closer/ fartherfrom base)125 +The top view shows the arm top down. You can move the arm within this view by clicking on and dragging the wrist rotation servo. 133 133 134 -[[image:lss-flowarm- left.png||width="300"]]127 +**[[image:lss-flowarm-top-view.jpg]]** 135 135 136 -=== Topview===129 +=== Shortcuts === 137 137 138 -The top view shows the arm top down. You can move the arm within this view by clicking on and dragging the dot right next to the gripper. 139 - 140 -Keyboard Shortcuts: Arrow keys (▲▼◄►) 141 - 142 -▲▼: Along Y 143 - 144 -◄►: Along X 145 - 146 -[[image:lss-flowarm-top.png||width="300"]] 147 - 148 -== Shortcuts == 149 - 150 150 **Base**: If you hold the SHIFT key while dragging with the mouse you can control base rotation. 151 151 152 152 **Wrist Tilt**: You can tilt the hand by right-clicking and fragging the mouse up and down. ... ... @@ -163,57 +163,62 @@ 163 163 164 164 == Left Menu == 165 165 166 - ===Gripper===147 +**Gripper** 167 167 168 -Assuming the gripper has been properly calibrated, The number below represents the opening at the tip. Fully closed should correspond to 0 degrees. We addedafeaturewherethe servostop whenitfeel acurrent raising,thisallows theusertoaskforafull closeand haveagood grip on theitempicked.149 +Assuming the gripper has been properly calibrated, The number below represents the opening at the tip. Fully closed should correspond to 0 degrees. In order to grasp an object, DO NOT have the servo rotate to a position which it cannot reach. In order to ensure the gripper servo does not go into error mode, the gripper should not exert much force on the object. 169 169 170 -[[image:lss-flowarm-gripper-view.png||alt="lss-flowarm-gripper-view.jpg"]] 151 +1. Close the gripper to a position just slightly larger than the object 152 +1. Using the arrows, close the gripper until friction between the foam and the object prevent the object from falling out or moving. 153 +1. DO NOT apply too much pressure, or else the servo's current will spike and it will go into error mode and need to be reset. 154 +1. Use the last position as the "fully closed" position for the gripper for that object, in that specific orientation. 171 171 172 - === Wrist ===156 +[[image:lss-flowarm-gripper-view.jpg]] 173 173 158 +**Wrist** 159 + 174 174 The wrist angle can be locked or unlocked. The field allows for user input (click the numbers) or fine adjustments using the arrows. 175 175 176 -[[image:lss-flowarm-wrist-view. png||alt="lss-flowarm-wrist-view.jpg"]]162 +[[image:lss-flowarm-wrist-view.jpg]] 177 177 178 - ===Endeffectorposition===164 +**End Effector Position** 179 179 180 180 The position of the end effector can be controlled either by manually entering the information for R (radius), or the Cartesian x, y, z coordinates, or using the arrows. 181 181 182 182 When in keyboard mode, there is an overlay indicating which keys do what motion. 183 183 184 -[[image:lss-flowarm-positioning. png||alt="lss-flowarm-positioning.jpg"]]170 +[[image:lss-flowarm-positioning.jpg]] 185 185 186 -== Data Log == 172 +== **Data Log** == 187 187 188 188 The optional Data log (normally hidden) can be toggled on or off and allows the user to see all commands being sent to and received from the smart servos. The data can be saved to a file in a Comma Separated Values (.csv) format. 189 189 190 -[[image:lss-flowarm-data-log. png||alt="lss-flowarm-data-log.jpg"]]176 +[[image:lss-flowarm-data-log.jpg]] 191 191 192 192 = Sequencer = 193 193 194 -[[image:lss-flowarm-sequencer. png||alt="lss-flowarm-sequencer.jpg"]]180 +[[image:lss-flowarm-sequencer.jpg]] 195 195 196 196 LSS FlowArm has a powerful pattern sequencer component (normally found only in the full version of FlowBotics Studio) that is used to create reusable patterns within minutes, instead of hours or days. 197 197 198 -(% style="width:103 7px" %)199 -|(% style="width:2 07px" %)[[image:lss-flowarm-association.jpg]]|(% style="width:186px" %)Assign Input|(% style="width:662px" %)Patterns can be associated to keyboard keys F1 to F12, and keys E, F, G, and H200 -|(% style="width:2 07px" %)[[image:lss-flowarm-pattern-list.jpg]]|(% style="width:186px" %)Sequence List|(% style="width:662px" %)The sequence list is the first control on the sequencer.201 -|(% style="width:2 07px" %)[[image:lss-flowarm-patterns.jpg]]|(% style="width:186px" %)Sequence Management|(% style="width:662px" %)(((184 +(% style="width:1303px" %) 185 +|(% style="width:257px" %)[[image:lss-flowarm-association.jpg]]|(% style="width:306px" %)Assign Input|(% style="width:758px" %)Patterns can be associated to keyboard keys F1 to F12, and keys E, F, G, and H 186 +|(% style="width:257px" %)[[image:lss-flowarm-pattern-list.jpg]]|(% style="width:306px" %)Sequence List|(% style="width:758px" %)The sequence list is the first control on the sequencer. 187 +|(% style="width:257px" %)[[image:lss-flowarm-patterns.jpg]]|(% style="width:306px" %)Sequence Management|(% style="width:758px" %)((( 202 202 Add, remove, duplicate, save, load and clear all patterns. 203 203 ))) 204 -|(% style="width:2 07px" %)[[image:lss-flowarm-frames.jpg]]|(% style="width:186px" %)Frame Options|(% style="width:662px" %)Adding a frame adds a blank frame to the list. The drop-down list gives "useful" pre-made frames. Recording a frame copies the arm's current on-screen position. The X removes a selected frame.205 -|(% style="width:2 07px" %)[[image:lss-flowarm-copy-paste.jpg]]|(% style="width:186px" %)Copy / Paste Frame|(% style="width:662px" %)Copy and paste a frame206 -|(% style="width:2 07px" %)[[image:lss-flowarm-settings.jpg]]|(% style="width:186px" %)Operations / Settings|(% style="width:662px" %)Useful features include: Toggle pause before frame; Remove gaps between frames; Reverse frames207 -|(% style="width:2 07px" %)[[image:lss-flowarm-lock.jpg]]|(% style="width:186px" %)Lock |(% style="width:662px" %)Timeline locking208 -|(% style="width:2 07px" %)[[image:lss-flowarm-loop.jpg]]|(% style="width:186px" %)Repeat / Loop Pattern|(% style="width:662px" %)Play once or loop; Set the playback speed using the up and down arrows.209 -|(% style="width:2 07px" %)[[image:lss-flowarm-play.jpg]]|(% style="width:186px" %)Sequence Playback|(% style="width:662px" %)Restart sequence, play or stop210 -|(% style="width:2 07px" %)[[image:lss-flowarm-inspector.png]]|(% style="width:186px" %)Frame Inspector|(% style="width:662px" %)Allows to modify the values sent in a particular frame manually.190 +|(% style="width:257px" %)[[image:lss-flowarm-frames.jpg]]|(% style="width:306px" %)Frame Options|(% style="width:758px" %)Adding a frame adds a blank frame to the list. The drop-down list gives "useful" pre-made frames. Recording a frame copies the arm's current on-screen position. The X removes a selected frame. 191 +|(% style="width:257px" %)[[image:lss-flowarm-copy-paste.jpg]]|(% style="width:306px" %)Copy / Paste Frame|(% style="width:758px" %)Copy and paste a frame 192 +|(% style="width:257px" %)[[image:lss-flowarm-settings.jpg]]|(% style="width:306px" %)Operations / Settings|(% style="width:758px" %)Useful features include: Toggle pause before frame; Remove gaps between frames; Reverse frames 193 +|(% style="width:257px" %)[[image:lss-flowarm-lock.jpg]]|(% style="width:306px" %)Lock |(% style="width:758px" %)Timeline locking 194 +|(% style="width:257px" %)[[image:lss-flowarm-loop.jpg]]|(% style="width:306px" %)Repeat / Loop Pattern|(% style="width:758px" %)Play once or loop; Set the playback speed using the up and down arrows. 195 +|(% style="width:257px" %)[[image:lss-flowarm-play.jpg]]|(% style="width:306px" %)Sequence Playback|(% style="width:758px" %)Restart sequence, play or stop 196 +|(% style="width:257px" %)[[image:lss-flowarm-inspector.png]]|(% style="width:306px" %)Frame Inspector|(% style="width:758px" %)Allows to modify the values sent in a particular frame manually. 211 211 212 - ===Sequences===198 +**Sequences** 213 213 214 214 The sequencer allows you to make your robot move over time by transitioning from one position to another. Each transition we call a frame and a sequence of frames we call a sequence. You can create as many sequences as you like. You can play sequences back manually or using the keyboard inputs mentioned below. This section describes the sequence management functions of the Sequencer. 215 215 216 - ===Sequence List===202 +**Sequence List** 217 217 218 218 [[image:lss-flowarm-pattern-list.jpg]] 219 219 ... ... @@ -223,36 +223,36 @@ 223 223 224 224 [[image:lss-flowarm-patterns.jpg]] 225 225 226 - ===Add a Sequence===212 +**Add a Sequence** 227 227 228 228 To add a sequence click the add button. A new sequence will appear in the list and its name will open for editing. 229 229 230 - ===Remove a Sequence===216 +**Remove a Sequence** 231 231 232 232 Click the remove sequence button to delete the currently selected sequence from the list. This action is irreversible so you will be asked for confirmation. 233 233 234 - ===Duplicate a Sequence===220 +**Duplicate a Sequence** 235 235 236 236 If you want to make a new sequence based on an existing one then you can duplicate it. 237 237 238 - ===Saving Sequences===224 +**Saving Sequences** 239 239 240 240 IMPORTANT: If you want to keep any sequences you create then you must export them otherwise they will be lost when you return to the project browser. 241 241 To do this click the export button. You can choose whether to export all your sequences or just the currently selected one. Sequences are saved to files so you'll need to pick a filename and folder to save to. If a sequence uses sub sequences these will be saved even if you choose only to save the selected sequence. 242 242 243 - ===Loading Sequences===229 +**Loading Sequences** 244 244 245 245 If you have saved sequences that you want to restore then click the Import button. You will be asked to choose a previously saved sequence file. 246 246 The sequences in the file will be added to the list. They do not replace the sequence list. Also it doesn't 247 247 matter how many sequences the file contains, all of them will be imported. 248 248 249 - ===Clear All Sequences===235 +**Clear All Sequences** 250 250 251 251 If you want to start from scratch you can clear all the sequences from the list using the clear all button. 252 252 253 -== Frames == 239 +== **Frames** == 254 254 255 -[[image:lss-flowarm-frame.jpg]] 241 +**[[image:lss-flowarm-frame.jpg]]** 256 256 257 257 We now know how to manage sequences now lets see how you build one. As we said earlier a sequence is made up of frames. A frame represents a transition between robot states over time. 258 258 In addition to frames, you can also add other sequences to a sequence. This allows quite complex series of movements to be built up very quickly and easily. ... ... @@ -259,38 +259,38 @@ 259 259 260 260 [[image:lss-flowarm-frames.jpg]] 261 261 262 - ===Adding Frames===248 +**Adding Frames** 263 263 264 264 To add a frame click the Add button. A new frame will be added at the end of the sequence. The duration of the frame will be whatever the last frame duration was. The frame will record whatever position the robot is currently set to. You can add a sub sequence to the sequence by clicking the arrow to the right of the Add button. A drop list of the available sequences will appear. Select one and it will be added to the end of the sequence. 265 265 266 - ===Recording to a Frame===252 +**Recording to a Frame** 267 267 268 268 When you add a frame it will record the state that the robot is currently in. If you want to change this state first select the frame by clicking on it. Next move the robot to the position you want to record. When you're happy press the record button. The frame will flash to indicate that it has been updated. 269 269 270 - ===Deleting Frames===256 +**Deleting Frames** 271 271 272 272 To delete a sequence or frame from a sequence, click the Delete button. 273 273 274 - ===Naming Frames===260 +**Naming Frames** 275 275 276 276 To name a frame, simply double-click the top blue part of it. You will then be able to enter a name by typing text directly. Save the new name by pressing the [Enter] key once donce. Warning: please note that when double-clicking a frame to name it, it will play the frame which may move your robotic arm suddenly. You may want to activate the STOP button first to prevent movement when naming frames. 277 277 278 - ===Timeline Locking===264 +**Timeline Locking** 279 279 280 280 [[image:lss-flowarm-lock.jpg]] 281 281 282 282 The timeline is locked by default. This means that frames will automatically run from one to the next – you cannot create space in between. Moving a frame past another one will move it along the order in the timeline. If the timeline is unlocked then you can move frames independently of each other and also create gaps of time in between. 283 283 284 - ===Moving and Resizing===270 +**Moving and Resizing** 285 285 286 286 To move a frame on the timeline, simply click on it and drag it to the time you want it to start. The start time will be displayed as you drag. How frames move relative to each other is determined by whether the timeline is locked (see previous section). To resize a frame grab the right-hand edge and drag it. When moving or resizing the mouse snaps to the nearest unit on the timeline. If you hold SHIFT while moving or resizing no snap will be applied. When the timeline is unlocked then if you hold CTRL while dragging or resizing a frame all frames to 287 287 the right of the selected frame will be moved so that the time interval between the selected frame and the next one is maintained. 288 288 289 - ===Auto Record===275 +**Auto Record** 290 290 291 291 If you want changes you make to be automatically recorded you can lock the record button in place by double-clicking on it. Now whenever you change the robot position the currently elected frame will be updated. The record button will light up to show that auto record is on. To switch auto record off, double-click on the record button again. 292 292 293 - ===Copy and Paste===279 +**Copy and Paste** 294 294 295 295 [[image:lss-flowarm-copy-paste.jpg]] 296 296 ... ... @@ -297,31 +297,25 @@ 297 297 Sometimes you might want to copy the robot state from one frame to another. To do this we have copy and paste. To copy the data from a frame, select it then click the Copy button. 298 298 To duplicate the data on another frame, select the target frame and click the Paste button. 299 299 300 - ===Pause Before Frame===286 +**Pause Before Frame** 301 301 302 302 You can insert a pause before a frame commences. This is useful if you want the sequencer to stop and wait for some external event before continuing. First select the frame then click the Operations button and select Toggle Pause Before Frame. A red line will show at the start of the frame to show the pause. To remove the pause select the frame again and select Toggle Pause Before Frame after clicking on the Operations button. 303 303 304 - ===Remove Gaps Between Frames===290 +**Remove Gaps Between Frames** 305 305 306 306 [[image:lss-flowarm-settings.jpg]] 307 307 308 308 If the timeline is unlocked then you can instantly remove all the gaps between frames and push them up against each other by clicking the Operations button and choosing Remove Gaps Between Frames from the menu. 309 309 310 -=== Frame Inspector === 311 - 312 -[[image:lss-flowarm-inspector-frame.png]] 313 - 314 -If any adjustments are required on a particular joint (servo) this function allows you to manually change them. Click on the particular frame and the commands can be edited. 315 - 316 316 == Sequencer == 317 317 318 - ===Reverse Frames===298 +**Reverse Frames** 319 319 320 320 [[image:lss-flowarm-settings.jpg]] 321 321 322 322 It's useful to be able to reverse the order of frames in a sequence. To do this click the Operations button and choose Reverse Frames. 323 323 324 - ===Sequence Playback===304 +**Sequence Playback** 325 325 326 326 [[image:lss-flowarm-play.jpg]] 327 327 ... ... @@ -329,7 +329,7 @@ 329 329 330 330 [[image:lss-sequencer-handle.jpg||height="70" width="241"]] 331 331 332 - ===Assign an input to a sequence===312 +**Assign an input to a sequence** 333 333 334 334 [[image:lss-flowarm-association.jpg]] 335 335 ... ... @@ -336,9 +336,9 @@ 336 336 You can assign an input to a sequence by choosing one in the drop-down list left of the sequence name. By default a sequence does not have a input associated with it. When you click on that box, you will be presented with a list of possible inputs. A sequence can only have one input associated with it. Similarly, an input can only be associated with one sequence at a time. If you choose an input in the list that is already associated, it will be removed from its previous sequence and assigned to the current one. By clicking on the sequence list, you will see which input is associated to each sequence to the right of their name: 337 337 If a sequence is already playing when its associated input is triggered, it will ignore that input and continue playing as normal. If an input that is associated is triggered when a different sequence is playing, it will be stopped and the 338 338 339 - ===Decision Frame===319 +**Decision Frame** 340 340 341 -[[image:lss-flowarm-decision-frame.jpg]] 321 +**[[image:lss-flowarm-decision-frame.jpg]]** 342 342 343 343 At the end of every sequence there is a permanent frame called the decision frame (it is orange for easy identification). Click on the top part (orange) to change the last action of the sequence. There are 3 options: 344 344 ... ... @@ -348,37 +348,8 @@ 348 348 349 349 If another sequence is associated with that input, it will then play Playback Control. You can change the speed of playback by changing the speed multiplier. Click the up and down arrows to alter this. Normally a sequence plays to the end then stops. However, sometimes you want a sequence to repeat. You can toggle this by clicking the Loop button. 350 350 351 -= Notifications = 352 - 353 -(% style="width:1037px" %) 354 -|(% style="text-align:center; width:450px" %)**Displayed Error**|(% style="text-align:center; width:100px" %)**LED Status**|(% style="text-align:center" %)**Informations** 355 -|{{lightbox image="lss-flowarm-notification-limp.png"/}}|(% colspan="1" rowspan="2" style="text-align:center; vertical-align:middle" %)((( 356 -[[image:LSS-UserColor.png||alt="LSS-Error-SafeMode.gif"]] 357 - 358 -User Defined 359 -)))|User clicked on the "LIMP" button or FlowArm noticed an error and put the arm in "LIMP" by himself. 360 -|{{lightbox image="lss-flowarm-notification-firmware.png"/}}|((( 361 -FlowArm noticed an earlier firmware version which is not compatible (SERVO 1 in this example). 362 - 363 -* As suggested, use the LSS-Config software to update the servo(s) 364 -))) 365 -|{{lightbox image="lss-flowarm-notification-current.png"/}}|(% colspan="1" rowspan="2" style="text-align:center; vertical-align:middle" %)((( 366 -[[image:LSS-Error-SafeMode.gif]] 367 - 368 -Red Flashing 369 -)))|((( 370 -FlowArm noticed a high current error on the specified servo (SERVO 4 in this example) 371 - 372 -* Verify that noting is in the way of the servo that can block it's movement. 373 -* Try to "RELEASE SERVOS" which will "RESET" the servo(s) in error. 374 -))) 375 -|{{lightbox image="lss-flowarm-notification-temperature.png"/}}|((( 376 -FlowArm noticed a high temperature error on the specified servo (SERVO 5 in this example). 377 - 378 -* Let it cool down for a minute. 379 -* Try to "RELEASE SERVOS" which will "RESET" the servo(s) in error. 380 -))) 381 - 382 382 = Troubleshooting = 383 383 384 384 If you encounter any bugs or issues when installing or using the LSS FlowArm application, please submit a new post on the Lynxmotion community sub-forum here: [[https:~~/~~/www.robotshop.com/community/forum/c/lynxmotion/electronics-software>>url:https://www.robotshop.com/community/forum/c/lynxmotion/electronics-software]] 334 + 335 +{Work in progress}
- LSS-Error-SafeMode.gif
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.2 KB - Content
- LSS-UserColor.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -10.6 KB - Content
- lss-flowarm-data-log.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -10.8 KB - Content
- lss-flowarm-gripper-view.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -4.7 KB - Content
- lss-flowarm-header.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -23.4 KB - Content
- lss-flowarm-inspector-frame.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -3.1 KB - Content
- lss-flowarm-left.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -11.2 KB - Content
- lss-flowarm-notification-current.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -11.0 KB - Content
- lss-flowarm-notification-firmware.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -11.2 KB - Content
- lss-flowarm-notification-limp.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -5.1 KB - Content
- lss-flowarm-notification-temperature.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -11.4 KB - Content
- lss-flowarm-offset-left.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.8 KB - Content
- lss-flowarm-offset-top.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.0 KB - Content
- lss-flowarm-positioning.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -13.5 KB - Content
- lss-flowarm-sequencer.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -11.9 KB - Content
- lss-flowarm-top.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.1 KB - Content
- lss-flowarm-wrist-view.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -3.6 KB - Content
- lss-flowarm-header.jpg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.CBenson - Size
-
... ... @@ -1,0 +1,1 @@ 1 +17.7 KB - Content