Last modified by Eric Nantel on 2024/09/06 14:52

From version < 38.1 >
edited by Coleman Benson
on 2023/07/26 13:43
To version < 76.1 >
edited by Eric Nantel
on 2024/07/22 13:53
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSS-P - Communication Protocol
1 +LSS-PRO Communication Protocol
Parent
... ... @@ -1,1 +1,1 @@
1 -lynxmotion-smart-servo-pro.WebHome
1 +ses-pro.lss-pro.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -xwiki:XWiki.CBenson
1 +xwiki:XWiki.ENantel
Hidden
... ... @@ -1,1 +1,1 @@
1 -true
1 +false
Content
... ... @@ -1,7 +5,3 @@
1 -{{warningBox warningText="More information coming soon"/}}
2 -
3 -
4 -
5 5  (% class="wikigeneratedid" id="HTableofContents" %)
6 6  **Page Contents**
7 7  
... ... @@ -95,7 +95,7 @@
95 95  
96 96  The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).
97 97  
98 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]
94 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]
99 99  
100 100  In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
101 101  
... ... @@ -120,83 +120,84 @@
120 120  
121 121  |(% colspan="8" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]]
122 122  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
123 -| |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Soft reset. See command for details.
124 -| |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Revert to firmware default values. See command for details
125 -| |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Update firmware. See command for details.
126 -| |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) | | |
127 -| |[[**ID** Number >>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
128 -| |[[**E**nable CAN **T**erminal>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0 or 1|0: Disable  1: Enable
129 -| |[[**U**SB **C**onnection State>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected
130 -| |**Q**uery **F**irmware **R**elease|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | |
119 +| |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Soft reset
120 +| |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Revert to firmware default values
121 +| |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Update firmware
122 +| |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Confirm the action for some commands
123 +| |[[**ID** Number >>||anchor="HIDNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %)0|(% style="text-align:center" %) |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
124 +| |[[**E**nable CAN **T**erminal>>doc:||anchor="HEnableCANTerminalResistor28ET29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET|(% style="text-align:center" %)1|(% style="text-align:center" %)0 or 1|0: Disable  1: Enable
125 +| |[[**U**SB **C**onnection Status>>||anchor="HUSBConnectionStatus28UC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)0 or 1|0: Not connected 1: Connected
131 131  
132 132  |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]]
133 133  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
134 -| |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) | |1/100°|
135 -| |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) | |1/100°|
136 -| |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) | |°/s|A.K.A. "Speed mode" or "Continuous rotation"
129 +| |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD|(% style="text-align:center" %) | |0.01°|
130 +| |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) | |0.01°|
131 +| |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD|(% style="text-align:center" %) | |0.01°/s|A.K.A. "Speed mode" or "Continuous rotation"
137 137  | |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM28WR29"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) | |RPM|A.K.A. "Speed mode" or "Continuous rotation"
138 138  | |[[**Q**uery Motion Status>>||anchor="HQueryStatus28Q29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) | |1 to 8 integer|See command description for details
134 +| |[[**Q**uery **M**otion **T**ime>>doc:||anchor="HMotionTime"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMT|(% style="text-align:center" %) | |0.01s|
135 +| |[[**Q**uery **C**urrent **S**peed>>doc:||anchor="HCurrentSpeed"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | |0.01°/s|
139 139  | |[[**L**imp>>||anchor="HLimp28L29"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Removes power from stepper coils
140 -| |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Stops (halts) motion profile and holds last position
137 +| |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Stops (halts) motion and holds last position
141 141  
142 142  |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]]
143 143  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
144 -| |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|1| |EM1: trapezoidal motion profile / EM0: no motion profile
145 -| |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|5| |Affects motion only when motion profile is disabled (EM0)
146 -| |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|0|1/10°|
147 -| |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|1800|1/10°|
148 -| |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|0|-4 to +4 integer|Suggested values are between 0 to +4
149 -| |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|4|-10 to +10 integer|
150 -| |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
151 -| |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
152 -| |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
153 -| |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|No value|1/10°|Reset required after change.
154 -| |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |1023|255 to 1023 integer|
155 -| |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
156 -| |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
141 +| |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)0|(% style="text-align:center" %)0.01°|
142 +| |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)36000|(% style="text-align:center" %)0.01°|
143 +| |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s^2|
144 +| |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s^2|
145 +| |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)1|(% style="text-align:center" %)1 or -1|Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
146 +| |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°|Reset required after change.
147 +| |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s|SD / CSD overwrites SR / CSR
148 +| |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %) |(% style="text-align:center" %)RPM|SR / CSR overwrites SD / CSD
157 157  
158 158  |(% colspan="8" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]]
159 159  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
160 -| |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) | |1°/s|For D and MD action commands
152 +| |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) | |0.01°/s|For D and MD action commands
161 161  | |[[**T**imed move>>||anchor="HTimedmove28T29modifier"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) | |ms|Time associated with D, MD commands
162 162  
163 163  |(% colspan="8" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]]
164 164  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
165 -| |[[**Q**uery PCB **T**emperature>>||anchor="HQueryTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) | |°C|
166 -| |[[**Q**uery **C**urrent>>||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) | |mA|Nominal RMS value to stepper motor driver IC.
157 +| |[[**Q**uery PCB **T**emperature>>doc:||anchor="HQueryPCBTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) | |0.1°C|
158 +| |[[**Q**uery **C**urrent>>doc:||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) | |mA|Nominal RMS value to stepper motor driver IC.
167 167  | |[[**Q**uery **M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) | | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
168 168  | |[[**Q**uery **F**irmware Version>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) | | |
169 169  | |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) | | |Returns the unique serial number for the servo
170 -| |**Q**uery **T**emperature **P**robe|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | | |Queries temperature probe fixed to stepper motor
171 -| |**Q**uery **T**emp of **C**ontroller|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW, QTCE|(% style="text-align:center" %) | | |(((
172 -QTCW: Queries the temperature status of the motor controller (pre-warning)
173 -
174 -QTCE: Queries the temperature status of the motor controller (over-temp error)
162 +| |[[**Q**uery **T**emperature **P**robe>>doc:||anchor="HQueryTemperatureProbe28QTP29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | |0.1°C|Queries temperature probe fixed to the stepper motor
163 +| |[[**Q**uery **T**emp of **M**CU>>doc:||anchor="HQueryMCUTemperature28QTM29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTM|(% style="text-align:center" %) | |0.1°C|
164 +| |[[Query Temp of Controller Error>>doc:||anchor="HQueryTempControllerError28QTCE29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTCE|(% style="text-align:center" %) | | |(((
165 +Temperature error status of the motor controller (over-temp error)
175 175  )))
176 -| |**Q**uery **C**urrent **S**peed |(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | | |Queries the motor controller's calculated speed
177 -| |**Q**uery **I**MU Linear **X**|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2|
178 -| |**Q**uery **I**MU Linear **Y**|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2|
179 -| |**Q**uery **I**MU Linear **Z**|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2|
180 -| |**Q**uery **I**MU Angular Accel **α** |(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha)
181 -| |**Q**uery **I**MU Angular Accel **β**|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta)
182 -| |**Q**uery **I**MU Angular Accel **γ**|(% style="text-align:center" %) |(% style="text-align:center" %)QIC / QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma)
167 +| |[[Query Temp of Controller Pre-Warning>>doc:||anchor="HQueryTempControllerWarning28QTCW29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW|(% style="text-align:center" %) | | |Temperature error status of the motor controller (pre-warning)
168 +| |[[**Q**uery **E**rror **F**lag>>doc:||anchor="HQueryErrorFlag28QEF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QEF|(% style="text-align:center" %) | | |
169 +| |[[**Q**uery **I**MU Linear **X**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2|
170 +| |[[**Q**uery **I**MU Linear **Y**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2|
171 +| |[[**Q**uery **I**MU Linear **Z**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2|
172 +| |[[**Q**uery **I**MU Angular Accel **α** >>doc:||anchor="HQueryIMUAngular28QIAQIBQIC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha)
173 +| |[[**Q**uery **I**MU Angular Accel **β**>>doc:||anchor="HQueryIMUAngular28QIAQIBQIC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta)
174 +| |[[**Q**uery **I**MU Angular Accel **γ**>>doc:||anchor="HQueryIMUAngular28QIAQIBQIC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma)
183 183  
184 184  |(% colspan="8" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]]
185 185  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
186 186  | |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
187 -| |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB| |0 to 63 integer|Reset required after change. See command for details.
188 188  
189 189  = (% style="color:inherit; font-family:inherit" %)Details(%%) =
190 190  
191 191  == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
192 192  
193 -====== (% style="color:inherit; font-family:inherit" %)__Reset__(%%) ======
184 +|(% colspan="2" %)(((
185 +====== __Reset__ ======
186 +)))
187 +| |(((
188 +Ex: #5RESET<cr>
194 194  
195 -(% style="color:inherit; font-family:inherit" %)Ex: #5RESET<cr>
196 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See Session, note #2 for more details.
190 +This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See Session, note #2 for more details.
191 +)))
197 197  
193 +|(% colspan="2" %)(((
198 198  ====== (% style="color:inherit; font-family:inherit" %)__Default & confirm__(%%) ======
199 -
195 +)))
196 +|(% style="width:30px" %) |(((
200 200  (% style="color:inherit; font-family:inherit" %)Ex: #5DEFAULT<cr>
201 201  
202 202  (% style="color:inherit; font-family:inherit" %)This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
... ... @@ -206,9 +206,12 @@
206 206  (% style="color:inherit; font-family:inherit" %)Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
207 207  
208 208  (% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
206 +)))
209 209  
208 +|(% colspan="2" %)(((
210 210  ====== (% style="color:inherit; font-family:inherit" %)__Update & confirm__(%%) ======
211 -
210 +)))
211 +|(% style="width:30px" %) |(((
212 212  (% style="color:inherit; font-family:inherit" %)Ex: #5UPDATE<cr>
213 213  
214 214  (% style="color:inherit; font-family:inherit" %)This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
... ... @@ -218,16 +218,41 @@
218 218  (% style="color:inherit; font-family:inherit" %)Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
219 219  
220 220  (% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
221 +)))
221 221  
223 +|(% colspan="2" %)(((
222 222  ====== (% style="color:inherit; font-family:inherit" %)__Confirm__(%%) ======
223 -
225 +)))
226 +|(% style="width:30px" %) |(((
224 224  (% style="color:inherit; font-family:inherit" %)Ex: #5CONFIRM<cr>
225 225  
226 226  (% style="color:inherit; font-family:inherit" %)This command is used to confirm changes after a Default or Update command.
227 227  Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
231 +)))
228 228  
229 -====== (% style="color:inherit; font-family:inherit" %)__Enable CAN Terminal Resistor (**ET**)__(%%) ======
233 +|(% colspan="2" %)(((
234 +====== (% style="color:inherit; font-family:inherit" %)__ID Number__(%%) ======
235 +)))
236 +|(% style="width:30px" %) |(((
237 +This assigns ID #5 to the servo previously assigned to ID 0
230 230  
239 +(% style="color:inherit; font-family:inherit" %)Configure ID Number (**CID**)
240 +
241 +(% style="color:inherit; font-family:inherit" %)Ex: #0CID5<cr>
242 +
243 +The default ID is 0, so this sets the servo to ID 5.
244 +
245 +Query ID Number (**QID**)
246 +
247 +Ex: #254QID<cr> might return *254QID5<cr>
248 +
249 +In this case, the broadcast ID is used to ensure the servo connected will reply with the ID. This can be used in case the ID assigned to a servo is forgotten.
250 +)))
251 +
252 +|(% colspan="2" %)(((
253 +====== (% style="color:inherit; font-family:inherit" %)__Enable CAN Terminal Resistor__(%%) ======
254 +)))
255 +|(% style="width:30px" %) |(((
231 231  Query Enable CAN Terminal Resistor (**QET**)
232 232  
233 233  Ex: #5QET<cr> might return *QET0<cr>
... ... @@ -239,16 +239,35 @@
239 239  (% style="color:inherit; font-family:inherit" %)Ex: #5CET1<cr>
240 240  
241 241  (% style="color:inherit; font-family:inherit" %)This commands sets servo with ID 5 as being the last in the CAN Bus. The last servo in a CAN bus must be configured this way.
267 +)))
242 242  
243 -====== __USB Connection Status (**UC**)__ ======
244 -
269 +|(% colspan="2" %)(((
270 +====== __USB Connection Status__ ======
271 +)))
272 +|(% style="width:30px" %) |(((
245 245  Query USB Connection Status (**QUC**)
246 246  
247 247  Ex: #5QUC<cr> might return *5QUC1<cr> meaning the servo is connected via USB
276 +)))
248 248  
278 +|(% colspan="2" %)(((
279 +====== __Firmware Release__ ======
280 +)))
281 +|(% style="width:30px" %) |(((
282 +Query Firmware Release (**QFR**)
283 +
284 +Ex: #5QFR<cr> might return *QFR11<cr> meaning it has a (random) firmware release version number 11.
285 +
286 +This is used to verify if the firmware on the servos is up to date, or which version is running on the microcontroller.
287 +)))
288 +
249 249  == Motion ==
250 250  
251 -====== __Position in Degrees (**D**)__ ======
291 +|(% colspan="2" %)(((
292 +====== __Position in Degrees__ ======
293 +)))
294 +|(% style="width:30px" %) |(((
295 +Position in Degrees (**D**)
252 252  
253 253  Example: #5D1456<cr>
254 254  
... ... @@ -267,15 +267,24 @@
267 267  Ex: #5QDT<cr> might return *5QDT6783<cr>
268 268  
269 269  The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
314 +)))
270 270  
271 -====== __(Relative) Move in Degrees (**MD**)__ ======
316 +|(% colspan="2" %)(((
317 +====== __(Relative) Move in Degrees__ ======
318 +)))
319 +|(% style="width:30px" %) |(((
320 +Move in Degrees (**MD**)
272 272  
273 -
274 274  Example: #5MD123<cr>
275 275  
276 276  The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
325 +)))
277 277  
278 -====== __Wheel Mode in Degrees (**WD**)__ ======
327 +|(% colspan="2" %)(((
328 +====== __Wheel Mode in Degrees__ ======
329 +)))
330 +|(% style="width:30px" %) |(((
331 +Wheel mode in Degrees (**WD**)
279 279  
280 280  Ex: #5WD90<cr>
281 281  
... ... @@ -286,8 +286,13 @@
286 286  Ex: #5QWD<cr> might return *5QWD90<cr>
287 287  
288 288  The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
342 +)))
289 289  
290 -====== __Wheel Mode in RPM (**WR**)__ ======
344 +|(% colspan="2" %)(((
345 +====== __Wheel Mode in RPM__ ======
346 +)))
347 +|(% style="width:30px" %) |(((
348 +Wheel moed in RPM (**WR**)
291 291  
292 292  Ex: #5WR40<cr>
293 293  
... ... @@ -298,8 +298,14 @@
298 298  Ex: #5QWR<cr> might return *5QWR40<cr>
299 299  
300 300  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
359 +)))
301 301  
302 -====== __(Relative) Move in Degrees (**MD**)__ ======
361 +|(% colspan="2" %)(((
362 +====== __(Relative) Move in Degrees__ ======
363 +)))
364 +|(% style="width:30px" %) |(((
365 +(% class="wikigeneratedid" %)
366 +Move in Degrees (**MD**)
303 303  
304 304  (% class="wikigeneratedid" id="HExample:235M15003Ccr3E" %)
305 305  Example: #5M1500<cr>
... ... @@ -306,8 +306,13 @@
306 306  
307 307  (% class="wikigeneratedid" id="HTherelativemoveinPWMcommandcausestheservotoreaditscurrentpositionandmovebythespecifiednumberofPWMsignal.ForexampleiftheservoissettorotateCW28default29andanMcommandof1500issenttotheservo2Citwillcausetheservotorotateclockwiseby90degrees.NegativePWMvaluewouldcausetheservotorotateintheoppositeconfigureddirection." %)
308 308  The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
373 +)))
309 309  
310 -====== __Query Status (**Q**)__ ======
375 +|(% colspan="2" %)(((
376 +====== __Query Status__ ======
377 +)))
378 +|(% style="width:30px" %) |(((
379 +Query Status (**Q**)
311 311  
312 312  The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.
313 313  
... ... @@ -320,7 +320,7 @@
320 320  | |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
321 321  | |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
322 322  | |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
323 -| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding)
392 +| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will normally be holding)
324 324  | |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
325 325  | |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
326 326  | |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
... ... @@ -337,31 +337,58 @@
337 337  | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
338 338  | |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
339 339  | |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
409 +)))
340 340  
341 -====== __Limp (**L**)__ ======
411 +|(% colspan="2" %)(((
412 +====== __Motion Time__ ======
413 +)))
414 +|(% style="width:30px" %) |(((
415 +
416 +)))
342 342  
418 +|(% colspan="2" %)(((
419 +====== __Current Speed__ ======
420 +)))
421 +|(% style="width:30px" %) |(((
422 +
423 +)))
424 +
425 +|(% colspan="2" %)(((
426 +====== __Limp__ ======
427 +)))
428 +|(% style="width:30px" %) |(((
429 +Limp (**L**)
430 +
343 343  Example: #5L<cr>
344 344  
345 345  This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
434 +)))
346 346  
347 -====== __Halt & Hold (**H**)__ ======
436 +|(% colspan="2" %)(((
437 +====== __Halt & Hold__ ======
438 +)))
439 +|(% style="width:30px" %) |(((
440 +Halt & Hold (**H**)
348 348  
349 349  Example: #5H<cr>
350 350  
351 351  This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
445 +)))
352 352  
353 353  == Motion Setup ==
354 354  
449 +|(% colspan="2" %)(((
355 355  ====== __Origin Offset (**O**)__ ======
356 -
451 +)))
452 +|(% style="width:30px" %) |(((
357 357  Example: #5O2400<cr>This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
358 358  
359 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
455 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
360 360  
361 361  
362 362  In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
363 363  
364 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]
460 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]
365 365  
366 366  
367 367  Origin Offset Query (**QO**)
... ... @@ -375,23 +375,26 @@
375 375  Example: #5CO-24<cr>
376 376  
377 377  This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
474 +)))
378 378  
476 +|(% colspan="2" %)(((
379 379  ====== __Angular Range (**AR**)__ ======
380 -
478 +)))
479 +|(% style="width:30px" %) |(((
381 381  Example: #5AR1800<cr>
382 382  
383 383  This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
384 384  
385 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
484 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
386 386  
387 387  Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
388 388  
389 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]
488 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]
390 390  
391 391  
392 392  Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
393 393  
394 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]
493 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]
395 395  
396 396  
397 397  Query Angular Range (**QAR**)
... ... @@ -401,9 +401,12 @@
401 401  Configure Angular Range (**CAR**)
402 402  
403 403  This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
503 +)))
404 404  
505 +|(% colspan="2" %)(((
405 405  ====== __Angular Acceleration (**AA**)__ ======
406 -
507 +)))
508 +|(% style="width:30px" %) |(((
407 407  The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
408 408  
409 409  Ex: #5AA30<cr>
... ... @@ -421,9 +421,12 @@
421 421  Ex: #5CAA30<cr>
422 422  
423 423  This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
526 +)))
424 424  
528 +|(% colspan="2" %)(((
425 425  ====== __Angular Deceleration (**AD**)__ ======
426 -
530 +)))
531 +|(% style="width:30px" %) |(((
427 427  The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
428 428  
429 429  Ex: #5AD30<cr>
... ... @@ -441,9 +441,12 @@
441 441  Ex: #5CAD30<cr>
442 442  
443 443  This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
549 +)))
444 444  
551 +|(% colspan="2" %)(((
445 445  ====== __Gyre Direction (**G**)__ ======
446 -
553 +)))
554 +|(% style="width:30px" %) |(((
447 447  "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.
448 448  
449 449  Ex: #5G-1<cr>
... ... @@ -450,8 +450,10 @@
450 450  
451 451  This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
452 452  
453 -Query Gyre Direction (**QG**)Ex: #5QG<cr> might return *5QG-1<cr>
561 +Query Gyre Direction (**QG**)
454 454  
563 +Ex: #5QG<cr> might return *5QG-1<cr>
564 +
455 455  The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.
456 456  
457 457  Configure Gyre (**CG**)
... ... @@ -459,13 +459,19 @@
459 459  Ex: #5CG-1<cr>
460 460  
461 461  This changes the gyre direction as described above and also writes to EEPROM.
572 +)))
462 462  
574 +|(% colspan="2" %)(((
463 463  ====== __First Position__ ======
464 -
576 +)))
577 +|(% style="width:30px" %) |(((
465 465  In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.Query First Position in Degrees (**QFD**)Ex: #5QFD<cr> might return *5QFD900<cr>The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.Configure First Position in Degrees (**CFD**)Ex: #5CFD900<cr>This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
579 +)))
466 466  
581 +|(% colspan="2" %)(((
467 467  ====== __Maximum Speed in Degrees (**SD**)__ ======
468 -
583 +)))
584 +|(% style="width:30px" %) |(((
469 469  Ex: #5SD1800<cr>This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in Degrees (**QSD**)Ex: #5QSD<cr> might return *5QSD1800<cr>By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
470 470  
471 471  |**Command sent**|**Returned value (1/10 °)**
... ... @@ -475,11 +475,14 @@
475 475  |ex: #5QSD3<cr>|Target travel speed
476 476  
477 477  Configure Speed in Degrees (**CSD**)Ex: #5CSD1800<cr>Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
594 +)))
478 478  
596 +|(% colspan="2" %)(((
479 479  ====== __Maximum Speed in RPM (**SR**)__ ======
598 +)))
599 +|(% style="width:30px" %) |(((
600 +====== Ex: #5SR45<cr>This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in RPM (**QSR**)Ex: #5QSR<cr> might return *5QSR45<cr>By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: ======
480 480  
481 -Ex: #5SR45<cr>This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in RPM (**QSR**)Ex: #5QSR<cr> might return *5QSR45<cr>By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
482 -
483 483  |**Command sent**|**Returned value (1/10 °)**
484 484  |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
485 485  |ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
... ... @@ -487,14 +487,16 @@
487 487  |ex: #5QSR3<cr>|Target travel speed
488 488  
489 489  Configure Speed in RPM (**CSR**)Ex: #5CSR45<cr>Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
609 +)))
490 490  
491 491  == Modifiers ==
492 492  
613 +|(% colspan="2" %)(((
493 493  ====== __Speed (**SD**) modifier__ ======
615 +)))
616 +|(% style="width:30px" %) |(((
617 +====== Example: #5D0SD180<cr> ======
494 494  
495 -(% class="wikigeneratedid" id="HTimedmove28T29modifier" %)
496 -Example: #5D0SD180<cr>
497 -
498 498  (% class="wikigeneratedid" %)
499 499  Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.
500 500  
... ... @@ -506,51 +506,115 @@
506 506  
507 507  (% class="wikigeneratedid" %)
508 508  This command queries the current speed in microseconds per second.
630 +)))
509 509  
632 +|(% colspan="2" %)(((
510 510  ====== __Timed move (**T**) modifier__ ======
511 -
634 +)))
635 +|(% style="width:30px" %) |(((
512 512  Example: #5D15000T2500<cr>
513 513  
514 514  Timed move can be used only as a modifier for a position (D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
515 515  
516 516  **Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested
641 +)))
517 517  
518 -====== ======
519 -
520 520  == Telemetry ==
521 521  
522 -====== __Query Voltage (**QV**)__ ======
645 +|(% colspan="2" %)(((
646 +====== __**Q**uery PCB **T**emperature (**QT**)__ ======
647 +)))
648 +|(% style="width:30px" %) |(((
649 +Ex: #5QT<cr> might return *5QT564<cr>
523 523  
524 -Ex: #5QV<cr> might return *5QV11200<cr>
651 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
652 +)))
525 525  
526 -The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.
654 +|(% colspan="2" %)(((
655 +====== __**Q**uery **C**urrent (**QC**)__ ======
656 +)))
657 +|(% style="width:30px" %) |(((
658 +====== Ex: #5QC<cr> might return *5QC140<cr> ======
527 527  
528 -====== __Query Temperature (**QT**)__ ======
660 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value. The query calculates the RMS value of the current sent from the motor driver to the stepper motor.
661 +)))
529 529  
530 -Ex: #5QT<cr> might return *5QT564<cr>
663 +|(% colspan="2" %)(((
664 +====== __**Q**uery **M**odel **S**tring (**QMS**)__ ======
665 +)))
666 +|(% style="width:30px" %) |(((
667 +====== Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr> ======
531 531  
532 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
669 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision.
670 +)))
533 533  
534 -====== __Query Motor Driver Current (**QC**)__ ======
672 +|(% colspan="2" %)(((
673 +====== __**Q**uery **F**irmware (**QF**)__ ======
674 +)))
675 +|(% style="width:30px" %) |(((
676 +Ex: #5QF<cr> might return *5QF368<cr>
535 535  
536 -Ex: #5QC<cr> might return *5QC140<cr>
678 +The number in the reply represents the firmware version, in this example being 368.The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14
679 +)))
537 537  
538 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value.
681 +|(% colspan="2" %)(((
682 +====== __**Q**uery Serial **N**umber (**QN**)__ ======
683 +)))
684 +|(% style="width:30px" %) |(((
685 +====== Ex: #5QN<cr> might return *5QN12345678<cr> ======
539 539  
540 -====== __Query Model String (**QMS**)__ ======
687 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
688 +)))
541 541  
542 -Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
690 +|(% colspan="2" %)(((
691 +====== __**Q**uery **T**emperature **P**robe (**QTP**)__ ======
692 +)))
693 +|(% style="width:30px" %) |(((
694 +
695 +)))
543 543  
544 -This reply means that the servo model is LSS-HS1: a high speed servo, first revision.
697 +|(% colspan="2" %)(((
698 +====== __**Q**uery **T**emperature **M**CU (**QTM**)__ ======
699 +)))
700 +|(% style="width:30px" %) |(((
701 +
702 +)))
545 545  
546 -====== __Query Firmware (**QF**)__ ======
704 +|(% colspan="2" %)(((
705 +====== __Query Temp Controller Error (**QTCE**)__ ======
706 +)))
707 +|(% style="width:30px" %) |(((
708 +
709 +)))
547 547  
548 -Ex: #5QF<cr> might return *5QF368<cr>
711 +|(% colspan="2" %)(((
712 +====== __Query Temp Controller Warning (**QTCW**)__ ======
713 +)))
714 +|(% style="width:30px" %) |(((
715 +
716 +)))
549 549  
550 -The number in the reply represents the firmware version, in this example being 368.The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14
718 +|(% colspan="2" %)(((
719 +====== __Query Error Flag (**QEF**)__ ======
720 +)))
721 +|(% style="width:30px" %) |(((
722 +
723 +)))
551 551  
552 -====== __Query Serial Number (**QN**)__ ======
725 +|(% colspan="2" %)__**Q**uery **I**MU Linear (**QIX** **QIY** **QIZ**)__
726 +|(% style="width:30px" %) |(((
727 +====== Ex: #6QIX<cr> might return *6QIX30<cr> ======
553 553  
554 -Ex: #5QN<cr> might return *5QN12345678<cr>
729 +This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 30mm per second squared.
730 +)))
555 555  
556 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
732 +|(% colspan="2" %)(((
733 +====== __**Q**uery **I**MU Angular (**QIA** **QIB** **QIG**)__ ======
734 +)))
735 +|(% style="width:30px" %) |(((
736 +====== Ex: #6QIB<cr> might return *6QIB44<cr> ======
737 +
738 +This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 4.4 degrees per second squared.
739 +)))
740 +
741 +
Copyright RobotShop 2018