Changes for page FlowArm LSS

Last modified by Eric Nantel on 2024/07/03 09:39

From version < 48.1 >
edited by Coleman Benson
on 2019/09/10 10:23
To version < 53.1 >
edited by Coleman Benson
on 2019/09/16 12:30
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -36,8 +36,6 @@
36 36  
37 37  To do so, the [[LSS Configuration Software>>doc:lynxmotion-smart-servo.lss-configuration-software.WebHome]] is used. Follow the procedure outlined here: [[doc:lynxmotion-smart-servo.lss-configuration-software.lss-config-configure-ids.WebHome]]
38 38  
39 -Important note: The software does not take into consideration if a servo has been improperly assembled as part of the structure. If you see that your arm moves differently than the arm on screen, be sure to check the following:
40 -
41 41  * Servo ID is correctly assigned to each servo and there are no duplicate IDs
42 42  * Servos have been assembled in correct orientation (as per assembly manual)
43 43  * Servo offsets have been updated if necessary (see procedure below).
... ... @@ -50,8 +50,14 @@
50 50  
51 51  **STORE OFFSETS**
52 52  
53 -During the assembly process, if the servo's driving output horn was not rotated (they are shipped with the driving horn centered at 0 degrees), and was connected to the brackets at the correct angle (parallel or perpendicular depending on the servo being assembled), there should not be any servo offset needed and the arm should match what is displayed on screen. However, should the driving horn have rotated and/or the brackets were not connected at optimal angles, the "STORE OFFSETS" button configures the all of the servo offsets (this makes use of the CO command as part of the [[LSS Communication Protocol>>doc:lynxmotion-smart-servo.lss-communication-protocol.WebHome]]). Before pressing the button, be sure to orient the arm as follows (with the gripper closed), and only then click the STORE OFFSETS button.
51 +The "STORE OFFSETS" button configures all of the servo offsets (this makes use of the CO command as part of the [[LSS Communication Protocol>>doc:lynxmotion-smart-servo.lss-communication-protocol.WebHome]]). Before pressing the button, orient the arm as shown below (with the gripper closed), and only then click the STORE OFFSETS button.
54 54  
53 +* Base servo aligned with the x axis
54 +* Shoulder to elbow along z axis (straight up)
55 +* Elbow to wrist along R axis (horizontal at 90 degrees to shoulder to elbow)
56 +* Wrist servo along R axis (parallel to elbow to wrist)
57 +* Gripper servo closed
58 +
55 55  [[image:lss-flowarm-offsets.jpg]]
56 56  
57 57  **LIMP**
... ... @@ -80,58 +80,48 @@
80 80  
81 81  **COM**
82 82  
83 -This field selects which of your computer's COM ports is connected to the LSS Adapter, which is provided with the standard SES v2 articulated robot arm. Be sure to select the appropriate COM port to which the LSS adapter is connected. If you are unsure, go to Device Manager in Windows, and view the list of USB devices connected. The LSS Adapter uses an FTDI USB to serial chip.
87 +When the software is opened, a scan of all of your computer's COM ports is done automatically and a list of all available COM ports will be found in the drop down menu, along with OFF (stop searching for a COM port), and AUTO (the application tries to automatically find the correct COM port by sending a query command at the corresponding BAUD rate). Select which of your computer's COM ports is connected to the [[LSS Adapter>>doc:servo-erector-set-system.ses-electronics.ses-modules.lss-adapter-board.WebHome]] (which is provided with the standard SES v2 articulated robot arm). If you have a list of available COM ports and are unsure which is associated with the LSS Adapter, go to Device Manager in Windows, and view the list of USB devices connected. The LSS Adapter uses an FTDI USB to serial chip. Alternatively, simply unplug the USB from the arm and see which of the COM ports disappears from the list.
84 84  
85 -When the software is opened, a scan of all COM ports is done automatically and list of all available COM ports will be found in the drop down menu, along with OFF (stop searching for a COM port), and AUTO (the application tries to automatically find the correct COM port by sending a query command at the corresponding BAUD rate).
89 +* If the red and green lights next to the field are flashing, the correct COM port has not yet been found, and the user may need to manually select the correct COM port.
90 +* If the red light is solid, then no correct COM port has been located.
91 +* If the green light is solid, the a COM port has been located.
86 86  
87 -If the red and green lights next to the field are flashing, the correct COM port has not yet been found, and the user may need to manually select the correct CIM port.
88 -
89 -If the red light is solid, then no correct COM port has been located.
90 -
91 -If the green light is solid, the a COM port has been located.
92 -
93 93  **Window Size**
94 94  
95 95  **[[image:lss-flowarm-size.jpg]]**
96 96  
97 -A the top right of the window, there are three dark rectangles representing the window size.
97 +A the top right of the window, there are three dark rectangles allowing you to change the application's window size.
98 98  
99 -== 2D Views & Grid ==
99 +== Virtual Arm ==
100 100  
101 -== Arm Configuration ==
101 +(% class="wikigeneratedid" id="HArmConfiguration" %)
102 +The arm shown on screen is based on the assembly guide. The aesthetics of the arms will be changing for the next release version of the LSS Flowarm software.
102 102  
103 -The arm shown on screen is based on the assembly guide. BETA testers have been encouraged to use the 3:1 gear ratio in the shoulder and as such should have toggled switch 1 in the header.
104 -
105 -The aesthetics of the arms will be changing for the final / release version of the LSS Flowarm software.
106 -
107 107  **Side View**
108 108  
106 +The left view is a representation of the arm, where the orange circles represent the location of each axis of rotation. You can move the arm in this view by clicking on and dragging the wrist rotation servo.
107 +
109 109  [[image:lss-flowarm-side-view.jpg]]
110 110  
111 -The left view is a representation {more to come|
112 -
113 113  **Top View**
114 114  
112 +The top view shows the arm top down. You can move the arm within this view by clicking on and dragging the wrist rotation servo.
113 +
115 115  **[[image:lss-flowarm-top-view.jpg]]**
116 116  
117 -The top view shows the arm {more to come}
118 -
119 119  == Left Menu ==
120 120  
121 121  **Gripper**
122 122  
123 -Assuming the gripper has been properly calibrated, The number below represents the opening at the tip. Fully closed should correspond to 0 degrees.
120 +Assuming the gripper has been properly calibrated, The number below represents the opening at the tip. Fully closed should correspond to 0 degrees. In order to grasp an object, DO NOT have the servo rotate to a position which it cannot reach. In order to ensure the gripper servo does not go into error mode, the gripper should not exert much force on the object.
124 124  
125 -In order to grasp an object, DO NOT have the servo rotate to a position which it cannot reach. Plan in advance:
126 -
127 127  1. Close the gripper to a position just slightly larger than the object
128 128  1. Using the arrows, close the gripper until friction between the foam and the object prevent the object from falling out or moving.
129 -1. DO NOT apply too much pressure, or else the servo's current will spike and it will go into error mode.
130 -1. Use the last position as the "fully closed" position for the gripper for that object.
124 +1. DO NOT apply too much pressure, or else the servo's current will spike and it will go into error mode and need to be reset.
125 +1. Use the last position as the "fully closed" position for the gripper for that object, in that specific orientation.
131 131  
132 132  [[image:lss-flowarm-gripper-view.jpg]]
133 133  
134 -
135 135  **Wrist**
136 136  
137 137  The wrist angle can be locked or unlocked. The field allows for user input (click the numbers) or fine adjustments using the arrows.
... ... @@ -140,21 +140,21 @@
140 140  
141 141  **End Effector Position**
142 142  
137 +The position of the end effector can be controlled either by manually entering the information for R (radius), or the Cartesian x, y, z coordinates, or using the arrows.
138 +
143 143  [[image:lss-flowarm-positioning.jpg]]
144 144  
145 -The position of the end effector can be controlled either by manually entering the information for R (radius), or x,y,z coordinate, or using the arrows.
141 +== **Data Log** ==
146 146  
147 -Data Log
143 +The optional Data log can be toggled on or off and allows the user to see all commands being sent to and received from the smart servos. The data can be saved to a file in a Comma Separated Values (.csv) format.
148 148  
149 149  [[image:lss-flowarm-data-log.jpg]]
150 150  
151 -The console will be used as a serial command interface to manually send commands to the bus.
152 -
153 153  == Sequencer ==
154 154  
155 155  [[image:lss-flowarm-sequencer.jpg]]
156 156  
157 -LSS FlowArm has a powerful pattern sequencer component (normally found only in the full version of FlowBotics Studio) that is used to create reusable patterns within minutes, instead of hours or days. The sequencer also allows you to vary the speed of playback of a routine. From left to right:
151 +LSS FlowArm has a powerful pattern sequencer component (normally found only in the full version of FlowBotics Studio) that is used to create reusable patterns within minutes, instead of hours or days. From left to right:
158 158  
159 159  (% style="width:1303px" %)
160 160  |(% style="width:257px" %)[[image:lss-flowarm-association.jpg]]|(% style="width:306px" %)Keyboard Association|(% style="width:758px" %)Patterns can be associated to keyboard keys F1 to F12, and keys E, F, G, and H
... ... @@ -169,12 +169,14 @@
169 169  
170 170  [[image:lss-flowarm-keyboard-liveupdate.jpg]]
171 171  
172 -= Downloads =
166 +Just above the sequencer, you can find the following:
173 173  
174 -Download LSS Flowarm 3.0.8.12 [[here>>http://www.lynxmotion.com/tools/LSS%20FlowArm%20BETA%20(3.0.8.12).rar]].
168 +Keyboard: {More to come}
175 175  
176 -Password: beta
170 +Live Update:{More to come}
177 177  
178 -BETA: Note that information described here is subject to change, and is available for BETA testers.
172 += Troubleshooting =
179 179  
174 +If you encounter any bugs or issues when installing or using the LSS FlowArm application, please submit a new post on the Lynxmotion community sub-forum here: [[https:~~/~~/www.robotshop.com/community/forum/c/lynxmotion/electronics-software>>url:https://www.robotshop.com/community/forum/c/lynxmotion/electronics-software]]
175 +
180 180  {Work in progress}
Copyright RobotShop 2018