Wiki source code of LSS-PRO Communication Protocol

Last modified by Eric Nantel on 2024/09/06 14:52

Show last authors
1 (% class="wikigeneratedid" id="HTableofContents" %)
2 **Page Contents**
3
4 {{toc depth="3"/}}
5
6 = Serial Protocol =
7
8 The Lynxmotion Smart Servo (LSS) PRO serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's Smart Servo (LSS) protocol, which itself was based on the SSC-32 & SSC-32U RC servo controllers. The LSS PRO series and normal LSS share many of the same commands, but because of higher angular precision, slightly different operation and different features, the two protocols do not fully overlap.
9
10 In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol.
11
12 = Action Commands =
13
14 Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]] (described below). Action commands are sent serially to the servo and must be sent in the following format:
15
16 1. Start with a number sign **#** (Unicode Character: U+0023)
17 1. Servo ID number as an integer (assigning an ID described below)
18 1. Action command (one or more letters, no whitespace, capital or lowercase from the list below)
19 1. Action value in the correct units with no decimal
20 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
21
22 (((
23 Ex: #5D130000<cr>
24
25 This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (13000 in hundredths of degrees) of 130.00 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
26
27 == Modifiers ==
28
29 Modifiers can only be used with certain **action commands**. The format to include a modifier is:
30
31 1. Start with a number sign **#** (Unicode Character: U+0023)
32 1. Servo ID number as an integer
33 1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
34 1. Action value in the correct units with no decimal
35 1. Modifier command (one or two letters from the list of modifiers below)
36 1. Modifier value in the correct units with no decimal
37 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
38
39 Ex: #5D13000T1500<cr>This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).
40
41 == Queries ==
42
43 Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:
44
45 1. Start with a number sign **#** (Unicode Character: U+0023)
46 1. Servo ID number as an integer
47 1. Query command (one to four letters, no spaces, capital or lower case)
48 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
49
50 Ex: #5QD<cr> Query the position in (hundredths of) degrees for servo with ID #5The query will return a serial string (almost instantaneously) via the servo's Tx in the following format:
51
52 1. Start with an asterisk * (Unicode Character: U+0023)
53 1. Servo ID number as an integer
54 1. Query command (one to four letters, no spaces, capital letters)
55 1. The reported value in the units described, no decimals.
56 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
57
58 There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:
59
60 Ex: *5QD13000<cr>
61
62 This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees).
63
64 == Configurations ==
65
66 Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.
67
68 The format to send a configuration command is identical to that of an action command:
69
70 1. Start with a number sign **#** (Unicode Character: U+0023)
71 1. Servo ID number as an integer
72 1. Configuration command (two to four letters, no spaces, capital or lower case)
73 1. Configuration value in the correct units with no decimal
74 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
75
76 Ex: #5CO-500<cr>
77
78 This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).
79
80 **Session vs Configuration Query**
81
82 By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
83
84 Ex: #5CSR10<cr> immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.
85
86 After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
87
88 #5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas
89
90 #5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM
91
92 The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).
93
94 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]
95
96 In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
97
98 #1D-3000<cr> This causes the servo to move to -30.00 degrees (green arrow)
99
100 #1D21000<cr> This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)
101
102 #1D-42000<cr> This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.
103
104 Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees.
105
106 #1D48000<cr> This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
107
108 #1D33000<cr> would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).
109
110 If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.00 degrees before power is cycled, upon power up the servo's position will be read as +120.00 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.00°, 180.00°].
111 )))
112
113 = Command List =
114
115 **Latest firmware version currently : v0.0.780**
116
117 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]]
118 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
119 | |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Soft reset
120 | |[[**Default** Configuration>>||anchor="HDefault"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Revert to firmware default values
121 | |[[Firmware **Update** Mode>>||anchor="HUpdate"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Update firmware
122 | |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Confirm the action for some commands
123 | |[[**ID** Number >>||anchor="HIDNumber"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %)0|(% style="text-align:center" %) |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
124 | |[[**E**nable CAN **T**erminal>>doc:||anchor="HEnableCANTerminalResistor"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET|(% style="text-align:center" %)1|(% style="text-align:center" %)0 or 1|0: Disable  1: Enable
125 | |[[**U**SB **C**onnection Status>>||anchor="HUSBConnectionStatus"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)0 or 1|0: Not connected 1: Connected
126
127 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]]
128 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
129 | |[[Position in **D**egrees>>||anchor="HPositioninDegrees"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD|(% style="text-align:center" %) | |0.01°|
130 | |[[**M**ove in **D**egrees (relative)>>||anchor="HRelativeMoveinDegrees"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) | |0.01°|
131 | |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD|(% style="text-align:center" %) | |0.01°/s|A.K.A. "Speed mode" or "Continuous rotation"
132 | |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) | |RPM|A.K.A. "Speed mode" or "Continuous rotation"
133 | |[[**Q**uery Motion Status>>||anchor="HStatus"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) | |1 to 8 integer|See command description for details
134 | |[[**Q**uery **M**otion **T**ime>>doc:||anchor="HMotionTime"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMT|(% style="text-align:center" %) | |0.01s|
135 | |[[**Q**uery **C**urrent **S**peed>>doc:||anchor="HCurrentSpeed"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | |0.01°/s|
136 | |[[**L**imp>>||anchor="HLimp"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Removes power from stepper coils
137 | |[[**H**alt & Hold>>doc:||anchor="HHalt26Hold"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Stops (halts) motion and holds last position
138
139 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]]
140 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
141 | |[[**O**rigin Offset>>||anchor="HOriginOffset"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)0|(% style="text-align:center" %)0.01°|
142 | |[[**A**ngular **R**ange>>||anchor="HAngularRange"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)36000|(% style="text-align:center" %)0.01°|
143 | |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s^2|
144 | |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s^2|
145 | |[[**G**yre Direction>>||anchor="HGyreDirection"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)1|(% style="text-align:center" %)1 or -1|Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
146 | |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s|SD / CSD overwrites SR / CSR
147 | |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %) |(% style="text-align:center" %)RPM|SR / CSR overwrites SD / CSD
148
149 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]]
150 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
151 | |[[**S**peed in **D**egrees>>doc:||anchor="HSpeed"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) | |0.01°/s|For D and MD action commands
152 | |[[**T**imed move>>||anchor="HTimedmove"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) | |ms|Time associated with D, MD commands
153
154 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]]
155 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:100px" %)**Default**|(% style="text-align:center; width:170px" %)**Unit**|**Notes**
156 | |[[PCB **T**emperature>>doc:||anchor="HTemperaturePCB"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) | |(% style="text-align:center" %)0.1°C|
157 | |[[**C**urrent>>doc:||anchor="HCurrent"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) | |(% style="text-align:center" %)mA|Nominal RMS value to stepper motor driver IC.
158 | |[[**M**odel **S**tring>>doc:||anchor="HModelString"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) | |(% style="text-align:center" %) |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
159 | |[[**F**irmware Version>>doc:||anchor="HFirmware"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) | |(% style="text-align:center" %) |
160 | |[[Serial **N**umber>>doc:||anchor="HSerialNumber"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) | |(% style="text-align:center" %) |Returns the unique serial number for the servo
161 | |[[**T**emperature **P**robe>>doc:||anchor="HTemperatureProbe"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | |(% style="text-align:center" %)0.1°C|Queries temperature probe fixed to the stepper motor
162 | |[[**T**emp of **M**CU>>doc:||anchor="HTemperatureMCU"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTM|(% style="text-align:center" %) | |(% style="text-align:center" %)0.1°C|
163 | |[[**T**emp of **C**ontroller **E**rror>>doc:||anchor="HTempControllerError"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTCE|(% style="text-align:center" %) | |(% style="text-align:center" %) |(((
164 Temperature error status of the motor controller (over-temp error)
165 )))
166 | |[[**T**emp of **C**ontroller **W**arning>>doc:||anchor="HTempControllerWarning"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW|(% style="text-align:center" %) | |(% style="text-align:center" %) |Temperature error status of the motor controller (pre-warning)
167 | |[[**E**rror **F**lag>>doc:||anchor="HErrorFlag"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QEF|(% style="text-align:center" %) | |(% style="text-align:center" %) |
168 | |[[**I**MU Linear **X**>>doc:||anchor="HIMULinear"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |(% style="text-align:center" %)mm/s^2|
169 | |[[**I**MU Linear **Y**>>doc:||anchor="HIMULinear"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |(% style="text-align:center" %)mm/s^2|
170 | |[[**I**MU Linear **Z**>>doc:||anchor="HIMULinear"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |(% style="text-align:center" %)mm/s^2|
171 | |[[**I**MU Angular Accel **α** >>doc:||anchor="HIMUAngular"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |(% style="text-align:center" %)°/s^2|Query IMU Angular Accel α (Alpha)
172 | |[[**I**MU Angular Accel **β**>>doc:||anchor="HIMUAngular"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |(% style="text-align:center" %)°/s^2|Query IMU Angular Accel β (Beta)
173 | |[[**I**MU Angular Accel **γ**>>doc:||anchor="HIMUAngular"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIG|(% style="text-align:center" %) | |(% style="text-align:center" %)°/s^2|Query IMU Angular Accel γ (Gamma)
174
175 |(% colspan="8" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]]
176 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:100px" %)**Default**|(% style="text-align:center; width:170px" %)**Unit**|**Notes**
177 | |[[**LED** Color>>||anchor="HLEDColor"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED|(% style="text-align:center" %)3|(% style="text-align:center" %)0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
178 | |[[**L**ED **B**linking>>doc:||anchor="HLEDBlinking"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QLB|(% style="text-align:center" %)CLB|(% style="text-align:center" %)0|(% style="text-align:center" %) |
179 | |[[**L**ED **I**ndicator>>doc:||anchor="HLEDIndicator"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QLI|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |
180
181 = (% style="color:inherit; font-family:inherit" %)Details(%%) =
182
183 == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
184
185 |(% colspan="2" %)(((
186 ====== __Reset__ ======
187 )))
188 | |(((
189 Reset (**RESET**)
190
191 Ex: #5RESET<cr>
192
193 This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See Session, note #2 for more details.
194 )))
195
196 |(% colspan="2" %)(((
197 ====== (% style="color:inherit; font-family:inherit" %)__Default__(%%) ======
198 )))
199 |(% style="width:30px" %) |(((
200 (% style="color:inherit; font-family:inherit" %)Default (**DEFAULT**)
201
202 (% style="color:inherit; font-family:inherit" %)Ex: #5DEFAULT<cr>
203
204 (% style="color:inherit; font-family:inherit" %)This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
205
206 (% style="color:inherit; font-family:inherit" %)EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
207
208 (% style="color:inherit; font-family:inherit" %)Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
209
210 (% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
211 )))
212
213 |(% colspan="2" %)(((
214 ====== (% style="color:inherit; font-family:inherit" %)__Update__(%%) ======
215 )))
216 |(% style="width:30px" %) |(((
217 (% style="color:inherit; font-family:inherit" %)Update (**UPDATE**)
218
219 (% style="color:inherit; font-family:inherit" %)Ex: #5UPDATE<cr>
220
221 (% style="color:inherit; font-family:inherit" %)This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
222
223 (% style="color:inherit; font-family:inherit" %)EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
224
225 (% style="color:inherit; font-family:inherit" %)Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
226
227 (% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
228 )))
229
230 |(% colspan="2" %)(((
231 ====== (% style="color:inherit; font-family:inherit" %)__Confirm__(%%) ======
232 )))
233 |(% style="width:30px" %) |(((
234 (% style="color:inherit; font-family:inherit" %)Confirm (**CONFIRM**)
235
236 (% style="color:inherit; font-family:inherit" %)Ex: #5CONFIRM<cr>
237
238 (% style="color:inherit; font-family:inherit" %)This command is used to confirm changes after a Default or Update command.
239 Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
240 )))
241
242 |(% colspan="2" %)(((
243 ====== (% style="color:inherit; font-family:inherit" %)__ID Number__(%%) ======
244 )))
245 |(% style="width:30px" %) |(((
246 This assigns ID #5 to the servo previously assigned to ID 0
247
248 (% style="color:inherit; font-family:inherit" %)Configure ID Number (**CID**)
249
250 (% style="color:inherit; font-family:inherit" %)Ex: #0CID5<cr>
251
252 The default ID is 0, so this sets the servo to ID 5.
253
254 Query ID Number (**QID**)
255
256 Ex: #254QID<cr> might return *254QID5<cr>
257
258 In this case, the broadcast ID is used to ensure the servo connected will reply with the ID. This can be used in case the ID assigned to a servo is forgotten.
259 )))
260
261 |(% colspan="2" %)(((
262 ====== (% style="color:inherit; font-family:inherit" %)__Enable CAN Terminal Resistor__(%%) ======
263 )))
264 |(% style="width:30px" %) |(((
265 Query Enable CAN Terminal Resistor (**QET**)
266
267 Ex: #5QET<cr> might return *QET0<cr>
268
269 This means that servo with ID 5 is NOT configured as the last servo in the CAN bus.
270
271 Configure Enable CAN Terminal Resistor (**CET**)
272
273 (% style="color:inherit; font-family:inherit" %)Ex: #5CET1<cr>
274
275 (% style="color:inherit; font-family:inherit" %)This commands sets servo with ID 5 as being the last in the CAN Bus. The last servo in a CAN bus must be configured this way.
276 )))
277
278 |(% colspan="2" %)(((
279 ====== __USB Connection Status__ ======
280 )))
281 |(% style="width:30px" %) |(((
282 Query USB Connection Status (**QUC**)
283
284 Ex: #5QUC<cr> might return *5QUC1<cr> meaning the servo is connected via USB
285 )))
286
287 == Motion ==
288
289 |(% colspan="2" %)(((
290 ====== __Position in Degrees__ ======
291 )))
292 |(% style="width:30px" %) |(((
293 Position in Degrees (**D**)
294
295 Example: #5D1456<cr>
296
297 This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction.
298
299 Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above).
300
301 Query Position in Degrees (**QD**)
302
303 Example: #5QD<cr> might return *5QD132<cr>
304
305 This means the servo is located at 13.2 degrees.
306
307 Query Target Position in Degrees (**QDT**)
308
309 Ex: #5QDT<cr> might return *5QDT6783<cr>
310
311 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
312 )))
313
314 |(% colspan="2" %)(((
315 ====== __Relative Move in Degrees__ ======
316 )))
317 |(% style="width:30px" %) |(((
318 (% class="wikigeneratedid" %)
319 Move in Degrees (**MD**)
320
321 (% class="wikigeneratedid" %)
322 Example: #5M1500<cr>
323
324 (% class="wikigeneratedid" id="HTherelativemoveinPWMcommandcausestheservotoreaditscurrentpositionandmovebythespecifiednumberofPWMsignal.ForexampleiftheservoissettorotateCW28default29andanMcommandof1500issenttotheservo2Citwillcausetheservotorotateclockwiseby90degrees.NegativePWMvaluewouldcausetheservotorotateintheoppositeconfigureddirection." %)
325 The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
326 )))
327
328 |(% colspan="2" %)(((
329 ====== __Wheel Mode in Degrees__ ======
330 )))
331 |(% style="width:30px" %) |(((
332 Wheel mode in Degrees (**WD**)
333
334 Ex: #5WD90<cr>
335
336 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
337
338 Query Wheel Mode in Degrees (**QWD**)
339
340 Ex: #5QWD<cr> might return *5QWD90<cr>
341
342 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
343 )))
344
345 |(% colspan="2" %)(((
346 ====== __Wheel Mode in RPM__ ======
347 )))
348 |(% style="width:30px" %) |(((
349 Wheel moed in RPM (**WR**)
350
351 Ex: #5WR40<cr>
352
353 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
354
355 Query Wheel Mode in RPM (**QWR**)
356
357 Ex: #5QWR<cr> might return *5QWR40<cr>
358
359 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
360 )))
361
362 |(% colspan="2" %)(((
363 ====== __Status__ ======
364 )))
365 |(% style="width:30px" %) |(((
366 Query Status (**Q**)
367
368 The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.
369
370 Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
371
372 |(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description**
373 | |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
374 | |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
375 | |ex: *5Q2<cr>|2: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
376 | |ex: *5Q3<cr>|3: Traveling|Moving at a stable speed
377 | |ex: *5Q4<cr>|4: Decelerating|Decreasing from travel speed towards final position.
378 | |ex: *5Q5<cr>|5: Holding|Keeping current position (in EM0 mode, return will normally be holding)
379 | |ex: *5Q6<cr>|6: Error|If the status is Error, the error value consists of binary flags ([[HERE>>doc:||anchor="HErrorFlag"]])
380
381 *Value returned (Q)StatusDetailed description
382
383 If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
384
385 |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
386 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
387 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
388 | |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
389 | |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
390 )))
391
392 |(% colspan="2" %)(((
393 ====== __Motion Time__ ======
394 )))
395 |(% style="width:30px" %) |(((
396 Query Motion Time (**QMT**)
397
398 Ex: #5QMT9000<cr> might return *5QMT1000<cr>, which indicates the motor would take 1.000s to do that movement.
399
400 This is really important for movement using the modifier "T" as asking a movement that could not be achieved in the time asked will result in no movement.
401 )))
402
403 |(% colspan="2" %)(((
404 ====== __Current Speed__ ======
405 )))
406 |(% style="width:30px" %) |(((
407 Query Current Speed (**QCS**)
408
409 Ex: #5QCS<cr> might return *5QCS1245<cr>, which indicate the actuator is moving currently at 12deg/s.
410 )))
411
412 |(% colspan="2" %)(((
413 ====== __Limp__ ======
414 )))
415 |(% style="width:30px" %) |(((
416 Example: #5L<cr>
417
418 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
419 )))
420
421 |(% colspan="2" %)(((
422 ====== __Halt & Hold__ ======
423 )))
424 |(% style="width:30px" %) |(((
425 Example: #5H<cr>
426
427 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
428 )))
429
430 == Motion Setup ==
431
432 |(% colspan="2" %)(((
433 ====== __Origin Offset__ ======
434 )))
435 |(% style="width:30px" %) |(((
436 Example: #5O2400<cr>This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
437
438 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
439
440
441 In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
442
443 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]
444
445
446 Origin Offset Query (**QO**)
447
448 Example: #5QO<cr> might return *5QO-13
449
450 This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
451
452 Configure Origin Offset (**CO**)
453
454 Example: #5CO-24<cr>
455
456 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
457 )))
458
459 |(% colspan="2" %)(((
460 ====== __Angular Range__ ======
461 )))
462 |(% style="width:30px" %) |(((
463 Example: #5AR1800<cr>
464
465 This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
466
467 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
468
469 Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
470
471 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]
472
473
474 Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
475
476 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]
477
478
479 Query Angular Range (**QAR**)
480
481 Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
482
483 Configure Angular Range (**CAR**)
484
485 This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
486 )))
487
488 |(% colspan="2" %)(((
489 ====== __Angular Acceleration__ ======
490 )))
491 |(% style="width:30px" %) |(((
492 The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
493
494 Ex: #5AA30<cr>
495
496 This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
497
498 Query Angular Acceleration (**QAA**)
499
500 Ex: #5QAA<cr> might return *5QAA30<cr>
501
502 This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).
503
504 Configure Angular Acceleration (**CAA**)
505
506 Ex: #5CAA30<cr>
507
508 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
509 )))
510
511 |(% colspan="2" %)(((
512 ====== __Angular Deceleration__ ======
513 )))
514 |(% style="width:30px" %) |(((
515 The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
516
517 Ex: #5AD30<cr>
518
519 This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
520
521 Query Angular Deceleration (**QAD**)
522
523 Ex: #5QAD<cr> might return *5QAD30<cr>
524
525 This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).
526
527 Configure Angular Deceleration (**CAD**)
528
529 Ex: #5CAD30<cr>
530
531 This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
532 )))
533
534 |(% colspan="2" %)(((
535 ====== __Gyre Direction__ ======
536 )))
537 |(% style="width:30px" %) |(((
538 "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.
539
540 Ex: #5G-1<cr>
541
542 This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
543
544 Query Gyre Direction (**QG**)
545
546 Ex: #5QG<cr> might return *5QG-1<cr>
547
548 The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.
549
550 Configure Gyre (**CG**)
551
552 Ex: #5CG-1<cr>
553
554 This changes the gyre direction as described above and also writes to EEPROM.
555 )))
556
557 |(% colspan="2" %)(((
558 ====== __Maximum Speed in Degrees__ ======
559 )))
560 |(% style="width:30px" %) |(((
561 Maximum Speed in Degrees (**SD**)
562
563 Ex: #5SD1800<cr>
564
565 This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
566
567 Query Speed in Degrees (**QSD**)
568
569 Ex: #5QSD<cr> might return *5QSD1800<cr>
570
571 By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
572
573 |**Command sent**|**Returned value (1/10 °)**
574 |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
575 |ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
576 |ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
577 |ex: #5QSD3<cr>|Target travel speed
578
579 Configure Speed in Degrees (**CSD**)
580
581 Ex: #5CSD1800<cr>
582
583 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
584 )))
585
586 |(% colspan="2" %)(((
587 ====== __Maximum Speed in RPM__ ======
588 )))
589 |(% style="width:30px" %) |(((
590 (% class="wikigeneratedid" %)
591 Maximum Speed in RPM (**SR**)
592
593 (% class="wikigeneratedid" id="HEx:235SR453Ccr3EThiscommandsetstheservo27smaximumspeedformotioncommandsinrpmforthatsession.Intheexampleabove2Ctheservo27smaximumspeedforthatsessionwouldbesetto45rpm.Theservo27smaximumspeedcannotbesethigherthanitsphysicallimitatagivenvoltage.SRoverridesCSR28describedbelow29forthatsession.Uponresetorpowercycle2CtheservorevertstothevalueassociatedwithCSRasdescribedbelow.NotethatSD28describedabove29andSRareeffectivelythesame2Cbutallowtheusertospecifythespeedineitherunit.Thelastcommand28eitherSRorSD29receivediswhattheservousesforthatsession.QuerySpeedinRPM28QSR29Ex:235QSR3Ccr3Emightreturn2A5QSR453Ccr3EBydefaultQSRwillreturnthecurrentsessionvalue2CwhichissettothevalueofCSRasreset2FpowercycleandchangedwheneveranSD2FSRcommandisprocessed.If235QSR13Ccr3Eissent2Ctheconfiguredmaximumspeed28CSRvalue29willbereturnedinstead.Youcanalsoquerythecurrentspeedusing22222andthecurrenttargettravelspeedusing22322.Seethetablebelowforanexample:" %)
594 Ex: #5SR45<cr>
595
596 (% class="wikigeneratedid" %)
597 This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below.
598
599 (% class="wikigeneratedid" %)
600 Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit.
601
602 (% class="wikigeneratedid" %)
603 The last command (either SR or SD) received is what the servo uses for that session.
604
605 (% class="wikigeneratedid" %)
606 Query Speed in RPM (**QSR**)
607
608 (% class="wikigeneratedid" %)
609 Ex: #5QSR<cr> might return *5QSR45<cr>
610
611 (% class="wikigeneratedid" %)
612 By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
613
614 |**Command sent**|**Returned value (1/10 °)**
615 |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
616 |ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
617 |ex: #5QSR2<cr>|Instantaneous speed (same as QWD)
618 |ex: #5QSR3<cr>|Target travel speed
619
620 Configure Speed in RPM (**CSR**)
621
622 Ex: #5CSR45<cr>
623
624 Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
625 )))
626
627 == Modifiers ==
628
629 |(% colspan="2" %)(((
630 ====== __Speed __ ======
631 )))
632 |(% style="width:30px" %) |(((
633 (% class="wikigeneratedid" %)
634 Speed in Degrees (**SD**)
635
636 (% class="wikigeneratedid" id="HExample:235D0SD1803Ccr3E" %)
637 Example: #5D0SD180<cr>
638
639 (% class="wikigeneratedid" %)
640 Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.
641
642 (% class="wikigeneratedid" %)
643 Query Speed (**QS**)
644
645 (% class="wikigeneratedid" %)
646 Example: #5QS<cr> might return *5QS300<cr>
647
648 (% class="wikigeneratedid" %)
649 This command queries the current speed in microseconds per second.
650 )))
651
652 |(% colspan="2" %)(((
653 ====== __Timed move__ ======
654 )))
655 |(% style="width:30px" %) |(((
656 Timed Move (**T**)
657
658 Example: #5D15000T2500<cr>
659
660 Timed move can be used only as a modifier for a position (D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
661
662 **Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested
663 )))
664
665 == Telemetry ==
666
667 |(% colspan="2" %)(((
668 ====== __Temperature PCB__ ======
669 )))
670 |(% style="width:30px" %) |(((
671 Query Temp PCB (**QT**)
672
673 Ex: #5QT<cr> might return *5QT564<cr>
674
675 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
676 )))
677
678 |(% colspan="2" %)(((
679 ====== __Current__ ======
680 )))
681 |(% style="width:30px" %) |(((
682 (% class="wikigeneratedid" %)
683 Query Current (**QC**)
684
685 (% class="wikigeneratedid" id="HEx:235QC3Ccr3Emightreturn2A5QC1403Ccr3E" %)
686 Ex: #5QC<cr> might return *5QC140<cr>
687
688 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value. The query calculates the RMS value of the current sent from the motor driver to the stepper motor.
689 )))
690
691 |(% colspan="2" %)(((
692 ====== __Model String__ ======
693 )))
694 |(% style="width:30px" %) |(((
695 (% class="wikigeneratedid" %)
696 Query Model String (**QMS**)
697
698 (% class="wikigeneratedid" id="HEx:235QMS3Ccr3Emightreturn2A5QMSLSS-HS13Ccr3E" %)
699 Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
700
701 This reply means that the servo model is LSS-HS1: a high speed servo, first revision.
702 )))
703
704 |(% colspan="2" %)(((
705 ====== __Firmware__ ======
706 )))
707 |(% style="width:30px" %) |(((
708 Query Firmware (**QF**)
709
710 Ex: #5QF<cr> might return *5QF368<cr>
711
712 The number in the reply represents the firmware version, in this example being 368.The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14
713 )))
714
715 |(% colspan="2" %)(((
716 ====== __Serial Number__ ======
717 )))
718 |(% style="width:30px" %) |(((
719 (% class="wikigeneratedid" %)
720 Query Serial Number (**QN**)
721
722 (% class="wikigeneratedid" id="HEx:235QN3Ccr3Emightreturn2A5QN123456783Ccr3E" %)
723 Ex: #5QN<cr> might return *5QN12345678<cr>
724
725 The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
726 )))
727
728 |(% colspan="2" %)(((
729 ====== __Temperature Probe__ ======
730 )))
731 |(% style="width:30px" %) |(((
732 Query Temp motor Probe (**QTP**)
733
734 Ex: #5QTP<cr> might return *5QTP564<cr>
735
736 The units are in tenths of degrees Celcius, so in the example above, the servo's motor temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
737 )))
738
739 |(% colspan="2" %)(((
740 ====== __Temperature MCU__ ======
741 )))
742 |(% style="width:30px" %) |(((
743 Query Temp MCU (**QTM**)
744
745 Ex: #5QTM<cr> might return *5QTM564<cr>
746
747 The units are in tenths of degrees Celcius, so in the example above, the servo's microcontroller temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
748 )))
749
750 |(% colspan="2" %)(((
751 ====== __Temp Controller Error__ ======
752 )))
753 |(% style="width:30px" %) |(((
754 (% class="wikigeneratedid" id="HEx:236QIX3Ccr3Emightreturn2A6QIX303Ccr3E" %)
755 Query Temp Controller Error (**QTCE**)
756
757
758
759 (% class="wikigeneratedid" %)
760 Returns the value of the "ot" bit of the motor driver's DRV_STATUS register (addr: 0x6F). If the response is 1, the motor driver has detected overtemperature (over 150℃).
761 )))
762
763 |(% colspan="2" %)(((
764 ====== __Temp Controller Warning__ ======
765 )))
766 |(% style="width:30px" %) |(((
767 (% class="wikigeneratedid" id="HEx:236QIX3Ccr3Emightreturn2A6QIX303Ccr3E" %)
768 Query Temp Controller Warning (**QTCW**)
769
770
771 (% class="wikigeneratedid" %)
772 Returns the value of the "otpw" bit of the motor driver's DRV_STATUS register (addr: 0x6F). If the response is 1, the motor driver has detected overtemperature pre-warning (over 120℃).
773 )))
774
775 |(% colspan="2" %)(((
776 ====== __Error Flag__ ======
777 )))
778 |(% style="width:30px" %) |(((
779 Query Error Flag (**QEF**)
780
781 Ex: #5QEF<cr> might return *5QEF64<cr>
782
783
784 |(% style="width:25px" %) |***Value returned (QEF)**|**Status**|**Detailed description**
785 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_PCBOverTemerature|
786 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_MCUOverTemerature|
787 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_MotorProbeOverTemerature|
788 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_MotorDriverOverTemerature|
789 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_Blocked|
790 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_ExceedSpeedLimit|
791 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_ExceedAccelLimit|
792 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_ExceedDecelLimit|
793 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_CurrentPositionOutOfRangePlus|
794 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_CurrentPositionOutOfRangeMinus|
795 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_EEPROMHeaderDataError|
796 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_EEPROMCheckSumError|
797 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_EEPROMMapVersionIsNotSupported|
798 )))
799
800 |(% colspan="2" %)(((
801 ====== __IMU Linear__ ======
802 )))
803 |(% style="width:30px" %) |(((
804 (% class="wikigeneratedid" %)
805 Query IMU Linear (**QIX QIY QIZ**)
806
807 (% class="wikigeneratedid" id="HEx:236QIX3Ccr3Emightreturn2A6QIX303Ccr3E" %)
808 Ex: #6QIX<cr> might return *6QIX30<cr>
809
810 This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 30mm per second squared.
811 )))
812
813 |(% colspan="2" %)(((
814 ====== __IMU Angular__ ======
815 )))
816 |(% style="width:30px" %) |(((
817 (% class="wikigeneratedid" id="HEx:236QIB3Ccr3Emightreturn2A6QIB443Ccr3E" %)
818 Query IMU Angular (**QIA QIB QIG**)
819
820 (% class="wikigeneratedid" %)
821 Ex: #6QIB<cr> might return *6QIB44<cr>
822
823 This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 4.4 degrees per second squared.
824 )))
825
826 == RGB LED ==
827
828 |(% colspan="2" %)(((
829 ====== __LED Color__ ======
830 )))
831 |(% style="width:30px" %) |(((
832 (% class="wikigeneratedid" id="HEx:236QIB3Ccr3Emightreturn2A6QIB443Ccr3E" %)
833 The user defined LED color can be changed permanently (CLED) or until reboot (LED).
834
835 (% class="wikigeneratedid" %)
836 Ex: #5LED5<cr>, will set the user LED color to Cyan until reboot of the actuator.
837
838 (% class="wikigeneratedid" %)
839 Ex: #5CLED3<cr>, will set the user LED color to Blue and will be that way ever after rebooting the actuator.
840
841
842 (% style="width:200px" %)
843 |(% colspan="2" style="text-align:center; vertical-align:middle; width:35px" %)**Color vs Value**
844 |(% style="text-align:center; vertical-align:middle; width:35px" %)[[image:[email protected]]]|0 = Off / Black
845 |(% style="text-align:center; vertical-align:middle" %)[[image:[email protected]]]|1 = Red
846 |(% style="text-align:center; vertical-align:middle" %)[[image:[email protected]]]|2 = Green
847 |(% style="text-align:center; vertical-align:middle" %)[[image:[email protected]]]|3 = Blue
848 |(% style="text-align:center; vertical-align:middle" %)[[image:[email protected]]]|4 = Yellow
849 |(% style="text-align:center; vertical-align:middle" %)[[image:[email protected]||alt="SQUARE-Black.png"]]|5 = Cyan
850 |(% style="text-align:center; vertical-align:middle" %)[[image:[email protected]]]|6 = Magenta
851 |(% style="text-align:center; vertical-align:middle" %)[[image:[email protected]]]|7 = White
852 )))
853
854 |(% colspan="2" %)(((
855 ====== __LED Blinking__ ======
856 )))
857 |(% style="width:30px" %) |(((
858 (% class="wikigeneratedid" id="HEx:236QIB3Ccr3Emightreturn2A6QIB443Ccr3E" %)
859 This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:
860
861 (% style="width:200px" %)
862 |**Blink While:**|(% style="text-align:center; width:35px" %)**#**
863 |No blinking|(% style="text-align:center" %)0
864 |Limp|(% style="text-align:center" %)1
865 |Holding|(% style="text-align:center" %)2
866 |Accelerating|(% style="text-align:center" %)4
867 |Decelerating|(% style="text-align:center" %)8
868 |Free|(% style="text-align:center" %)16
869 |Travelling|(% style="text-align:center" %)32
870 |Always blink|(% style="text-align:center" %)63
871
872 (% class="wikigeneratedid" %)
873 To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:Ex: #5CLB0 to turn off all blinking (LED always solid)Ex: #5CLB1 only blink when limp (1)Ex: #5CLB2 only blink when holding (2)Ex: #5CLB12 only blink when accel or decel (accel 4 + decel 8 = 12)Ex: #5CLB48 only blink when free or travel (free 16 + travel 32 = 48)Ex: #5CLB63 blink in all status (1 + 2 + 4 + 8 + 16 + 32)RESETTING the servo is needed.
874 )))
875
876 |(% colspan="2" %)(((
877 ====== __LED Indicator__ ======
878 )))
879 |(% style="width:30px" %) |(((
880 (% class="wikigeneratedid" id="HEx:236QIB3Ccr3Emightreturn2A6QIB443Ccr3E" %)
881 The LED Indicator will reflect the blinking pattern from the LED at a given time.
882
883 (% class="wikigeneratedid" %)
884 Ex: #5QLI<cr> might return *5QLI4<cr>, and the actuator would be blinking 3 times as an Exceed speed limits error.
885
886 (% class="wikigeneratedid" %)
887 [[image:QLI-Info.png]]
888 )))
Copyright RobotShop 2018