Changes for page LSS-PRO Communication Protocol
Last modified by Eric Nantel on 2024/09/06 14:52
Change comment: There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -205,250 +205,82 @@ 205 205 206 206 == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) == 207 207 208 -====== __Reset__ ====== 209 209 210 -{{html wiki="true" clean="false"}} 211 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 212 -Ex: #5RESET<cr><div class="wikimodel-emptyline"></div> 213 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). 214 -Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div> 215 -</div></div> 216 -{{/html}} 217 - 218 -====== __Default & confirm__ ====== 219 - 220 -{{html wiki="true" clean="false"}} 221 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 222 -Ex: #5DEFAULT<cr><div class="wikimodel-emptyline"></div> 223 - 224 -This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.<div class="wikimodel-emptyline"></div> 225 - 226 -EX: #5DEFAULT<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 227 - 228 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<div class="wikimodel-emptyline"></div> 229 - 230 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 231 -</div></div> 232 -{{/html}} 233 - 234 -====== __Update & confirm__ ====== 235 - 236 -{{html wiki="true" clean="false"}} 237 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 238 -Ex: #5UPDATE<cr><div class="wikimodel-emptyline"></div> 239 - 240 -This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<div class="wikimodel-emptyline"></div> 241 - 242 -EX: #5UPDATE<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 243 - 244 -Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div> 245 - 246 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 247 -</div></div> 248 -{{/html}} 249 - 250 -====== __Confirm__ ====== 251 - 252 -{{html wiki="true" clean="false"}} 253 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 254 -Ex: #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 255 - 256 -This command is used to confirm changes after a Default or Update command.<div class="wikimodel-emptyline"></div> 257 - 258 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 259 -</div></div> 260 -{{/html}} 261 - 262 262 ====== ====== 263 263 264 -====== __Identification Number (**ID**)__ ====== 265 - 266 -{{html wiki="true" clean="false"}} 267 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 268 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div> 269 - 270 -Query Identification (**QID**)<div class="wikimodel-emptyline"></div> 271 - 272 -EX: #254QID<cr> might return *QID5<cr><div class="wikimodel-emptyline"></div> 273 - 274 -When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.<div class="wikimodel-emptyline"></div> 275 - 276 -Configure ID (**CID**)<div class="wikimodel-emptyline"></div> 277 - 278 -Ex: #4CID5<cr><div class="wikimodel-emptyline"></div> 279 - 280 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div> 281 -</div></div> 282 -{{/html}} 283 - 284 -====== __Baud Rate__ ====== 285 - 286 -{{html clean="false" wiki="true"}} 287 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 288 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div> 289 - 290 -Query Baud Rate (**QB**)<div class="wikimodel-emptyline"></div> 291 - 292 -Ex: #5QB<cr> might return *5QB115200<cr><div class="wikimodel-emptyline"></div> 293 - 294 -Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.<div class="wikimodel-emptyline"></div> 295 - 296 -Configure Baud Rate (**CB**)<div class="wikimodel-emptyline"></div> 297 - 298 -**Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.<div class="wikimodel-emptyline"></div> 299 - 300 -Ex: #5CB9600<cr><div class="wikimodel-emptyline"></div> 301 - 302 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div> 303 -</div></div> 304 -{{/html}} 305 - 306 -====== __Automatic Baud Rate__ ====== 307 - 308 -{{html clean="false" wiki="true"}} 309 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 310 -This option allows the LSS to listen to it's serial input and select the right baudrate automatically.<div class="wikimodel-emptyline"></div> 311 - 312 -Query Automatic Baud Rate (**QABR**)<div class="wikimodel-emptyline"></div> 313 - 314 -Ex: #5QABR<cr> might return *5ABR0<cr><div class="wikimodel-emptyline"></div> 315 - 316 -Enable Baud Rate (**ABR**)<div class="wikimodel-emptyline"></div> 317 - 318 -Ex: #5QABR1<cr><div class="wikimodel-emptyline"></div> 319 -Enable baudrate detection on first byte received after power-up.<div class="wikimodel-emptyline"></div> 320 - 321 -Ex: #5QABR2,30<cr><div class="wikimodel-emptyline"></div> 322 -Enable baudrate detection on first byte received after power-up. If no data for 30 seconds enable detection again on next byte.<div class="wikimodel-emptyline"></div> 323 - 324 -Warning: ABR doesnt work well with LSS Config at the moment.<div class="wikimodel-emptyline"></div> 325 -</div></div> 326 -{{/html}} 327 - 328 328 == Motion == 329 329 330 330 ====== __Position in Degrees (**D**)__ ====== 331 331 332 -{{html wiki="true" clean="false"}} 333 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 334 -Example: #5D1456<cr><div class="wikimodel-emptyline"></div> 335 335 336 - This moves the servo toan angleof145.6degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction.<divclass="wikimodel-emptyline"></div>216 +Example: #5D1456<cr> 337 337 338 - Largervaluesarepermittedandallowformulti-turnfunctionalityusingthe conceptofvirtual position(explainedabove).<divclass="wikimodel-emptyline"></div>218 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. 339 339 340 - QueryPosition inDegrees(**QD**)<divclass="wikimodel-emptyline"></div>220 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). 341 341 342 - Example: #5QD<cr>mightreturn*5QD132<cr><div class="wikimodel-emptyline"></div>222 +Query Position in Degrees (**QD**) 343 343 344 - Thismeansthe servois locatedat 13.2degrees.<divclass="wikimodel-emptyline"></div>224 +Example: #5QD<cr> might return *5QD132<cr> 345 345 346 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 347 -Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div> 226 +This means the servo is located at 13.2 degrees. 348 348 349 - Ex: #5QDT<cr> might return*5QDT6783<cr><divclass="wikimodel-emptyline"></div>228 +Query Target Position in Degrees (**QDT**) 350 350 230 +Ex: #5QDT<cr> might return *5QDT6783<cr> 231 + 351 351 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 352 -<div class="wikimodel-emptyline"></div></div></div> 353 -{{/html}} 354 354 355 355 ====== __(Relative) Move in Degrees (**MD**)__ ====== 356 356 357 -{{html wiki="true" clean="false"}} 358 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 359 -Example: #5MD123<cr><div class="wikimodel-emptyline"></div> 360 360 237 +Example: #5MD123<cr> 238 + 361 361 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 362 -<div class="wikimodel-emptyline"></div></div></div> 363 -{{/html}} 364 364 365 365 ====== __Wheel Mode in Degrees (**WD**)__ ====== 366 366 367 -{{html wiki="true" clean="false"}} 368 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 369 -Ex: #5WD90<cr><div class="wikimodel-emptyline"></div> 370 370 371 - This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The exampleabove would have the servo rotate at90.0 degrees per second clockwise (assuming factory default configurations).<divclass="wikimodel-emptyline"></div>244 +Ex: #5WD90<cr> 372 372 373 - QueryWheelMode inDegrees(**QWD**)<divclass="wikimodel-emptyline"></div>246 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations). 374 374 375 - Ex: #5QWD<cr> might return*5QWD90<cr><divclass="wikimodel-emptyline"></div>248 +Query Wheel Mode in Degrees (**QWD**) 376 376 250 +Ex: #5QWD<cr> might return *5QWD90<cr> 251 + 377 377 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 378 -<div class="wikimodel-emptyline"></div></div></div> 379 -{{/html}} 380 380 381 381 ====== __Wheel Mode in RPM (**WR**)__ ====== 382 382 383 -{{html wiki="true" clean="false"}} 384 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 385 -Ex: #5WR40<cr><div class="wikimodel-emptyline"></div> 386 386 387 - This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximumrpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at40rpm clockwise (assuming factory default configurations).<divclass="wikimodel-emptyline"></div>257 +Ex: #5WR40<cr> 388 388 389 - QueryWheelMode inRPM(**QWR**)<divclass="wikimodel-emptyline"></div>259 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). 390 390 391 - Ex: #5QWR<cr> might return*5QWR40<cr><divclass="wikimodel-emptyline"></div>261 +Query Wheel Mode in RPM (**QWR**) 392 392 263 +Ex: #5QWR<cr> might return *5QWR40<cr> 264 + 393 393 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 394 -<div class="wikimodel-emptyline"></div></div></div> 395 -{{/html}} 396 396 397 -====== __Positionin PWM (**P**)__======267 +====== ====== 398 398 399 -{{html wiki="true" clean="false"}} 400 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 401 -Example: #5P2334<cr><div class="wikimodel-emptyline"></div> 269 +====== __(Relative) Move in Degrees (**MD**)__ ====== 402 402 403 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.<div class="wikimodel-emptyline"></div> 271 +====== 272 +Example: #5M1500<cr> ====== 404 404 405 -Query Position in Pulse (**QP**)<div class="wikimodel-emptyline"></div> 274 +(% class="wikigeneratedid" %) 275 +====== The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. ====== 406 406 407 -Example: #5QP<cr> might return *5QP2334<div class="wikimodel-emptyline"></div> 408 - 409 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 410 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 411 -<div class="wikimodel-emptyline"></div></div></div> 412 -{{/html}} 413 - 414 -====== __(Relative) Move in PWM (**M**)__ ====== 415 - 416 -{{html wiki="true" clean="false"}} 417 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 418 -Example: #5M1500<cr><div class="wikimodel-emptyline"></div> 419 - 420 -The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 421 -<div class="wikimodel-emptyline"></div></div></div> 422 -{{/html}} 423 - 424 -====== __Raw Duty-cycle Move (**RDM**)__ ====== 425 - 426 -{{html wiki="true" clean="false"}} 427 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 428 -Example: #5RDM512<cr><div class="wikimodel-emptyline"></div> 429 - 430 -The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.<div class="wikimodel-emptyline"></div> 431 - 432 -The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).<div class="wikimodel-emptyline"></div> 433 - 434 -Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div> 435 - 436 -Example: #5QMD<cr> might return *5QMD512<div class="wikimodel-emptyline"></div> 437 - 438 -This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle. 439 -<div class="wikimodel-emptyline"></div></div></div> 440 -{{/html}} 441 - 442 442 ====== __Query Status (**Q**)__ ====== 443 443 444 -{{html wiki="true" clean="false"}} 445 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 446 -The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div> 447 447 448 -Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div> 449 -</div></div> 450 -{{/html}} 280 +The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below. 451 451 282 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 283 + 452 452 |(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description** 453 453 | |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 454 454 | |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely ... ... @@ -466,12 +466,9 @@ 466 466 Send a Q1 command to know which limit has been reached (described below). 467 467 ))) 468 468 469 -{{html wiki="true" clean="false"}} 470 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 471 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div> 472 -</div></div> 473 -{{/html}} 301 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 474 474 303 + 475 475 |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description** 476 476 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 477 477 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long ... ... @@ -480,353 +480,157 @@ 480 480 481 481 ====== __Limp (**L**)__ ====== 482 482 483 -{{html wiki="true" clean="false"}} 484 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 485 -Example: #5L<cr><div class="wikimodel-emptyline"></div> 486 486 487 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 488 -<div class="wikimodel-emptyline"></div></div></div> 489 -{{/html}} 313 +Example: #5L<cr> 490 490 315 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 316 + 491 491 ====== __Halt & Hold (**H**)__ ====== 492 492 493 -{{html wiki="true" clean="false"}} 494 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 495 -Example: #5H<cr><div class="wikimodel-emptyline"></div> 496 496 320 +Example: #5H<cr> 321 + 497 497 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 498 -<div class="wikimodel-emptyline"></div></div></div> 499 -{{/html}} 500 500 501 501 == Motion Setup == 502 502 503 -====== __ Enable MotionProfile (**EM**)__ ======326 +====== __Origin Offset (**O**)__ ====== 504 504 505 -{{html clean="false" wiki="true"}} 506 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 507 -EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div> 508 508 509 -Ex: #5 EM1<cr><divclass="wikimodel-emptyline"></div>329 +Example: #5O2400<cr>This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered). 510 510 511 - Thisandenablesapezoidalmotionfileforservo#5 <div class="wikimodel-emptyline"></div>331 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]] 512 512 513 -Ex: #5EM0<cr><div class="wikimodel-emptyline"></div> 514 514 515 - This commandwill disablethebuilt-in trapezoidalmotion profile. As such, the servo willmoveat full speedto thetarget position usingthe D/MD actioncommands.Modifiers like SD/S or T cannotbe used in EM0 mode. By default theFilter Position Counter, or"FPC" is activein EM0 mode tosmooth out its operation. EM0 is suggestedfor applicationswhereanexternal controller will be determiningall incremental intermediatepositions of the servo's motion, effectively replacinga trajectorymanager. Toprevent having to sendposition commands continuously toreachthe desired position in EM0/FPCactive(FPC >= 2), an internal positionengine(IPE) repeatsthe last position command.Notethat in EM0mode, the servo willeffectively alwaysbe in status:Holding (if using the query status command).334 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees: 516 516 517 - <div class="wikimodel-emptyline"></div>336 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]] 518 518 519 -Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div> 520 520 521 - Ex: #5QEM<cr> mightreturn*5QEM1<cr><div class="wikimodel-emptyline"></div>339 +Origin Offset Query (**QO**) 522 522 523 - This command will query themotionprofile. **0:**motion profiledisabled / **1:**trapezoidal motion profile enabled.<divclass="wikimodel-emptyline"></div>341 +Example: #5QO<cr> might return *5QO-13 524 524 525 - ConfigureMotionProfile(**CEM**)<divclass="wikimodel-emptyline"></div>343 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero. 526 526 527 - Ex: #5CEM0<cr><divclass="wikimodel-emptyline"></div>345 +Configure Origin Offset (**CO**) 528 528 529 -This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 530 -<div class="wikimodel-emptyline"></div></div></div> 531 -{{/html}} 347 +Example: #5CO-24<cr> 532 532 533 -====== __Filter Position Count (**FPC**)__ ====== 534 - 535 -{{html clean="false" wiki="true"}} 536 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 537 -The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default. 538 -<div class="wikimodel-emptyline"></div> 539 -Ex: #5FPC10<cr><div class="wikimodel-emptyline"></div> 540 -This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div> 541 - 542 -Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div> 543 - 544 -Ex: #5QFPC<cr> might return *5QFPC10<cr><div class="wikimodel-emptyline"></div> 545 - 546 -This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div> 547 - 548 -Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div> 549 - 550 -Ex: #5CFPC10<cr><div class="wikimodel-emptyline"></div> 551 - 552 -This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 553 -<div class="wikimodel-emptyline"></div></div></div> 554 -{{/html}} 555 - 556 -====== __Origin Offset (**O**)__ ====== 557 - 558 -{{html wiki="true" clean="false"}} 559 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 560 -Example: #5O2400<cr><div class="wikimodel-emptyline"></div> 561 - 562 -This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div> 563 - 564 -[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div> 565 - 566 -In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div> 567 - 568 -[[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div> 569 - 570 -Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div> 571 - 572 -Example: #5QO<cr> might return *5QO-13<div class="wikimodel-emptyline"></div> 573 - 574 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div> 575 - 576 -Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div> 577 - 578 -Example: #5CO-24<cr><div class="wikimodel-emptyline"></div> 579 - 580 580 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 581 -<div class="wikimodel-emptyline"></div></div></div> 582 -{{/html}} 583 583 584 584 ====== __Angular Range (**AR**)__ ====== 585 585 586 -{{html wiki="true" clean="false"}} 587 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 588 -Example: #5AR1800<cr><div class="wikimodel-emptyline"></div> 353 +Example: #5AR1800<cr> 589 589 590 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: <div class="wikimodel-emptyline"></div>355 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: 591 591 592 -[[image:LSS-servo-default.jpg ]]<div class="wikimodel-emptyline"></div>357 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]] 593 593 594 -Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. <div class="wikimodel-emptyline"></div>359 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 595 595 596 -[[image:LSS-servo-ar.jpg ]]<div class="wikimodel-emptyline"></div>361 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]] 597 597 598 -Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div> 599 599 600 - [[image:LSS-servo-ar-o-1.jpg]]<divclass="wikimodel-emptyline"></div>364 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range: 601 601 602 - Query Angular Range(**QAR**)<div class="wikimodel-emptyline"></div>366 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]] 603 603 604 -Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div> 605 605 606 - Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div>369 +Query Angular Range (**QAR**) 607 607 608 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 609 -<div class="wikimodel-emptyline"></div></div></div> 610 -{{/html}} 371 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees. 611 611 612 - ======__AngularStiffness(**AS**)__ ======373 +Configure Angular Range (**CAR**) 613 613 614 -{{html wiki="true" clean="false"}} 615 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 616 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div> 375 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 617 617 618 -A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div> 619 - 620 -* The more torque will be applied to try to keep the desired position against external input / changes 621 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div> 622 - 623 -A lower value on the other hand:<div class="wikimodel-emptyline"></div> 624 - 625 -* Causes a slower acceleration to the travel speed, and a slower deceleration 626 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div> 627 - 628 -The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 629 - 630 -Ex: #5AS-2<cr><div class="wikimodel-emptyline"></div> 631 - 632 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div> 633 - 634 -Ex: #5QAS<cr><div class="wikimodel-emptyline"></div> 635 - 636 -Queries the value being used.<div class="wikimodel-emptyline"></div> 637 - 638 -Ex: #5CAS-2<cr><div class="wikimodel-emptyline"></div> 639 - 640 -Writes the desired angular stiffness value to EEPROM. 641 -<div class="wikimodel-emptyline"></div></div></div> 642 -{{/html}} 643 - 644 -====== __Angular Holding Stiffness (**AH**)__ ====== 645 - 646 -{{html wiki="true" clean="false"}} 647 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 648 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 649 - 650 -Ex: #5AH3<cr><div class="wikimodel-emptyline"></div> 651 - 652 -This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div> 653 - 654 -Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div> 655 - 656 -Ex: #5QAH<cr> might return *5QAH3<cr><div class="wikimodel-emptyline"></div> 657 - 658 -This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div> 659 - 660 -Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div> 661 - 662 -Ex: #5CAH2<cr><div class="wikimodel-emptyline"></div> 663 - 664 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM. 665 -<div class="wikimodel-emptyline"></div></div></div> 666 -{{/html}} 667 - 668 668 ====== __Angular Acceleration (**AA**)__ ====== 669 669 670 -{{html wiki="true" clean="false"}} 671 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 672 -The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 379 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 673 673 674 -Ex: #5AA30 <cr><divclass="wikimodel-emptyline"></div>381 +Ex: #5AA30<cr> 675 675 676 -This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). <div class="wikimodel-emptyline"></div>383 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). 677 677 678 -Query Angular Acceleration (**QAA**) <div class="wikimodel-emptyline"></div>385 +Query Angular Acceleration (**QAA**) 679 679 680 -Ex: #5QAA <cr>might return *5QAA30<cr><divclass="wikimodel-emptyline"></div>387 +Ex: #5QAA<cr> might return *5QAA30<cr> 681 681 682 -This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^). <div class="wikimodel-emptyline"></div>389 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^). 683 683 684 -Configure Angular Acceleration (**CAA**) <div class="wikimodel-emptyline"></div>391 +Configure Angular Acceleration (**CAA**) 685 685 686 -Ex: #5CAA30 <cr><divclass="wikimodel-emptyline"></div>393 +Ex: #5CAA30<cr> 687 687 688 688 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 689 -<div class="wikimodel-emptyline"></div></div></div> 690 -{{/html}} 691 691 692 692 ====== __Angular Deceleration (**AD**)__ ====== 693 693 694 -{{html wiki="true" clean="false"}} 695 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 696 -The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 399 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 697 697 698 -Ex: #5AD30 <cr><divclass="wikimodel-emptyline"></div>401 +Ex: #5AD30<cr> 699 699 700 -This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). <div class="wikimodel-emptyline"></div>403 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). 701 701 702 -Query Angular Deceleration (**QAD**) <div class="wikimodel-emptyline"></div>405 +Query Angular Deceleration (**QAD**) 703 703 704 -Ex: #5QAD <cr>might return *5QAD30<cr><divclass="wikimodel-emptyline"></div>407 +Ex: #5QAD<cr> might return *5QAD30<cr> 705 705 706 -This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^). <div class="wikimodel-emptyline"></div>409 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^). 707 707 708 -Configure Angular Deceleration (**CAD**) <div class="wikimodel-emptyline"></div>411 +Configure Angular Deceleration (**CAD**) 709 709 710 -Ex: #5CAD30 <cr><divclass="wikimodel-emptyline"></div>413 +Ex: #5CAD30<cr> 711 711 712 -This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 713 -<div class="wikimodel-emptyline"></div></div></div> 714 -{{/html}} 415 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 715 715 716 716 ====== __Gyre Direction (**G**)__ ====== 717 717 718 -{{html wiki="true" clean="false"}} 719 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 720 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div> 419 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1. 721 721 722 -Ex: #5G-1 <cr><divclass="wikimodel-emptyline"></div>421 +Ex: #5G-1<cr> 723 723 724 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. <div class="wikimodel-emptyline"></div>423 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 725 725 726 -Query Gyre Direction (**QG**) <divclass="wikimodel-emptyline"></div>425 +Query Gyre Direction (**QG**)Ex: #5QG<cr> might return *5QG-1<cr> 727 727 728 - Ex:#5QG<cr>mightreturn*5QG-1<cr><divclass="wikimodel-emptyline"></div>427 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM. 729 729 730 - The value returned above means the servois in a counter-clockwisegyration. Sending a #5WR30 command will rotate the servo in a counter-clockwisegyration at 30 RPM.<div class="wikimodel-emptyline"></div>429 +Configure Gyre (**CG**) 731 731 732 - ConfigureGyre (**CG**)<divclass="wikimodel-emptyline"></div>431 +Ex: #5CG-1<cr> 733 733 734 -Ex: #5CG-1<cr><div class="wikimodel-emptyline"></div> 735 - 736 736 This changes the gyre direction as described above and also writes to EEPROM. 737 -<div class="wikimodel-emptyline"></div></div></div> 738 -{{/html}} 739 739 740 740 ====== __First Position__ ====== 741 741 742 -{{html wiki="true" clean="false"}} 743 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 744 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div> 437 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.Query First Position in Degrees (**QFD**)Ex: #5QFD<cr> might return *5QFD900<cr>The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.Configure First Position in Degrees (**CFD**)Ex: #5CFD900<cr>This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 745 745 746 -Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div> 747 - 748 -Ex: #5QFD<cr> might return *5QFD900<cr> <div class="wikimodel-emptyline"></div> 749 - 750 -The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div> 751 - 752 -Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div> 753 - 754 -Ex: #5CFD900<cr><div class="wikimodel-emptyline"></div> 755 - 756 -This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 757 -<div class="wikimodel-emptyline"></div></div></div> 758 -{{/html}} 759 - 760 -====== __Maximum Motor Duty (**MMD**)__ ====== 761 - 762 -{{html wiki="true" clean="false"}} 763 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 764 -This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div> 765 - 766 -Ex: #5MMD512<cr><div class="wikimodel-emptyline"></div> 767 - 768 -This will set the duty-cycle to 512 for servo with ID 5 for that session.<div class="wikimodel-emptyline"></div> 769 - 770 -Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div> 771 - 772 -Ex: #5QMMDD<cr> might return *5QMMD512<cr> <div class="wikimodel-emptyline"></div> 773 - 774 -This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023. 775 -<div class="wikimodel-emptyline"></div></div></div> 776 -{{/html}} 777 - 778 778 ====== __Maximum Speed in Degrees (**SD**)__ ====== 779 779 780 -{{html wiki="true" clean="false"}} 781 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 782 -Ex: #5SD1800<cr><div class="wikimodel-emptyline"></div> 783 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 441 +Ex: #5SD1800<cr>This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in Degrees (**QSD**)Ex: #5QSD<cr> might return *5QSD1800<cr>By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 784 784 785 -Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div> 786 - 787 -Ex: #5QSD<cr> might return *5QSD1800<cr><div class="wikimodel-emptyline"></div> 788 - 789 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 790 - 791 791 |**Command sent**|**Returned value (1/10 °)** 792 -|ex: #5QSD <cr>|Session value for maximum speed (set by latest SD/SR command)793 -|ex: #5QSD1 <cr>|Configured maximum speed in EEPROM (set by CSD/CSR)794 -|ex: #5QSD2 <cr>|Instantaneous speed (same as QWD)795 -|ex: #5QSD3 <cr>|Target travel speed<div class="wikimodel-emptyline"></div>444 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 445 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 446 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 447 +|ex: #5QSD3<cr>|Target travel speed 796 796 797 -Configure Speed in Degrees (**CSD**)< div class="wikimodel-emptyline"></div>449 +Configure Speed in Degrees (**CSD**)Ex: #5CSD1800<cr>Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 798 798 799 -Ex: #5CSD1800<cr><div class="wikimodel-emptyline"></div> 800 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 801 -</div></div> 802 -{{/html}} 803 - 804 804 ====== __Maximum Speed in RPM (**SR**)__ ====== 805 805 806 -{{html wiki="true" clean="false"}} 807 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 808 -Ex: #5SR45<cr><div class="wikimodel-emptyline"></div> 809 -This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 453 +Ex: #5SR45<cr>This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in RPM (**QSR**)Ex: #5QSR<cr> might return *5QSR45<cr>By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 810 810 811 -Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div> 812 - 813 -Ex: #5QSR<cr> might return *5QSR45<cr><div class="wikimodel-emptyline"></div> 814 - 815 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 816 - 817 817 |**Command sent**|**Returned value (1/10 °)** 818 -|ex: #5QSR <cr>|Session value for maximum speed (set by latest SD/SR command)819 -|ex: #5QSR1 <cr>|Configured maximum speed in EEPROM (set by CSD/CSR)820 -|ex: #5QSR2 <cr>|Instantaneous speed (same as QWD)821 -|ex: #5QSR3 <cr>|Target travel speed<div class="wikimodel-emptyline"></div>456 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 457 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 458 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 459 +|ex: #5QSR3<cr>|Target travel speed 822 822 823 -Configure Speed in RPM (**CSR**)< divclass="wikimodel-emptyline"></div>461 +Configure Speed in RPM (**CSR**)Ex: #5CSR45<cr>Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 824 824 825 -Ex: #5CSR45<cr><div class="wikimodel-emptyline"></div> 826 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 827 -</div></div> 828 -{{/html}} 829 - 830 830 == Modifiers == 831 831 832 832 ====== __Speed (**S**, **SD**) modifier__ ======