Changes for page LSS-PRO Communication Protocol
Last modified by Eric Nantel on 2024/09/06 14:52
Change comment: There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -212,75 +212,126 @@ 212 212 213 213 ====== __Position in Degrees (**D**)__ ====== 214 214 215 +{{html wiki="true" clean="false"}} 216 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 217 +Example: #5D1456<cr><div class="wikimodel-emptyline"></div> 215 215 216 - Example:#5D1456<cr>219 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. <div class="wikimodel-emptyline"></div> 217 217 218 - Thismovestheservotoan angleof145.6 degrees,wherethe center(0) positions centered.Negative values(ex. -176 representing-17.6 degrees)could also be used. A fullcirclewould be from -1800to1800 degrees. A valueof2700 would bethe same angle(absoluteposition)as -900,except the servo wouldmove inadifferentdirection.221 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). <div class="wikimodel-emptyline"></div> 219 219 220 - Larger values arepermitted and allow for multi-turn functionalityusingtheconceptof virtualposition (explainedabove).223 +Query Position in Degrees (**QD**)<div class="wikimodel-emptyline"></div> 221 221 222 - QueryPositionin Degrees(**QD**)225 +Example: #5QD<cr> might return *5QD132<cr><div class="wikimodel-emptyline"></div> 223 223 224 - Example:#5QD<cr>mightreturn*5QD132<cr>227 +This means the servo is located at 13.2 degrees.<div class="wikimodel-emptyline"></div> 225 225 226 -This means the servo is located at 13.2 degrees. 229 +(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 230 +Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div> 227 227 228 - QueryTargetPositionin Degrees(**QDT**)232 +Ex: #5QDT<cr> might return *5QDT6783<cr><div class="wikimodel-emptyline"></div> 229 229 230 -Ex: #5QDT<cr> might return *5QDT6783<cr> 231 - 232 232 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 235 +<div class="wikimodel-emptyline"></div></div></div> 236 +{{/html}} 233 233 234 234 ====== __(Relative) Move in Degrees (**MD**)__ ====== 235 235 240 +{{html wiki="true" clean="false"}} 241 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 242 +Example: #5MD123<cr><div class="wikimodel-emptyline"></div> 236 236 237 -Example: #5MD123<cr> 238 - 239 239 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 245 +<div class="wikimodel-emptyline"></div></div></div> 246 +{{/html}} 240 240 241 241 ====== __Wheel Mode in Degrees (**WD**)__ ====== 242 242 250 +{{html wiki="true" clean="false"}} 251 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 252 +Ex: #5WD90<cr><div class="wikimodel-emptyline"></div> 243 243 244 - Ex:#5WD90<cr>254 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div> 245 245 246 - This command sets the servoto wheelmodewhereit will rotate inthedesired direction at theselectedspeed. The example abovewould have theservo rotate at 90.0 degreesper second clockwise (assuming factorydefaultconfigurations).256 +Query Wheel Mode in Degrees (**QWD**)<div class="wikimodel-emptyline"></div> 247 247 248 - QueryWheelModein Degrees(**QWD**)258 +Ex: #5QWD<cr> might return *5QWD90<cr><div class="wikimodel-emptyline"></div> 249 249 250 -Ex: #5QWD<cr> might return *5QWD90<cr> 251 - 252 252 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 261 +<div class="wikimodel-emptyline"></div></div></div> 262 +{{/html}} 253 253 254 254 ====== __Wheel Mode in RPM (**WR**)__ ====== 255 255 266 +{{html wiki="true" clean="false"}} 267 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 268 +Ex: #5WR40<cr><div class="wikimodel-emptyline"></div> 256 256 257 - Ex:#5WR40<cr>270 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div> 258 258 259 - This command sets the servoto wheelmodewhereit will rotate inthedesireddirection at the selected rpm. Wheel mode (a.k.a. "continuousrotation") hasthe servo operate like a geared DCmotor. Theservo'smaximum rpm cannotbe set higher than its physicallimit at a givenvoltage. The example above wouldhave the servo rotate at 40 rpm clockwise (assuming factory default configurations).272 +Query Wheel Mode in RPM (**QWR**)<div class="wikimodel-emptyline"></div> 260 260 261 -Q ueryWheelModeinRPM (**QWR**)274 +Ex: #5QWR<cr> might return *5QWR40<cr><div class="wikimodel-emptyline"></div> 262 262 263 -Ex: #5QWR<cr> might return *5QWR40<cr> 264 - 265 265 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 277 +<div class="wikimodel-emptyline"></div></div></div> 278 +{{/html}} 266 266 267 -====== ====== 280 +====== __Position in PWM (**P**)__ ====== 268 268 269 -====== __(Relative) Move in Degrees (**MD**)__ ====== 282 +{{html wiki="true" clean="false"}} 283 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 284 +Example: #5P2334<cr><div class="wikimodel-emptyline"></div> 270 270 271 -====== 272 -Example: #5M1500<cr> ====== 286 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.<div class="wikimodel-emptyline"></div> 273 273 274 -(% class="wikigeneratedid" %) 275 -====== The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. ====== 288 +Query Position in Pulse (**QP**)<div class="wikimodel-emptyline"></div> 276 276 277 - ======__QueryStatus(**Q**)__======290 +Example: #5QP<cr> might return *5QP2334<div class="wikimodel-emptyline"></div> 278 278 292 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 293 +Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 294 +<div class="wikimodel-emptyline"></div></div></div> 295 +{{/html}} 279 279 280 - Thestatus query describes what the servo is currently doing. The query returnsan integer which must belookedupinthetablebelow.297 +====== __(Relative) Move in PWM (**M**)__ ====== 281 281 282 -Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 299 +{{html wiki="true" clean="false"}} 300 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 301 +Example: #5M1500<cr><div class="wikimodel-emptyline"></div> 283 283 303 +The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 304 +<div class="wikimodel-emptyline"></div></div></div> 305 +{{/html}} 306 + 307 +====== __Raw Duty-cycle Move (**RDM**)__ ====== 308 + 309 +{{html wiki="true" clean="false"}} 310 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 311 +Example: #5RDM512<cr><div class="wikimodel-emptyline"></div> 312 + 313 +The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.<div class="wikimodel-emptyline"></div> 314 + 315 +The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).<div class="wikimodel-emptyline"></div> 316 + 317 +Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div> 318 + 319 +Example: #5QMD<cr> might return *5QMD512<div class="wikimodel-emptyline"></div> 320 + 321 +This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle. 322 +<div class="wikimodel-emptyline"></div></div></div> 323 +{{/html}} 324 + 325 +====== __Query Status (**Q**)__ ====== 326 + 327 +{{html wiki="true" clean="false"}} 328 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 329 +The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div> 330 + 331 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div> 332 +</div></div> 333 +{{/html}} 334 + 284 284 |(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description** 285 285 | |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 286 286 | |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely ... ... @@ -298,9 +298,12 @@ 298 298 Send a Q1 command to know which limit has been reached (described below). 299 299 ))) 300 300 301 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 352 +{{html wiki="true" clean="false"}} 353 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 354 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div> 355 +</div></div> 356 +{{/html}} 302 302 303 - 304 304 |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description** 305 305 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 306 306 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long ... ... @@ -309,157 +309,353 @@ 309 309 310 310 ====== __Limp (**L**)__ ====== 311 311 366 +{{html wiki="true" clean="false"}} 367 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 368 +Example: #5L<cr><div class="wikimodel-emptyline"></div> 312 312 313 -Example: #5L<cr> 370 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 371 +<div class="wikimodel-emptyline"></div></div></div> 372 +{{/html}} 314 314 315 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 316 - 317 317 ====== __Halt & Hold (**H**)__ ====== 318 318 376 +{{html wiki="true" clean="false"}} 377 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 378 +Example: #5H<cr><div class="wikimodel-emptyline"></div> 319 319 320 -Example: #5H<cr> 321 - 322 322 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 381 +<div class="wikimodel-emptyline"></div></div></div> 382 +{{/html}} 323 323 324 324 == Motion Setup == 325 325 326 -====== __ OriginOffset(**O**)__ ======386 +====== __Enable Motion Profile (**EM**)__ ====== 327 327 388 +{{html clean="false" wiki="true"}} 389 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 390 +EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div> 328 328 329 -Ex ample: #5O2400<cr>This command allows youtochange the origin ofthe servoin relation to the factory zero position for thatsession. Aswith all action commands, thesetting will belost upon servo reset/ power cycle. Originoffset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).392 +Ex: #5EM1<cr><div class="wikimodel-emptyline"></div> 330 330 331 - [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]394 +This command enables a trapezoidal motion profile for servo #5 <div class="wikimodel-emptyline"></div> 332 332 396 +Ex: #5EM0<cr><div class="wikimodel-emptyline"></div> 333 333 334 - In thesecondimage, the origin,and thecorrespondingangular range(explainedbelow)havebeen shiftedby+240.0degrees:398 +This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command). 335 335 336 - [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]400 +<div class="wikimodel-emptyline"></div> 337 337 402 +Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div> 338 338 339 - OriginOffsetQuery(**QO**)404 +Ex: #5QEM<cr> might return *5QEM1<cr><div class="wikimodel-emptyline"></div> 340 340 341 - Example:#5QO<cr>mightreturn*5QO-13406 +This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div> 342 342 343 - This allows you to query the angle (in tenths ofdegrees)ofthe origin in relationto the factory zeroposition. In this example,theneworigin is at -1.3degrees fromhe factoryzero.408 +Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div> 344 344 345 -C onfigure OriginOffset(**CO**)410 +Ex: #5CEM0<cr><div class="wikimodel-emptyline"></div> 346 346 347 -Example: #5CO-24<cr> 412 +This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 413 +<div class="wikimodel-emptyline"></div></div></div> 414 +{{/html}} 348 348 416 +====== __Filter Position Count (**FPC**)__ ====== 417 + 418 +{{html clean="false" wiki="true"}} 419 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 420 +The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default. 421 +<div class="wikimodel-emptyline"></div> 422 +Ex: #5FPC10<cr><div class="wikimodel-emptyline"></div> 423 +This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div> 424 + 425 +Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div> 426 + 427 +Ex: #5QFPC<cr> might return *5QFPC10<cr><div class="wikimodel-emptyline"></div> 428 + 429 +This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div> 430 + 431 +Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div> 432 + 433 +Ex: #5CFPC10<cr><div class="wikimodel-emptyline"></div> 434 + 435 +This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 436 +<div class="wikimodel-emptyline"></div></div></div> 437 +{{/html}} 438 + 439 +====== __Origin Offset (**O**)__ ====== 440 + 441 +{{html wiki="true" clean="false"}} 442 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 443 +Example: #5O2400<cr><div class="wikimodel-emptyline"></div> 444 + 445 +This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div> 446 + 447 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div> 448 + 449 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div> 450 + 451 +[[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div> 452 + 453 +Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div> 454 + 455 +Example: #5QO<cr> might return *5QO-13<div class="wikimodel-emptyline"></div> 456 + 457 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div> 458 + 459 +Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div> 460 + 461 +Example: #5CO-24<cr><div class="wikimodel-emptyline"></div> 462 + 349 349 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 464 +<div class="wikimodel-emptyline"></div></div></div> 465 +{{/html}} 350 350 351 351 ====== __Angular Range (**AR**)__ ====== 352 352 353 -Example: #5AR1800<cr> 469 +{{html wiki="true" clean="false"}} 470 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 471 +Example: #5AR1800<cr><div class="wikimodel-emptyline"></div> 354 354 355 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: 473 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div> 356 356 357 -[[image: https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]475 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div> 358 358 359 -Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 477 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div> 360 360 361 -[[image: https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]479 +[[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div> 362 362 481 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div> 363 363 364 - Finally, the angular rangeaction command (ex. #5AR1800<cr>) andoriginoffset action command(ex. #5O-1200<cr>) areused tomove both the center andlimit the angular range:483 +[[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div> 365 365 366 - [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]485 +Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div> 367 367 487 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div> 368 368 369 - QueryAngular Range (**QAR**)489 +Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div> 370 370 371 -Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees. 491 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 492 +<div class="wikimodel-emptyline"></div></div></div> 493 +{{/html}} 372 372 373 - ConfigureAngularRange (**CAR**)495 +====== __Angular Stiffness (**AS**)__ ====== 374 374 375 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 497 +{{html wiki="true" clean="false"}} 498 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 499 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div> 376 376 501 +A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div> 502 + 503 +* The more torque will be applied to try to keep the desired position against external input / changes 504 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div> 505 + 506 +A lower value on the other hand:<div class="wikimodel-emptyline"></div> 507 + 508 +* Causes a slower acceleration to the travel speed, and a slower deceleration 509 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div> 510 + 511 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 512 + 513 +Ex: #5AS-2<cr><div class="wikimodel-emptyline"></div> 514 + 515 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div> 516 + 517 +Ex: #5QAS<cr><div class="wikimodel-emptyline"></div> 518 + 519 +Queries the value being used.<div class="wikimodel-emptyline"></div> 520 + 521 +Ex: #5CAS-2<cr><div class="wikimodel-emptyline"></div> 522 + 523 +Writes the desired angular stiffness value to EEPROM. 524 +<div class="wikimodel-emptyline"></div></div></div> 525 +{{/html}} 526 + 527 +====== __Angular Holding Stiffness (**AH**)__ ====== 528 + 529 +{{html wiki="true" clean="false"}} 530 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 531 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 532 + 533 +Ex: #5AH3<cr><div class="wikimodel-emptyline"></div> 534 + 535 +This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div> 536 + 537 +Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div> 538 + 539 +Ex: #5QAH<cr> might return *5QAH3<cr><div class="wikimodel-emptyline"></div> 540 + 541 +This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div> 542 + 543 +Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div> 544 + 545 +Ex: #5CAH2<cr><div class="wikimodel-emptyline"></div> 546 + 547 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM. 548 +<div class="wikimodel-emptyline"></div></div></div> 549 +{{/html}} 550 + 377 377 ====== __Angular Acceleration (**AA**)__ ====== 378 378 379 -The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 553 +{{html wiki="true" clean="false"}} 554 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 555 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 380 380 381 -Ex: #5AA30 <cr>557 +Ex: #5AA30<cr><div class="wikimodel-emptyline"></div> 382 382 383 -This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). 559 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 384 384 385 -Query Angular Acceleration (**QAA**) 561 +Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div> 386 386 387 -Ex: #5QAA <cr>might return *5QAA30<cr>563 +Ex: #5QAA<cr> might return *5QAA30<cr><div class="wikimodel-emptyline"></div> 388 388 389 -This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^). 565 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 390 390 391 -Configure Angular Acceleration (**CAA**) 567 +Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div> 392 392 393 -Ex: #5CAA30 <cr>569 +Ex: #5CAA30<cr><div class="wikimodel-emptyline"></div> 394 394 395 395 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 572 +<div class="wikimodel-emptyline"></div></div></div> 573 +{{/html}} 396 396 397 397 ====== __Angular Deceleration (**AD**)__ ====== 398 398 399 -The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 577 +{{html wiki="true" clean="false"}} 578 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 579 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 400 400 401 -Ex: #5AD30 <cr>581 +Ex: #5AD30<cr><div class="wikimodel-emptyline"></div> 402 402 403 -This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). 583 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 404 404 405 -Query Angular Deceleration (**QAD**) 585 +Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div> 406 406 407 -Ex: #5QAD <cr>might return *5QAD30<cr>587 +Ex: #5QAD<cr> might return *5QAD30<cr><div class="wikimodel-emptyline"></div> 408 408 409 -This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^). 589 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 410 410 411 -Configure Angular Deceleration (**CAD**) 591 +Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div> 412 412 413 -Ex: #5CAD30 <cr>593 +Ex: #5CAD30<cr><div class="wikimodel-emptyline"></div> 414 414 415 -This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 595 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 596 +<div class="wikimodel-emptyline"></div></div></div> 597 +{{/html}} 416 416 417 417 ====== __Gyre Direction (**G**)__ ====== 418 418 419 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1. 601 +{{html wiki="true" clean="false"}} 602 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 603 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div> 420 420 421 -Ex: #5G-1 <cr>605 +Ex: #5G-1<cr><div class="wikimodel-emptyline"></div> 422 422 423 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 607 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div> 424 424 425 -Query Gyre Direction (**QG**) Ex: #5QG<cr> mightreturn*5QG-1<cr>609 +Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div> 426 426 427 - Thevalue returnedabovemeans theservo is ina counter-clockwise gyration. Sendinga #5WR30command will rotate theservoin a counter-clockwisegyrationat 30 RPM.611 +Ex: #5QG<cr> might return *5QG-1<cr><div class="wikimodel-emptyline"></div> 428 428 429 - ConfigureGyre(**CG**)613 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div> 430 430 431 - Ex:#5CG-1<cr>615 +Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div> 432 432 617 +Ex: #5CG-1<cr><div class="wikimodel-emptyline"></div> 618 + 433 433 This changes the gyre direction as described above and also writes to EEPROM. 620 +<div class="wikimodel-emptyline"></div></div></div> 621 +{{/html}} 434 434 435 435 ====== __First Position__ ====== 436 436 437 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.Query First Position in Degrees (**QFD**)Ex: #5QFD<cr> might return *5QFD900<cr>The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.Configure First Position in Degrees (**CFD**)Ex: #5CFD900<cr>This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 625 +{{html wiki="true" clean="false"}} 626 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 627 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div> 438 438 629 +Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div> 630 + 631 +Ex: #5QFD<cr> might return *5QFD900<cr> <div class="wikimodel-emptyline"></div> 632 + 633 +The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div> 634 + 635 +Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div> 636 + 637 +Ex: #5CFD900<cr><div class="wikimodel-emptyline"></div> 638 + 639 +This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 640 +<div class="wikimodel-emptyline"></div></div></div> 641 +{{/html}} 642 + 643 +====== __Maximum Motor Duty (**MMD**)__ ====== 644 + 645 +{{html wiki="true" clean="false"}} 646 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 647 +This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div> 648 + 649 +Ex: #5MMD512<cr><div class="wikimodel-emptyline"></div> 650 + 651 +This will set the duty-cycle to 512 for servo with ID 5 for that session.<div class="wikimodel-emptyline"></div> 652 + 653 +Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div> 654 + 655 +Ex: #5QMMDD<cr> might return *5QMMD512<cr> <div class="wikimodel-emptyline"></div> 656 + 657 +This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023. 658 +<div class="wikimodel-emptyline"></div></div></div> 659 +{{/html}} 660 + 439 439 ====== __Maximum Speed in Degrees (**SD**)__ ====== 440 440 441 -Ex: #5SD1800<cr>This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in Degrees (**QSD**)Ex: #5QSD<cr> might return *5QSD1800<cr>By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 663 +{{html wiki="true" clean="false"}} 664 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 665 +Ex: #5SD1800<cr><div class="wikimodel-emptyline"></div> 666 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 442 442 668 +Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div> 669 + 670 +Ex: #5QSD<cr> might return *5QSD1800<cr><div class="wikimodel-emptyline"></div> 671 + 672 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 673 + 443 443 |**Command sent**|**Returned value (1/10 °)** 444 -|ex: #5QSD <cr>|Session value for maximum speed (set by latest SD/SR command)445 -|ex: #5QSD1 <cr>|Configured maximum speed in EEPROM (set by CSD/CSR)446 -|ex: #5QSD2 <cr>|Instantaneous speed (same as QWD)447 -|ex: #5QSD3 <cr>|Target travel speed675 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 676 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 677 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 678 +|ex: #5QSD3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 448 448 449 -Configure Speed in Degrees (**CSD**) Ex: #5CSD1800<cr>Using the CSD commandsets the servo's maximum speed which is savedin EEPROM. In the exampleabove, theservo'smaximum speedwill be set to 180.0 degrees per second. When the servois poweredon (or after a reset), the CSD valueis used. Note that CSD and CSR (described below) are effectively the same, butallow the user to specify the speed inither unit. The last command(either CSR or CSD) is what the servo uses for that session.680 +Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div> 450 450 682 +Ex: #5CSD1800<cr><div class="wikimodel-emptyline"></div> 683 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 684 +</div></div> 685 +{{/html}} 686 + 451 451 ====== __Maximum Speed in RPM (**SR**)__ ====== 452 452 453 -Ex: #5SR45<cr>This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in RPM (**QSR**)Ex: #5QSR<cr> might return *5QSR45<cr>By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 689 +{{html wiki="true" clean="false"}} 690 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 691 +Ex: #5SR45<cr><div class="wikimodel-emptyline"></div> 692 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 454 454 694 +Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div> 695 + 696 +Ex: #5QSR<cr> might return *5QSR45<cr><div class="wikimodel-emptyline"></div> 697 + 698 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 699 + 455 455 |**Command sent**|**Returned value (1/10 °)** 456 -|ex: #5QSR <cr>|Session value for maximum speed (set by latest SD/SR command)457 -|ex: #5QSR1 <cr>|Configured maximum speed in EEPROM (set by CSD/CSR)458 -|ex: #5QSR2 <cr>|Instantaneous speed (same as QWD)459 -|ex: #5QSR3 <cr>|Target travel speed701 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 702 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 703 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 704 +|ex: #5QSR3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 460 460 461 -Configure Speed in RPM (**CSR**) Ex: #5CSR45<cr>Using the CSR commandsets the servo's maximum speed which is savedin EEPROM. In the exampleabove, theservo'smaximum speedwill be set to 45rpm. When the servois poweredon (or after a reset), the CSR valueis used. Note that CSD and CSR are effectively the same, butallow the user to specify the speed inither unit. The last command(either CSR or CSD) received is what the servo uses for that session.706 +Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div> 462 462 708 +Ex: #5CSR45<cr><div class="wikimodel-emptyline"></div> 709 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 710 +</div></div> 711 +{{/html}} 712 + 463 463 == Modifiers == 464 464 465 465 ====== __Speed (**S**, **SD**) modifier__ ======