Changes for page FlowArm LSS

Last modified by Eric Nantel on 2024/07/03 09:39

From version < 48.1 >
edited by Coleman Benson
on 2019/09/10 10:23
To version < 30.1 >
edited by Coleman Benson
on 2019/09/09 09:58
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,6 +1,6 @@
1 1  [[image:LSS-FlowArm.png||width="350"]]
2 2  
3 -[[image:wiki-download.png]]
3 +[[[[image:wiki-download.png]]>>https://www.robotshop.com/en/lynxmotion-smart-servo-lss-configuration-software.html||rel="noopener noreferrer" target="_blank"]]
4 4  
5 5  **Page Contents**
6 6  
... ... @@ -8,9 +8,9 @@
8 8  
9 9  = Description =
10 10  
11 -The LSS FlowArm application is intended to allow easy control of the standard Lynxmotion Servo Erector Set (S.E.S.) v2 articulated robotic arm. The graphical interface shows multiple views of the arm which can be controlled via drag and drop, as well as by manually inputting coordinates. The full-featured built-in sequencer allows you create sequences which have the arm move automatically from one position ("frame") to the next. Make use of the "teach mode" to position the arm where you want and record frames which can be modified and played back. Associating each pattern with input keys means you can easily play back and test multiple sequences.
11 +{Coming soon}
12 12  
13 -FlowBotics Studio was used to create this app and includes hundreds of built-in components that allow you to interface your PC to many standard computer peripherals and robotics components, and you can quickly design new components for new hardware. Easily create new projects with custom GUI screens, knobs, buttons, switches, etc. that will run live from within FlowBotics Studio without needing to wait for compilation, or export as stand-alone executable files. FlowBotics Studio includes a powerful graphics engine that allows you to make custom graphical objects by using standard bitmaps or by drawing your own shapes on the screen. Using this system, you can build entirely custom interfaces like this onfor your projects and integrate photographs, drawings, and graphs.
13 +The LSS FlowArm application was created using FlowBotics Studio software and is intended to allow easy control of the standard configuration Lynxmotion Servo Erector Set (S.E.S.) v2 articulated robotic arm. The graphical interface shows a side and top view of the arm, as well as the gripper and wrist. The full-featured built-in sequencer allows you create sequences which have the arm move automatically from one position ("frame") to the next.
14 14  
15 15  = Features =
16 16  
... ... @@ -19,13 +19,13 @@
19 19  * Teach mode allows the user to move the arm and have the virtual arm follow
20 20  * Position the arm using rectangular or cylindrical coordinates, virtual joysticks or mouse drag
21 21  * Application can be modified via FlowBotics Studio
22 -* Optional data log shows what commands are sent and received and can be saved as a .csv file.
23 -* LSS FlowArm is intended only for Windows operating systems 7 or higher.
24 24  
25 25  = Initial Setup =
26 26  
27 27  In order to understand the features, functionality and nuances of the Lynxmotion smart servos, it is suggested to read through the [[doc:lynxmotion-smart-servo.WebHome]] section of the wiki.
28 28  
27 += Servo IDs =
28 +
29 29  Before assembling the arm, each of the IDs assigned to the servos must correspond with what is needed in the software.
30 30  
31 31  * Base: 1
... ... @@ -34,14 +34,8 @@
34 34  * Wrist: 4
35 35  * Gripper: 5
36 36  
37 -To do so, the [[LSS Configuration Software>>doc:lynxmotion-smart-servo.lss-configuration-software.WebHome]] is used. Follow the procedure outlined here: [[doc:lynxmotion-smart-servo.lss-configuration-software.lss-config-configure-ids.WebHome]]
37 +To do so, the [[LSS Configuration Software>>doc:lynxmotion-smart-servo.lss-configuration-software.WebHome]] is used. Connect each servo to the LSS Adapter, ensuring the wall adapter and USB cable are connected, and the three-way switch is set to USB. Using the softwar
38 38  
39 -Important note: The software does not take into consideration if a servo has been improperly assembled as part of the structure. If you see that your arm moves differently than the arm on screen, be sure to check the following:
40 -
41 -* Servo ID is correctly assigned to each servo and there are no duplicate IDs
42 -* Servos have been assembled in correct orientation (as per assembly manual)
43 -* Servo offsets have been updated if necessary (see procedure below).
44 -
45 45  = Interface =
46 46  
47 47  == Header ==
... ... @@ -50,33 +50,38 @@
50 50  
51 51  **STORE OFFSETS**
52 52  
53 -During the assembly process, if the servo's driving output horn was not rotated (they are shipped with the driving horn centered at 0 degrees), and was connected to the brackets at the correct angle (parallel or perpendicular depending on the servo being assembled), there should not be any servo offset needed and the arm should match what is displayed on screen. However, should the driving horn have rotated and/or the brackets were not connected at optimal angles, the "STORE OFFSETS" button configures the all of the servo offsets (this makes use of the CO command as part of the [[LSS Communication Protocol>>doc:lynxmotion-smart-servo.lss-communication-protocol.WebHome]]). Before pressing the button, be sure to orient the arm as follows (with the gripper closed), and only then click the STORE OFFSETS button.
47 +Press the "Store offsets" button to change the all of the servo offsets (this makes use of the CO command as part of the [[LSS Communication Protocol>>doc:lynxmotion-smart-servo.lss-communication-protocol.WebHome]]).
54 54  
55 -[[image:lss-flowarm-offsets.jpg]]
56 -
57 57  **LIMP**
58 58  
59 -Causes all servos to immediately go LIMP (i.e. lose torque). The arm will collapse. It's important to note that the software will not constantly query all servos for their position, and as such the virtual arm on screen will not update frequently if at all. If you want the virtual arm on screen to update as you move the real arm, use TEACH mode described below.
51 +Causes all servos to go LIMP (i.e. lose torque). The arm will collapse.
60 60  
61 61  **STOP**
62 62  
63 -Causes all servos to immediately stop their motion and hold their position.
55 +Causes all servos to stop their motion and hold their position.
64 64  
65 65  **TEACH**
66 66  
67 -Teach mode allows a user to physically move the arm and have the virtual arm on screen follow. This is used primarily to manually add frames to sequences, determine the optimal closed position for the gripper etc. In order to ensure the arm does not collapse, pressing the TEACH button will start a 5 second countdown during which the arm will slowly lose torque (angular force) until all servos are limp. When in teach mode, an orange outline appears over all on-screen fields which would cause a conflict and therefore cannot be used.
59 +Teach mode allows a user to physically move the arm to a designed location
68 68  
69 -CAREFUL: Do not move the servos or the arm too quickly. We suggest holding the gripper servo to move the arm, or temporarily removing the arm's aesthetic shell.
61 +In order to ensure the arm does not collapse, pressing the TEACH button will start a 5 second countdown during which the arm will slowly lose torque (angular force) until all servos are limp.
70 70  
71 -Once the arm is limp, it can be moved physically, and the application will regularly send position query commands to all of the servos and update the virtual arm on screen to match the servo's responses. Use the sequencer to record each position (frame) while in teach mode. For more information on the sequencer, refer to the sequencer section below.
63 +When in teach mode, an orange outline appears over all on-screen fields which would cause a conflict and therefore cannot be used.
72 72  
65 +CAREFUL: Do not move the servos too quickly. We suggest moving the gripper servo, or temporarily removing the aesthetic shell.
66 +
67 +Once the arm is limp, it can be moved physically, and the application will regularly read the physical position of each of the servos and move the virtual arm on screen to match.
68 +
69 +Use the sequencer to save each position (frame). Intermediate frames can be added as needed. For more information on the sequencer, refer to the sequencer section below.
70 +
71 +
73 73  **GRID / Units**
74 74  
75 -Grid spacing can be toggled between Metric or Imperial. Options include 2cm, 3cm, 5cm and 1in, 2in and 3in.
74 +Units can be toggled between Metric or Imperial
76 76  
77 77  **BAUD**
78 78  
79 -The default (and suggested) baud rate is 115200, which is the baud rate at which the servos are shipped. Should a user have changed the baud rate on the servos, it can be selected using the drop down. Note that the baud rate must be configured to the same value for all servos in order to work.
78 +The baud rate suggested is 9600, though other (standard) baud rates can be used.
80 80  
81 81  **COM**
82 82  
... ... @@ -120,22 +120,12 @@
120 120  
121 121  **Gripper**
122 122  
123 -Assuming the gripper has been properly calibrated, The number below represents the opening at the tip. Fully closed should correspond to 0 degrees.
124 -
125 -In order to grasp an object, DO NOT have the servo rotate to a position which it cannot reach. Plan in advance:
126 -
127 -1. Close the gripper to a position just slightly larger than the object
128 -1. Using the arrows, close the gripper until friction between the foam and the object prevent the object from falling out or moving.
129 -1. DO NOT apply too much pressure, or else the servo's current will spike and it will go into error mode.
130 -1. Use the last position as the "fully closed" position for the gripper for that object.
131 -
132 132  [[image:lss-flowarm-gripper-view.jpg]]
133 133  
124 +The gripper and wrist rotate can be controlled from this menu
134 134  
135 135  **Wrist**
136 136  
137 -The wrist angle can be locked or unlocked. The field allows for user input (click the numbers) or fine adjustments using the arrows.
138 -
139 139  [[image:lss-flowarm-wrist-view.jpg]]
140 140  
141 141  **End Effector Position**
... ... @@ -154,19 +154,12 @@
154 154  
155 155  [[image:lss-flowarm-sequencer.jpg]]
156 156  
157 -LSS FlowArm has a powerful pattern sequencer component (normally found only in the full version of FlowBotics Studio) that is used to create reusable patterns within minutes, instead of hours or days. The sequencer also allows you to vary the speed of playback of a routine. From left to right:
146 +The sequencer allows the user to record sequences. From left to right:
158 158  
159 -(% style="width:1303px" %)
160 -|(% style="width:257px" %)[[image:lss-flowarm-association.jpg]]|(% style="width:306px" %)Keyboard Association|(% style="width:758px" %)Patterns can be associated to keyboard keys F1 to F12, and keys E, F, G, and H
161 -|(% style="width:257px" %)[[image:lss-flowarm-pattern-list.jpg]]|(% style="width:306px" %)Active Pattern Name|(% style="width:758px" %)Click on the text to change the pattern name. Use the arrows to navigate between patterns
162 -|(% style="width:257px" %)[[image:lss-flowarm-patterns.jpg]]|(% style="width:306px" %)Pattern Options|(% style="width:758px" %)Add, remove, copy, save, open and delete patterns.
163 -|(% style="width:257px" %)[[image:lss-flowarm-frames.jpg]]|(% style="width:306px" %)Frame Options|(% style="width:758px" %)Adding a frame adds a blank frame to the list. The drop-down list gives "useful" pre-made frames. Recording a frame copies the arm's current on-screen position. The X removes a selected frame.
164 -|(% style="width:257px" %)[[image:lss-flowarm-copy-paste.jpg]]|(% style="width:306px" %)Copy / Paste Frame|(% style="width:758px" %)Copy and paste a frame
165 -|(% style="width:257px" %)[[image:lss-flowarm-settings.jpg]]|(% style="width:306px" %)Settings|(% style="width:758px" %)Useful features include: Toggle pause before frame; Remove gaps between frames; Reverse frames
166 -|(% style="width:257px" %)[[image:lss-flowarm-lock.jpg]]|(% style="width:306px" %)Lock |(% style="width:758px" %)
167 -|(% style="width:257px" %)[[image:lss-flowarm-loop.jpg]]|(% style="width:306px" %)Repeat / Loop Pattern|(% style="width:758px" %)Play once or loop; Set the playback speed using the up and down arrows.
168 -|(% style="width:257px" %)[[image:lss-flowarm-play.jpg]]|(% style="width:306px" %)Playback Options|(% style="width:758px" %)Restart sequence, play or stop
148 +Sequence association
169 169  
150 +{Work in progress}
151 +
170 170  [[image:lss-flowarm-keyboard-liveupdate.jpg]]
171 171  
172 172  = Downloads =
lss-flowarm-association.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.CBenson
Size
... ... @@ -1,1 +1,0 @@
1 -813 bytes
Content
lss-flowarm-copy-paste.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.CBenson
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 KB
Content
lss-flowarm-frames.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.CBenson
Size
... ... @@ -1,1 +1,0 @@
1 -1.8 KB
Content
lss-flowarm-lock.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.CBenson
Size
... ... @@ -1,1 +1,0 @@
1 -883 bytes
Content
lss-flowarm-loop.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.CBenson
Size
... ... @@ -1,1 +1,0 @@
1 -1.2 KB
Content
lss-flowarm-offsets.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.CBenson
Size
... ... @@ -1,1 +1,0 @@
1 -105.0 KB
Content
lss-flowarm-pattern-list.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.CBenson
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 KB
Content
lss-flowarm-patterns.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.CBenson
Size
... ... @@ -1,1 +1,0 @@
1 -2.7 KB
Content
lss-flowarm-play.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.CBenson
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 KB
Content
lss-flowarm-settings.jpg
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.CBenson
Size
... ... @@ -1,1 +1,0 @@
1 -1.0 KB
Content
wiki-download.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.CBenson
Size
... ... @@ -1,1 +1,0 @@
1 -3.9 KB
Content
Copyright RobotShop 2018