Wiki source code of LSS - Communication Protocol

Last modified by Eric Nantel on 2024/05/09 07:28

Show last authors
1 (% class="wikigeneratedid" id="HTableofContents" %)
2 **Page Contents**
3
4 {{toc depth="3"/}}
5
6 = Serial Protocol =
7
8 The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servomotor is available.
9
10 In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol.
11
12 == Session ==
13
14 {{html clean="false" wiki="true"}}
15 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
16 A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.<div class="wikimodel-emptyline"></div>
17
18 **Note 1:** For a given session, the action related to a specific command overrides the stored value in EEPROM.<div class="wikimodel-emptyline"></div>
19 **Note 2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (~1.25 s).<div class="wikimodel-emptyline"></div>
20 **Note 3:** You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r described below). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays.
21 <div class="wikimodel-emptyline"></div></div></div>
22 {{/html}}
23
24 == Action Commands ==
25
26 {{html clean="false" wiki="true"}}
27 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
28 Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]] (described below). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:<div class="wikimodel-emptyline"></div>
29
30 1. Start with a number sign **#** (Unicode Character: U+0023)
31 1. Servo ID number as an integer (assigning an ID described below)
32 1. Action command (one or more letters, no whitespace, capital or lowercase from the list below)
33 1. Action value in the correct units with no decimal
34 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)
35
36 (((
37 Ex: #5D1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
38
39 This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
40 <div class="wikimodel-emptyline"></div></div></div>
41 {{/html}}
42
43 == Modifiers ==
44
45 {{html clean="false" wiki="true"}}
46 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
47 Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div>
48
49 1. Start with a number sign **#** (Unicode Character: U+0023)
50 1. Servo ID number as an integer
51 1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
52 1. Action value in the correct units with no decimal
53 1. Modifier command (one or two letters from the list of modifiers below)
54 1. Modifier value in the correct units with no decimal
55 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)
56
57 Ex: #5D1800T1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
58
59 This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div>
60 <div class="wikimodel-emptyline"></div></div></div>
61 {{/html}}
62
63 == Query Commands ==
64
65 {{html clean="false" wiki="true"}}
66 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
67 Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div>
68
69 1. Start with a number sign **#** (Unicode Character: U+0023)
70 1. Servo ID number as an integer
71 1. Query command (one to four letters, no spaces, capital or lower case)
72 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
73
74 Ex: #5QD&lt;cr&gt; Query the position in (tenth of) degrees for servo with ID #5<div class="wikimodel-emptyline"></div>
75
76 The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format:
77
78 1. Start with an asterisk * (Unicode Character: U+0023)
79 1. Servo ID number as an integer
80 1. Query command (one to four letters, no spaces, capital letters)
81 1. The reported value in the units described, no decimals.
82 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
83
84 There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div>
85
86 Ex: *5QD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
87
88 This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees).
89 <div class="wikimodel-emptyline"></div></div></div>
90 {{/html}}
91
92 == Configuration Commands ==
93
94 {{html clean="false" wiki="true"}}
95 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
96 Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div>
97
98 These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative. This means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>
99
100 The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div>
101
102 1. Start with a number sign **#** (Unicode Character: U+0023)
103 1. Servo ID number as an integer
104 1. Configuration command (two to four letters, no spaces, capital or lower case)
105 1. Configuration value in the correct units with no decimal
106 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
107
108 Ex: #5CO-50&lt;cr&gt;<div class="wikimodel-emptyline"></div>
109
110 This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div>
111
112 **Session vs Configuration Query**<div class="wikimodel-emptyline"></div>
113
114 By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div>
115
116 Ex: #5CSR20&lt;cr&gt; immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>
117
118 After RESET, a command of #5SR4&lt;cr&gt; sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>
119
120 #5QSR&lt;cr&gt; or #5QSR0&lt;cr&gt; would return *5QSR4&lt;cr&gt; which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>
121
122 #5QSR1&lt;cr&gt; would return *5QSR20&lt;cr&gt; which represents the value in EEPROM
123 <div class="wikimodel-emptyline"></div></div></div>
124 {{/html}}
125
126 == Virtual Angular Position ==
127
128 {{html wiki="true" clean="false"}}
129 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
130 The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div>
131
132 [[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div>
133
134 In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div>
135
136 #1D-300&lt;cr&gt; This causes the servo to move to -30.0 degrees (green arrow)<div class="wikimodel-emptyline"></div>
137
138 #1D2100&lt;cr&gt; This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)<div class="wikimodel-emptyline"></div>
139
140 #1D-4200&lt;cr&gt; This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div>
141
142 Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.<div class="wikimodel-emptyline"></div>
143
144 #1D4800&lt;cr&gt; This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div>
145
146 #1D3300&lt;cr&gt; would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>
147
148 If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°].
149 <div class="wikimodel-emptyline"></div></div></div>
150 {{/html}}
151
152 = Command List =
153
154 **Latest firmware version currently : 368.29.14**
155
156 |(% colspan="10" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]]
157 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
158 | |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Soft reset. See command for details.
159 | |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Revert to firmware default values. See command for details
160 | |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Update firmware. See command for details.
161 | |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
162 | |[[**C**hange to **RC**>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CRC|(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Change to RC mode 1 (position) or 2 (wheel).
163 | |[[**ID** #>>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %) |(% style="text-align:center" %)✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
164 | |[[**B**audrate>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QB|(% style="text-align:center" %)CB|(% style="text-align:center" %) |(% style="text-align:center" %)✓|115200| |Reset required after change.
165
166 |(% colspan="10" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]]
167 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
168 | |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°|
169 | |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°|
170 | |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation"
171 | |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM28WR29"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation"
172 | |[[Position in **P**WM>>||anchor="HPositioninPWM28P29"]]|(% style="text-align:center" %)P|(% style="text-align:center" %)QP|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|Inherited from SSC-32 serial protocol
173 | |[[**M**ove in PWM (relative)>>||anchor="H28Relative29MoveinPWM28M29"]]|(% style="text-align:center" %)M|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|
174 | |[[**R**aw **D**uty-cycle **M**ove>>||anchor="HRawDuty-cycleMove28RDM29"]]|(% style="text-align:center" %)RDM|(% style="text-align:center" %)QMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW
175 | |[[**Q**uery Status>>||anchor="HQueryStatus28Q29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1 to 8 integer|See command description for details
176 | |[[**L**imp>>||anchor="HLimp28L29"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
177 | |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
178
179 |(% colspan="10" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]]
180 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
181 | |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|(% style="text-align:center" %) |(% style="text-align:center" %)✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile
182 | |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|5| |Affects motion only when motion profile is disabled (EM0)
183 | |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|1/10°|
184 | |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1800|1/10°|
185 | |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|-4 to +4 integer|Suggested values are between 0 to +4
186 | |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|4|-10 to +10 integer|
187 | |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
188 | |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
189 | |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
190 | |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|No value|1/10°|Reset required after change.
191 | |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓|1023|255 to 1023 integer|
192 | |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
193 | |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
194
195 |(% colspan="10" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]]
196 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
197 | |[[**S**peed>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)S|(% style="text-align:center" %)QS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |uS/s |For P action command
198 | |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |0.1°/s|For D and MD action commands
199 | |[[**T**imed move>>||anchor="HTimedmove28T29modifier"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |ms|Modifier only for P, D and MD. Time can change based on load
200 | |[[**C**urrent **H**old>>||anchor="HCurrentHalt26Hold28CH29modifier"]]|(% style="text-align:center" %)CH|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR
201 | |[[**C**urrent **L**imp>>||anchor="HCurrentLimp28CL29modifier"]]|(% style="text-align:center" %)CL|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR
202
203 |(% colspan="10" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]]
204 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
205 | |[[**Q**uery **V**oltage>>||anchor="HQueryVoltage28QV29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QV|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mV|
206 | |[[**Q**uery **T**emperature>>||anchor="HQueryTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°C|
207 | |[[**Q**uery **C**urrent>>||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|
208 | |[[**Q**uery **M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
209 | |[[**Q**uery **F**irmware Version>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
210
211 |(% colspan="10" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]]
212 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
213 | |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
214 | |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 63 integer|Reset required after change. See command for details.
215
216 = (% style="color:inherit; font-family:inherit" %)Details(%%) =
217
218 == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
219
220 ====== __Reset__ ======
221
222 {{html wiki="true" clean="false"}}
223 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
224 Ex: #5RESET&lt;cr&gt;<div class="wikimodel-emptyline"></div>
225 This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands).
226 Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div>
227 </div></div>
228 {{/html}}
229
230 ====== __Default & confirm__ ======
231
232 {{html wiki="true" clean="false"}}
233 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
234 Ex: #5DEFAULT&lt;cr&gt;<div class="wikimodel-emptyline"></div>
235
236 This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.<div class="wikimodel-emptyline"></div>
237
238 EX: #5DEFAULT&lt;cr&gt; followed by #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
239
240 Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<div class="wikimodel-emptyline"></div>
241
242 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
243 </div></div>
244 {{/html}}
245
246 ====== __Update & confirm__ ======
247
248 {{html wiki="true" clean="false"}}
249 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
250 Ex: #5UPDATE&lt;cr&gt;<div class="wikimodel-emptyline"></div>
251
252 This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<div class="wikimodel-emptyline"></div>
253
254 EX: #5UPDATE&lt;cr&gt; followed by #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
255
256 Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div>
257
258 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
259 </div></div>
260 {{/html}}
261
262 ====== __Confirm__ ======
263
264 {{html wiki="true" clean="false"}}
265 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
266 Ex: #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
267
268 This command is used to confirm changes after a Default or Update command.<div class="wikimodel-emptyline"></div>
269
270 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
271 </div></div>
272 {{/html}}
273
274 ====== __Configure RC Mode (**CRC**)__ ======
275
276 {{html wiki="true" clean="false"}}
277 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
278 This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.<div class="wikimodel-emptyline"></div>
279
280 |**Command sent**|**Note**
281 |ex: #5CRC1&lt;cr&gt;|Change to RC position mode.
282 |ex: #5CRC2&lt;cr&gt;|Change to RC continuous rotation (wheel) mode.
283 |ex: #5CRC*&lt;cr&gt;|Where * is any value other than 1 or 2 (or no value): stay in smart mode.<div class="wikimodel-emptyline"></div>
284
285 EX: #5CRC2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
286
287 This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC&lt;cr&gt; or #5CRC3&lt;cr&gt; which requests that the servo remain in serial mode still requires a RESET command.<div class="wikimodel-emptyline"></div>
288
289 **Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.<div class="wikimodel-emptyline"></div>
290 </div></div>
291 {{/html}}
292
293 ====== __Identification Number (**ID**)__ ======
294
295 {{html wiki="true" clean="false"}}
296 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
297 A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div>
298
299 Query Identification (**QID**)<div class="wikimodel-emptyline"></div>
300
301 EX: #254QID&lt;cr&gt; might return *QID5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
302
303 When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.<div class="wikimodel-emptyline"></div>
304
305 Configure ID (**CID**)<div class="wikimodel-emptyline"></div>
306
307 Ex: #4CID5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
308
309 Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div>
310 </div></div>
311 {{/html}}
312
313 ====== __Baud Rate__ ======
314
315 {{html clean="false" wiki="true"}}
316 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
317 A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div>
318
319 Query Baud Rate (**QB**)<div class="wikimodel-emptyline"></div>
320
321 Ex: #5QB&lt;cr&gt; might return *5QB115200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
322
323 Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.<div class="wikimodel-emptyline"></div>
324
325 Configure Baud Rate (**CB**)<div class="wikimodel-emptyline"></div>
326
327 **Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.<div class="wikimodel-emptyline"></div>
328
329 Ex: #5CB9600&lt;cr&gt;<div class="wikimodel-emptyline"></div>
330
331 Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div>
332 </div></div>
333 {{/html}}
334
335 ====== __Automatic Baud Rate__ ======
336
337 {{html clean="false" wiki="true"}}
338 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
339 This option allows the LSS to listen to it's serial input and select the right baudrate automatically.<div class="wikimodel-emptyline"></div>
340
341 Query Automatic Baud Rate (**QABR**)<div class="wikimodel-emptyline"></div>
342
343 Ex: #5QABR&lt;cr&gt; might return *5ABR0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
344
345 Enable Baud Rate (**ABR**)<div class="wikimodel-emptyline"></div>
346
347 Ex: #5QABR1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
348 Enable baudrate detection on first byte received after power-up.<div class="wikimodel-emptyline"></div>
349
350 Ex: #5QABR2,30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
351 Enable baudrate detection on first byte received after power-up. If no data for 30 seconds enable detection again on next byte.<div class="wikimodel-emptyline"></div>
352
353 Warning: ABR doesnt work well with LSS Config at the moment.<div class="wikimodel-emptyline"></div>
354 </div></div>
355 {{/html}}
356
357 == Motion ==
358
359 ====== __Position in Degrees (**D**)__ ======
360
361 {{html wiki="true" clean="false"}}
362 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
363 Example: #5D1456&lt;cr&gt;<div class="wikimodel-emptyline"></div>
364
365 This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. <div class="wikimodel-emptyline"></div>
366
367 Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). <div class="wikimodel-emptyline"></div>
368
369 Query Position in Degrees (**QD**)<div class="wikimodel-emptyline"></div>
370
371 Example: #5QD&lt;cr&gt; might return *5QD132&lt;cr&gt;<div class="wikimodel-emptyline"></div>
372
373 This means the servo is located at 13.2 degrees.<div class="wikimodel-emptyline"></div>
374
375 (% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %)
376 Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div>
377
378 Ex: #5QDT&lt;cr&gt; might return *5QDT6783&lt;cr&gt;<div class="wikimodel-emptyline"></div>
379
380 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
381 <div class="wikimodel-emptyline"></div></div></div>
382 {{/html}}
383
384 ====== __(Relative) Move in Degrees (**MD**)__ ======
385
386 {{html wiki="true" clean="false"}}
387 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
388 Example: #5MD123&lt;cr&gt;<div class="wikimodel-emptyline"></div>
389
390 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
391 <div class="wikimodel-emptyline"></div></div></div>
392 {{/html}}
393
394 ====== __Wheel Mode in Degrees (**WD**)__ ======
395
396 {{html wiki="true" clean="false"}}
397 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
398 Ex: #5WD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
399
400 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
401
402 Query Wheel Mode in Degrees (**QWD**)<div class="wikimodel-emptyline"></div>
403
404 Ex: #5QWD&lt;cr&gt; might return *5QWD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
405
406 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
407 <div class="wikimodel-emptyline"></div></div></div>
408 {{/html}}
409
410 ====== __Wheel Mode in RPM (**WR**)__ ======
411
412 {{html wiki="true" clean="false"}}
413 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
414 Ex: #5WR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
415
416 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
417
418 Query Wheel Mode in RPM (**QWR**)<div class="wikimodel-emptyline"></div>
419
420 Ex: #5QWR&lt;cr&gt; might return *5QWR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
421
422 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
423 <div class="wikimodel-emptyline"></div></div></div>
424 {{/html}}
425
426 ====== __Position in PWM (**P**)__ ======
427
428 {{html wiki="true" clean="false"}}
429 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
430 Example: #5P2334&lt;cr&gt;<div class="wikimodel-emptyline"></div>
431
432 The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.<div class="wikimodel-emptyline"></div>
433
434 Query Position in Pulse (**QP**)<div class="wikimodel-emptyline"></div>
435
436 Example: #5QP&lt;cr&gt; might return *5QP2334<div class="wikimodel-emptyline"></div>
437
438 This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle.
439 Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
440 <div class="wikimodel-emptyline"></div></div></div>
441 {{/html}}
442
443 ====== __(Relative) Move in PWM (**M**)__ ======
444
445 {{html wiki="true" clean="false"}}
446 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
447 Example: #5M1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
448
449 The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
450 <div class="wikimodel-emptyline"></div></div></div>
451 {{/html}}
452
453 ====== __Raw Duty-cycle Move (**RDM**)__ ======
454
455 {{html wiki="true" clean="false"}}
456 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
457 Example: #5RDM512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
458
459 The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.<div class="wikimodel-emptyline"></div>
460
461 The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).<div class="wikimodel-emptyline"></div>
462
463 Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div>
464
465 Example: #5QMD&lt;cr&gt; might return *5QMD512<div class="wikimodel-emptyline"></div>
466
467 This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle.
468 <div class="wikimodel-emptyline"></div></div></div>
469 {{/html}}
470
471 ====== __Query Status (**Q**)__ ======
472
473 {{html wiki="true" clean="false"}}
474 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
475 The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div>
476
477 Ex: #5Q&lt;cr&gt; might return *5Q6&lt;cr&gt;, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div>
478 </div></div>
479 {{/html}}
480
481 |(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description**
482 | |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
483 | |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
484 | |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command
485 | |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
486 | |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
487 | |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
488 | |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding)
489 | |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
490 | |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
491 | |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
492 | |ex: *5Q10<cr>|10: Safe Mode|(((
493 A safety limit has been exceeded (temperature, peak current or extended high current draw).
494
495 Send a Q1 command to know which limit has been reached (described below).
496 )))
497
498 {{html wiki="true" clean="false"}}
499 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
500 If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div>
501 </div></div>
502 {{/html}}
503
504 |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
505 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
506 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
507 | |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
508 | |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
509
510 ====== __Limp (**L**)__ ======
511
512 {{html wiki="true" clean="false"}}
513 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
514 Example: #5L&lt;cr&gt;<div class="wikimodel-emptyline"></div>
515
516 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L&lt;cr&gt;.
517 <div class="wikimodel-emptyline"></div></div></div>
518 {{/html}}
519
520 ====== __Halt & Hold (**H**)__ ======
521
522 {{html wiki="true" clean="false"}}
523 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
524 Example: #5H&lt;cr&gt;<div class="wikimodel-emptyline"></div>
525
526 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
527 <div class="wikimodel-emptyline"></div></div></div>
528 {{/html}}
529
530 == Motion Setup ==
531
532 ====== __Enable Motion Profile (**EM**)__ ======
533
534 {{html clean="false" wiki="true"}}
535 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
536 EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div>
537
538 Ex: #5EM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
539
540 This command enables a trapezoidal motion profile for servo #5 <div class="wikimodel-emptyline"></div>
541
542 Ex: #5EM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
543
544 This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command).
545
546 <div class="wikimodel-emptyline"></div>
547
548 Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div>
549
550 Ex: #5QEM&lt;cr&gt; might return *5QEM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
551
552 This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div>
553
554 Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div>
555
556 Ex: #5CEM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
557
558 This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
559 <div class="wikimodel-emptyline"></div></div></div>
560 {{/html}}
561
562 ====== __Filter Position Count (**FPC**)__ ======
563
564 {{html clean="false" wiki="true"}}
565 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
566 The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default.
567 <div class="wikimodel-emptyline"></div>
568 Ex: #5FPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
569 This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div>
570
571 Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div>
572
573 Ex: #5QFPC&lt;cr&gt; might return *5QFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
574
575 This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div>
576
577 Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div>
578
579 Ex: #5CFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
580
581 This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
582 <div class="wikimodel-emptyline"></div></div></div>
583 {{/html}}
584
585 ====== __Origin Offset (**O**)__ ======
586
587 {{html wiki="true" clean="false"}}
588 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
589 Example: #5O2400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
590
591 This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div>
592
593 [[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
594
595 In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div>
596
597 [[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div>
598
599 Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div>
600
601 Example: #5QO&lt;cr&gt; might return *5QO-13<div class="wikimodel-emptyline"></div>
602
603 This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div>
604
605 Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div>
606
607 Example: #5CO-24&lt;cr&gt;<div class="wikimodel-emptyline"></div>
608
609 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
610 <div class="wikimodel-emptyline"></div></div></div>
611 {{/html}}
612
613 ====== __Angular Range (**AR**)__ ======
614
615 {{html wiki="true" clean="false"}}
616 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
617 Example: #5AR1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
618
619 This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div>
620
621 [[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
622
623 Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div>
624
625 [[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div>
626
627 Finally, the angular range action command (ex. #5AR1800&lt;cr&gt;) and origin offset action command (ex. #5O-1200&lt;cr&gt;) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div>
628
629 [[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div>
630
631 Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div>
632
633 Example: #5QAR&lt;cr&gt; might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div>
634
635 Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div>
636
637 This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
638 <div class="wikimodel-emptyline"></div></div></div>
639 {{/html}}
640
641 ====== __Angular Stiffness (**AS**)__ ======
642
643 {{html wiki="true" clean="false"}}
644 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
645 The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div>
646
647 A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div>
648
649 * The more torque will be applied to try to keep the desired position against external input / changes
650 * The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div>
651
652 A lower value on the other hand:<div class="wikimodel-emptyline"></div>
653
654 * Causes a slower acceleration to the travel speed, and a slower deceleration
655 * Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div>
656
657 The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
658
659 Ex: #5AS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
660
661 This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div>
662
663 Ex: #5QAS&lt;cr&gt;<div class="wikimodel-emptyline"></div>
664
665 Queries the value being used.<div class="wikimodel-emptyline"></div>
666
667 Ex: #5CAS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
668
669 Writes the desired angular stiffness value to EEPROM.
670 <div class="wikimodel-emptyline"></div></div></div>
671 {{/html}}
672
673 ====== __Angular Holding Stiffness (**AH**)__ ======
674
675 {{html wiki="true" clean="false"}}
676 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
677 The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
678
679 Ex: #5AH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
680
681 This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div>
682
683 Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div>
684
685 Ex: #5QAH&lt;cr&gt; might return *5QAH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
686
687 This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div>
688
689 Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div>
690
691 Ex: #5CAH2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
692
693 This writes the angular holding stiffness of servo #5 to 2 to EEPROM.
694 <div class="wikimodel-emptyline"></div></div></div>
695 {{/html}}
696
697 ====== __Angular Acceleration (**AA**)__ ======
698
699 {{html wiki="true" clean="false"}}
700 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
701 The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
702
703 Ex: #5AA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
704
705 This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
706
707 Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div>
708
709 Ex: #5QAA&lt;cr&gt; might return *5QAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
710
711 This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
712
713 Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div>
714
715 Ex: #5CAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
716
717 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
718 <div class="wikimodel-emptyline"></div></div></div>
719 {{/html}}
720
721 ====== __Angular Deceleration (**AD**)__ ======
722
723 {{html wiki="true" clean="false"}}
724 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
725 The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
726
727 Ex: #5AD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
728
729 This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
730
731 Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div>
732
733 Ex: #5QAD&lt;cr&gt; might return *5QAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
734
735 This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
736
737 Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div>
738
739 Ex: #5CAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
740
741 This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
742 <div class="wikimodel-emptyline"></div></div></div>
743 {{/html}}
744
745 ====== __Gyre Direction (**G**)__ ======
746
747 {{html wiki="true" clean="false"}}
748 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
749 "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div>
750
751 Ex: #5G-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
752
753 This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div>
754
755 Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div>
756
757 Ex: #5QG&lt;cr&gt; might return *5QG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
758
759 The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div>
760
761 Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div>
762
763 Ex: #5CG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
764
765 This changes the gyre direction as described above and also writes to EEPROM.
766 <div class="wikimodel-emptyline"></div></div></div>
767 {{/html}}
768
769 ====== __First Position__ ======
770
771 {{html wiki="true" clean="false"}}
772 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
773 In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div>
774
775 Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div>
776
777 Ex: #5QFD&lt;cr&gt; might return *5QFD900&lt;cr&gt; <div class="wikimodel-emptyline"></div>
778
779 The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div>
780
781 Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div>
782
783 Ex: #5CFD900&lt;cr&gt;<div class="wikimodel-emptyline"></div>
784
785 This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD&lt;cr&gt;) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD&lt;cr&gt;
786 <div class="wikimodel-emptyline"></div></div></div>
787 {{/html}}
788
789 ====== __Maximum Motor Duty (**MMD**)__ ======
790
791 {{html wiki="true" clean="false"}}
792 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
793 This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div>
794
795 Ex: #5MMD512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
796
797 This will set the duty-cycle to 512 for servo with ID 5 for that session.<div class="wikimodel-emptyline"></div>
798
799 Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div>
800
801 Ex: #5QMMDD&lt;cr&gt; might return *5QMMD512&lt;cr&gt; <div class="wikimodel-emptyline"></div>
802
803 This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023.
804 <div class="wikimodel-emptyline"></div></div></div>
805 {{/html}}
806
807 ====== __Maximum Speed in Degrees (**SD**)__ ======
808
809 {{html wiki="true" clean="false"}}
810 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
811 Ex: #5SD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
812 This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
813
814 Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div>
815
816 Ex: #5QSD&lt;cr&gt; might return *5QSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
817
818 By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1&lt;cr&gt; is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
819
820 |**Command sent**|**Returned value (1/10 °)**
821 |ex: #5QSD&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
822 |ex: #5QSD1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
823 |ex: #5QSD2&lt;cr&gt;|Instantaneous speed (same as QWD)
824 |ex: #5QSD3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
825
826 Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div>
827
828 Ex: #5CSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
829 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
830 </div></div>
831 {{/html}}
832
833 ====== __Maximum Speed in RPM (**SR**)__ ======
834
835 {{html wiki="true" clean="false"}}
836 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
837 Ex: #5SR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
838 This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
839
840 Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div>
841
842 Ex: #5QSR&lt;cr&gt; might return *5QSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
843
844 By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1&lt;cr&gt; is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
845
846 |**Command sent**|**Returned value (1/10 °)**
847 |ex: #5QSR&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
848 |ex: #5QSR1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
849 |ex: #5QSR2&lt;cr&gt;|Instantaneous speed (same as QWD)
850 |ex: #5QSR3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
851
852 Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div>
853
854 Ex: #5CSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
855 Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
856 </div></div>
857 {{/html}}
858
859 == Modifiers ==
860
861 ====== __Speed (**S**, **SD**) modifier__ ======
862
863 {{html clean="false" wiki="true"}}
864 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
865 Example: #5P1500S750&lt;cr&gt;<div class="wikimodel-emptyline"></div>
866 Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
867 Example: #5D0SD180&lt;cr&gt;<div class="wikimodel-emptyline"></div>
868 Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.<div class="wikimodel-emptyline"></div>
869 Query Speed (**QS**)<div class="wikimodel-emptyline"></div>
870 Example: #5QS&lt;cr&gt; might return *5QS300&lt;cr&gt;<div class="wikimodel-emptyline"></div>
871 This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div>
872 </div></div>
873 {{/html}}
874
875 ====== __Timed move (**T**) modifier__ ======
876
877 {{html wiki="true" clean="false"}}
878 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
879 Example: #5P1500T2500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
880
881 Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
882 **Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div>
883 </div></div>
884 {{/html}}
885
886 ====== __Current Halt & Hold (**CH**) modifier__ ======
887
888 {{html wiki="true" clean="false"}}
889 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
890 Example: #5D1423CH400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
891
892 This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div>
893 This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
894 </div></div>
895 {{/html}}
896
897 ====== __Current Limp (**CL**) modifier__ ======
898
899 {{html wiki="true" clean="false"}}
900 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
901 Example: #5D1423CL400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
902
903 This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div>
904 This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
905 </div></div>
906 {{/html}}
907
908 == Telemetry ==
909
910 ====== __Query Voltage (**QV**)__ ======
911
912 {{html wiki="true" clean="false"}}
913 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
914 Ex: #5QV&lt;cr&gt; might return *5QV11200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
915 The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div>
916 </div></div>
917 {{/html}}
918
919 ====== __Query Temperature (**QT**)__ ======
920
921 {{html wiki="true" clean="false"}}
922 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
923 Ex: #5QT&lt;cr&gt; might return *5QT564&lt;cr&gt;<div class="wikimodel-emptyline"></div>
924 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div>
925 </div></div>
926 {{/html}}
927
928 ====== __Query Current (**QC**)__ ======
929
930 {{html wiki="true" clean="false"}}
931 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
932 Ex: #5QC&lt;cr&gt; might return *5QC140&lt;cr&gt;<div class="wikimodel-emptyline"></div>
933 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div>
934 </div></div>
935 {{/html}}
936
937 ====== __Query Model String (**QMS**)__ ======
938
939 {{html wiki="true" clean="false"}}
940 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
941 Ex: #5QMS&lt;cr&gt; might return *5QMSLSS-HS1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
942 This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div>
943 </div></div>
944 {{/html}}
945
946 ====== __Query Firmware (**QF**)__ ======
947
948 {{html wiki="true" clean="false"}}
949 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
950 Ex: #5QF&lt;cr&gt; might return *5QF368&lt;cr&gt;<div class="wikimodel-emptyline"></div>
951 The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div>
952 The command #5QF3&lt;cr&gt; can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div>
953 </div></div>
954 {{/html}}
955
956 ====== ======
957
958 == RGB LED ==
959
960 ====== __LED Color (**LED**)__ ======
961
962 {{html wiki="true" clean="false"}}
963 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
964 Ex: #5LED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
965 This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div>
966 0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div>
967 Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div>
968 Ex: #5QLED&lt;cr&gt; might return *5QLED5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
969 This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div>
970 Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div>
971 Ex: #5CLED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
972 Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div>
973 </div></div>
974 {{/html}}
975
976 ====== __Configure LED Blinking (**CLB**)__ ======
977
978 {{html wiki="true" clean="false"}}
979 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
980 This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div>
981
982 (% style="width:195px" %)
983 |(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
984 |(% style="width:134px" %)No blinking|(% style="width:58px" %)0
985 |(% style="width:134px" %)Limp|(% style="width:58px" %)1
986 |(% style="width:134px" %)Holding|(% style="width:58px" %)2
987 |(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
988 |(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
989 |(% style="width:134px" %)Free|(% style="width:58px" %)16
990 |(% style="width:134px" %)Travelling|(% style="width:58px" %)32
991 |(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div>
992
993 To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div>
994 Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div>
995 Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div>
996 Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div>
997 Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div>
998 Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div>
999 Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div>
1000 RESETTING the servo is needed.<div class="wikimodel-emptyline"></div>
1001 </div></div>
1002 {{/html}}
1003
1004 == RGB LED Patterns ==
1005
1006 The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]]
1007
1008 [[image:LSS - LED Patterns.png]]
Copyright RobotShop 2018