Changes for page LSS-PRO Communication Protocol
Last modified by Eric Nantel on 2024/09/06 14:52
Change comment: There is no comment for this version
Summary
-
Page properties (5 modified, 0 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LSS-P -Communication Protocol1 +LSS-PRO Communication Protocol - Parent
-
... ... @@ -1,1 +1,1 @@ 1 - lynxmotion-smart-servo-pro.WebHome1 +ses-pro.lss-pro.WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -xwiki:XWiki. CBenson1 +xwiki:XWiki.ENantel - Hidden
-
... ... @@ -1,1 +1,1 @@ 1 - true1 +false - Content
-
... ... @@ -1,7 +5,3 @@ 1 -{{warningBox warningText="More information coming soon"/}} 2 - 3 - 4 - 5 5 (% class="wikigeneratedid" id="HTableofContents" %) 6 6 **Page Contents** 7 7 ... ... @@ -95,7 +95,7 @@ 95 95 96 96 The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset). 97 97 98 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]94 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]] 99 99 100 100 In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: 101 101 ... ... @@ -120,83 +120,84 @@ 120 120 121 121 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]] 122 122 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 123 -| |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Soft reset. See command for details. 124 -| |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Revert to firmware default values. See command for details 125 -| |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Update firmware. See command for details. 126 -| |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) | | | 127 -| |[[**ID** Number >>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 128 -| |[[**E**nable CAN **T**erminal>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0 or 1|0: Disable 1: Enable 129 -| |[[**U**SB **C**onnection State>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected 130 -| |**Q**uery **F**irmware **R**elease|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | | 119 +| |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Soft reset 120 +| |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Revert to firmware default values 121 +| |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Update firmware 122 +| |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Confirm the action for some commands 123 +| |[[**ID** Number >>||anchor="HIDNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %)0|(% style="text-align:center" %) |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 124 +| |[[**E**nable CAN **T**erminal>>doc:||anchor="HEnableCANTerminalResistor28ET29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET|(% style="text-align:center" %)1|(% style="text-align:center" %)0 or 1|0: Disable 1: Enable 125 +| |[[**U**SB **C**onnection Status>>||anchor="HUSBConnectionStatus28UC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)0 or 1|0: Not connected 1: Connected 131 131 132 132 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]] 133 133 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 134 -| |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD /QDT|(% style="text-align:center" %) | |1/100°|135 -| |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) | | 1/100°|136 -| |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD /QVT|(% style="text-align:center" %) | |°/s|A.K.A. "Speed mode" or "Continuous rotation"129 +| |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD|(% style="text-align:center" %) | |0.01°| 130 +| |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) | |0.01°| 131 +| |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD|(% style="text-align:center" %) | |0.01°/s|A.K.A. "Speed mode" or "Continuous rotation" 137 137 | |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM28WR29"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) | |RPM|A.K.A. "Speed mode" or "Continuous rotation" 138 138 | |[[**Q**uery Motion Status>>||anchor="HQueryStatus28Q29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) | |1 to 8 integer|See command description for details 134 +| |[[**Q**uery **M**otion **T**ime>>doc:||anchor="HMotionTime"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMT|(% style="text-align:center" %) | |0.01s| 135 +| |[[**Q**uery **C**urrent **S**peed>>doc:||anchor="HCurrentSpeed"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | |0.01°/s| 139 139 | |[[**L**imp>>||anchor="HLimp28L29"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Removes power from stepper coils 140 -| |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Stops (halts) motion profileand holds last position137 +| |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Stops (halts) motion and holds last position 141 141 142 142 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]] 143 143 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 144 -| |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|1| |EM1: trapezoidal motion profile / EM0: no motion profile 145 -| |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|5| |Affects motion only when motion profile is disabled (EM0) 146 -| |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|0|1/10°| 147 -| |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|1800|1/10°| 148 -| |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|0|-4 to +4 integer|Suggested values are between 0 to +4 149 -| |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|4|-10 to +10 integer| 150 -| |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 151 -| |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 152 -| |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise) 153 -| |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|No value|1/10°|Reset required after change. 154 -| |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |1023|255 to 1023 integer| 155 -| |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa 156 -| |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa 141 +| |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)0|(% style="text-align:center" %)0.01°| 142 +| |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)36000|(% style="text-align:center" %)0.01°| 143 +| |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s^2| 144 +| |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s^2| 145 +| |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)1|(% style="text-align:center" %)1 or -1|Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise) 146 +| |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°|Reset required after change. 147 +| |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s|SD / CSD overwrites SR / CSR 148 +| |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %) |(% style="text-align:center" %)RPM|SR / CSR overwrites SD / CSD 157 157 158 158 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]] 159 159 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 160 -| |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) | |1°/s|For D and MD action commands 152 +| |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) | |0.01°/s|For D and MD action commands 161 161 | |[[**T**imed move>>||anchor="HTimedmove28T29modifier"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) | |ms|Time associated with D, MD commands 162 162 163 163 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]] 164 164 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 165 -| |[[**Q**uery PCB **T**emperature>>||anchor="HQueryTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) | |°C| 166 -| |[[**Q**uery **C**urrent>>||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) | |mA|Nominal RMS value to stepper motor driver IC. 157 +| |[[**Q**uery PCB **T**emperature>>doc:||anchor="HQueryPCBTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) | |0.1°C| 158 +| |[[**Q**uery **C**urrent>>doc:||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) | |mA|Nominal RMS value to stepper motor driver IC. 167 167 | |[[**Q**uery **M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) | | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1) 168 168 | |[[**Q**uery **F**irmware Version>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) | | | 169 169 | |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) | | |Returns the unique serial number for the servo 170 -| |**Q**uery **T**emperature **P**robe|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | | |Queries temperature probe fixed to stepper motor 171 -| |**Q**uery **T**emp of **C**ontroller|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW, QTCE|(% style="text-align:center" %) | | |((( 172 -QTCW: Queries the temperature status of the motor controller (pre-warning) 173 - 174 -QTCE: Queries the temperature status of the motor controller (over-temp error) 162 +| |[[**Q**uery **T**emperature **P**robe>>doc:||anchor="HQueryTemperatureProbe28QTP29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | |0.1°C|Queries temperature probe fixed to the stepper motor 163 +| |[[**Q**uery **T**emp of **M**CU>>doc:||anchor="HQueryMCUTemperature28QTM29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTM|(% style="text-align:center" %) | |0.1°C| 164 +| |[[Query Temp of Controller Error>>doc:||anchor="HQueryTempControllerError28QTCE29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTCE|(% style="text-align:center" %) | | |((( 165 +Temperature error status of the motor controller (over-temp error) 175 175 ))) 176 -| |**Q**uery **C**urrent **S**peed |(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | | |Queries the motor controller's calculated speed 177 -| |**Q**uery **I**MU Linear **X**|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2| 178 -| |**Q**uery **I**MU Linear **Y**|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2| 179 -| |**Q**uery **I**MU Linear **Z**|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2| 180 -| |**Q**uery **I**MU Angular Accel **α** |(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha) 181 -| |**Q**uery **I**MU Angular Accel **β**|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta) 182 -| |**Q**uery **I**MU Angular Accel **γ**|(% style="text-align:center" %) |(% style="text-align:center" %)QIC / QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma) 167 +| |[[Query Temp of Controller Pre-Warning>>doc:||anchor="HQueryTempControllerWarning28QTCW29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW|(% style="text-align:center" %) | | |Temperature error status of the motor controller (pre-warning) 168 +| |[[**Q**uery **E**rror **F**lag>>doc:||anchor="HQueryErrorFlag28QEF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QEF|(% style="text-align:center" %) | | | 169 +| |[[**Q**uery **I**MU Linear **X**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2| 170 +| |[[**Q**uery **I**MU Linear **Y**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2| 171 +| |[[**Q**uery **I**MU Linear **Z**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2| 172 +| |[[**Q**uery **I**MU Angular Accel **α** >>doc:||anchor="HQueryIMUAngular28QIAQIBQIC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha) 173 +| |[[**Q**uery **I**MU Angular Accel **β**>>doc:||anchor="HQueryIMUAngular28QIAQIBQIC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta) 174 +| |[[**Q**uery **I**MU Angular Accel **γ**>>doc:||anchor="HQueryIMUAngular28QIAQIBQIC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma) 183 183 184 184 |(% colspan="8" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]] 185 185 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 186 186 | |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White 187 -| |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB| |0 to 63 integer|Reset required after change. See command for details. 188 188 189 189 = (% style="color:inherit; font-family:inherit" %)Details(%%) = 190 190 191 191 == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) == 192 192 193 -====== (% style="color:inherit; font-family:inherit" %)__Reset__(%%) ====== 184 +|(% colspan="2" %)((( 185 +====== __Reset__ ====== 186 +))) 187 +| |((( 188 +Ex: #5RESET<cr> 194 194 195 - (%style="color:inherit;font-family:inherit"%)Ex:#5RESET<cr>196 - This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See Session, note #2 for more details.190 +This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See Session, note #2 for more details. 191 +))) 197 197 193 +|(% colspan="2" %)((( 198 198 ====== (% style="color:inherit; font-family:inherit" %)__Default & confirm__(%%) ====== 199 - 195 +))) 196 +|(% style="width:30px" %) |((( 200 200 (% style="color:inherit; font-family:inherit" %)Ex: #5DEFAULT<cr> 201 201 202 202 (% style="color:inherit; font-family:inherit" %)This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. ... ... @@ -206,9 +206,12 @@ 206 206 (% style="color:inherit; font-family:inherit" %)Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command. 207 207 208 208 (% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET. 206 +))) 209 209 208 +|(% colspan="2" %)((( 210 210 ====== (% style="color:inherit; font-family:inherit" %)__Update & confirm__(%%) ====== 211 - 210 +))) 211 +|(% style="width:30px" %) |((( 212 212 (% style="color:inherit; font-family:inherit" %)Ex: #5UPDATE<cr> 213 213 214 214 (% style="color:inherit; font-family:inherit" %)This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function. ... ... @@ -218,15 +218,23 @@ 218 218 (% style="color:inherit; font-family:inherit" %)Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 219 219 220 220 (% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET. 221 +))) 221 221 223 +|(% colspan="2" %)((( 222 222 ====== (% style="color:inherit; font-family:inherit" %)__Confirm__(%%) ====== 223 - 225 +))) 226 +|(% style="width:30px" %) |((( 224 224 (% style="color:inherit; font-family:inherit" %)Ex: #5CONFIRM<cr> 225 225 226 226 (% style="color:inherit; font-family:inherit" %)This command is used to confirm changes after a Default or Update command. 227 227 Note: After the CONFIRM command is sent, the servo will automatically perform a RESET. 231 +))) 228 228 229 -====== (% style="color:inherit; font-family:inherit" %)__ID Number (**ID**)__(%%) ====== 233 +|(% colspan="2" %)((( 234 +====== (% style="color:inherit; font-family:inherit" %)__ID Number__(%%) ====== 235 +))) 236 +|(% style="width:30px" %) |((( 237 +This assigns ID #5 to the servo previously assigned to ID 0 230 230 231 231 (% style="color:inherit; font-family:inherit" %)Configure ID Number (**CID**) 232 232 ... ... @@ -239,9 +239,12 @@ 239 239 Ex: #254QID<cr> might return *254QID5<cr> 240 240 241 241 In this case, the broadcast ID is used to ensure the servo connected will reply with the ID. This can be used in case the ID assigned to a servo is forgotten. 250 +))) 242 242 243 -(% style="color:inherit; font-family:inherit" %)__Enable CAN Terminal Resistor (**ET**)__ 244 - 252 +|(% colspan="2" %)((( 253 +====== (% style="color:inherit; font-family:inherit" %)__Enable CAN Terminal Resistor__(%%) ====== 254 +))) 255 +|(% style="width:30px" %) |((( 245 245 Query Enable CAN Terminal Resistor (**QET**) 246 246 247 247 Ex: #5QET<cr> might return *QET0<cr> ... ... @@ -253,24 +253,35 @@ 253 253 (% style="color:inherit; font-family:inherit" %)Ex: #5CET1<cr> 254 254 255 255 (% style="color:inherit; font-family:inherit" %)This commands sets servo with ID 5 as being the last in the CAN Bus. The last servo in a CAN bus must be configured this way. 267 +))) 256 256 257 -====== __USB Connection Status (**UC**)__ ====== 258 - 269 +|(% colspan="2" %)((( 270 +====== __USB Connection Status__ ====== 271 +))) 272 +|(% style="width:30px" %) |((( 259 259 Query USB Connection Status (**QUC**) 260 260 261 261 Ex: #5QUC<cr> might return *5QUC1<cr> meaning the servo is connected via USB 276 +))) 262 262 263 -====== __Firmware Release (**FR**)__ ====== 264 - 278 +|(% colspan="2" %)((( 279 +====== __Firmware Release__ ====== 280 +))) 281 +|(% style="width:30px" %) |((( 265 265 Query Firmware Release (**QFR**) 266 266 267 267 Ex: #5QFR<cr> might return *QFR11<cr> meaning it has a (random) firmware release version number 11. 268 268 269 269 This is used to verify if the firmware on the servos is up to date, or which version is running on the microcontroller. 287 +))) 270 270 271 271 == Motion == 272 272 273 -====== __Position in Degrees (**D**)__ ====== 291 +|(% colspan="2" %)((( 292 +====== __Position in Degrees__ ====== 293 +))) 294 +|(% style="width:30px" %) |((( 295 +Position in Degrees (**D**) 274 274 275 275 Example: #5D1456<cr> 276 276 ... ... @@ -289,15 +289,24 @@ 289 289 Ex: #5QDT<cr> might return *5QDT6783<cr> 290 290 291 291 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 314 +))) 292 292 293 -====== __(Relative) Move in Degrees (**MD**)__ ====== 316 +|(% colspan="2" %)((( 317 +====== __(Relative) Move in Degrees__ ====== 318 +))) 319 +|(% style="width:30px" %) |((( 320 +Move in Degrees (**MD**) 294 294 295 - 296 296 Example: #5MD123<cr> 297 297 298 298 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 325 +))) 299 299 300 -====== __Wheel Mode in Degrees (**WD**)__ ====== 327 +|(% colspan="2" %)((( 328 +====== __Wheel Mode in Degrees__ ====== 329 +))) 330 +|(% style="width:30px" %) |((( 331 +Wheel mode in Degrees (**WD**) 301 301 302 302 Ex: #5WD90<cr> 303 303 ... ... @@ -308,8 +308,13 @@ 308 308 Ex: #5QWD<cr> might return *5QWD90<cr> 309 309 310 310 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 342 +))) 311 311 312 -====== __Wheel Mode in RPM (**WR**)__ ====== 344 +|(% colspan="2" %)((( 345 +====== __Wheel Mode in RPM__ ====== 346 +))) 347 +|(% style="width:30px" %) |((( 348 +Wheel moed in RPM (**WR**) 313 313 314 314 Ex: #5WR40<cr> 315 315 ... ... @@ -320,8 +320,14 @@ 320 320 Ex: #5QWR<cr> might return *5QWR40<cr> 321 321 322 322 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 359 +))) 323 323 324 -====== __(Relative) Move in Degrees (**MD**)__ ====== 361 +|(% colspan="2" %)((( 362 +====== __(Relative) Move in Degrees__ ====== 363 +))) 364 +|(% style="width:30px" %) |((( 365 +(% class="wikigeneratedid" %) 366 +Move in Degrees (**MD**) 325 325 326 326 (% class="wikigeneratedid" id="HExample:235M15003Ccr3E" %) 327 327 Example: #5M1500<cr> ... ... @@ -328,8 +328,13 @@ 328 328 329 329 (% class="wikigeneratedid" id="HTherelativemoveinPWMcommandcausestheservotoreaditscurrentpositionandmovebythespecifiednumberofPWMsignal.ForexampleiftheservoissettorotateCW28default29andanMcommandof1500issenttotheservo2Citwillcausetheservotorotateclockwiseby90degrees.NegativePWMvaluewouldcausetheservotorotateintheoppositeconfigureddirection." %) 330 330 The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 373 +))) 331 331 332 -====== __Query Status (**Q**)__ ====== 375 +|(% colspan="2" %)((( 376 +====== __Query Status__ ====== 377 +))) 378 +|(% style="width:30px" %) |((( 379 +Query Status (**Q**) 333 333 334 334 The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below. 335 335 ... ... @@ -342,7 +342,7 @@ 342 342 | |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 343 343 | |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 344 344 | |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 345 -| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nor nally be holding)392 +| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will normally be holding) 346 346 | |ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 347 347 | |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 348 348 | |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) ... ... @@ -359,31 +359,58 @@ 359 359 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 360 360 | |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 361 361 | |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 409 +))) 362 362 363 -====== __Limp (**L**)__ ====== 411 +|(% colspan="2" %)((( 412 +====== __Motion Time__ ====== 413 +))) 414 +|(% style="width:30px" %) |((( 415 + 416 +))) 364 364 418 +|(% colspan="2" %)((( 419 +====== __Current Speed__ ====== 420 +))) 421 +|(% style="width:30px" %) |((( 422 + 423 +))) 424 + 425 +|(% colspan="2" %)((( 426 +====== __Limp__ ====== 427 +))) 428 +|(% style="width:30px" %) |((( 429 +Limp (**L**) 430 + 365 365 Example: #5L<cr> 366 366 367 367 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 434 +))) 368 368 369 -====== __Halt & Hold (**H**)__ ====== 436 +|(% colspan="2" %)((( 437 +====== __Halt & Hold__ ====== 438 +))) 439 +|(% style="width:30px" %) |((( 440 +Halt & Hold (**H**) 370 370 371 371 Example: #5H<cr> 372 372 373 373 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 445 +))) 374 374 375 375 == Motion Setup == 376 376 449 +|(% colspan="2" %)((( 377 377 ====== __Origin Offset (**O**)__ ====== 378 - 451 +))) 452 +|(% style="width:30px" %) |((( 379 379 Example: #5O2400<cr>This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered). 380 380 381 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]455 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]] 382 382 383 383 384 384 In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees: 385 385 386 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]460 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]] 387 387 388 388 389 389 Origin Offset Query (**QO**) ... ... @@ -397,23 +397,26 @@ 397 397 Example: #5CO-24<cr> 398 398 399 399 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 474 +))) 400 400 476 +|(% colspan="2" %)((( 401 401 ====== __Angular Range (**AR**)__ ====== 402 - 478 +))) 479 +|(% style="width:30px" %) |((( 403 403 Example: #5AR1800<cr> 404 404 405 405 This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: 406 406 407 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]484 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]] 408 408 409 409 Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 410 410 411 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]488 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]] 412 412 413 413 414 414 Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range: 415 415 416 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]493 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]] 417 417 418 418 419 419 Query Angular Range (**QAR**) ... ... @@ -423,9 +423,12 @@ 423 423 Configure Angular Range (**CAR**) 424 424 425 425 This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 503 +))) 426 426 505 +|(% colspan="2" %)((( 427 427 ====== __Angular Acceleration (**AA**)__ ====== 428 - 507 +))) 508 +|(% style="width:30px" %) |((( 429 429 The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 430 430 431 431 Ex: #5AA30<cr> ... ... @@ -443,9 +443,12 @@ 443 443 Ex: #5CAA30<cr> 444 444 445 445 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 526 +))) 446 446 528 +|(% colspan="2" %)((( 447 447 ====== __Angular Deceleration (**AD**)__ ====== 448 - 530 +))) 531 +|(% style="width:30px" %) |((( 449 449 The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 450 450 451 451 Ex: #5AD30<cr> ... ... @@ -463,9 +463,12 @@ 463 463 Ex: #5CAD30<cr> 464 464 465 465 This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 549 +))) 466 466 551 +|(% colspan="2" %)((( 467 467 ====== __Gyre Direction (**G**)__ ====== 468 - 553 +))) 554 +|(% style="width:30px" %) |((( 469 469 "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1. 470 470 471 471 Ex: #5G-1<cr> ... ... @@ -472,8 +472,10 @@ 472 472 473 473 This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 474 474 475 -Query Gyre Direction (**QG**) Ex: #5QG<cr> might return *5QG-1<cr>561 +Query Gyre Direction (**QG**) 476 476 563 +Ex: #5QG<cr> might return *5QG-1<cr> 564 + 477 477 The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM. 478 478 479 479 Configure Gyre (**CG**) ... ... @@ -481,13 +481,19 @@ 481 481 Ex: #5CG-1<cr> 482 482 483 483 This changes the gyre direction as described above and also writes to EEPROM. 572 +))) 484 484 574 +|(% colspan="2" %)((( 485 485 ====== __First Position__ ====== 486 - 576 +))) 577 +|(% style="width:30px" %) |((( 487 487 In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.Query First Position in Degrees (**QFD**)Ex: #5QFD<cr> might return *5QFD900<cr>The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.Configure First Position in Degrees (**CFD**)Ex: #5CFD900<cr>This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 579 +))) 488 488 581 +|(% colspan="2" %)((( 489 489 ====== __Maximum Speed in Degrees (**SD**)__ ====== 490 - 583 +))) 584 +|(% style="width:30px" %) |((( 491 491 Ex: #5SD1800<cr>This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in Degrees (**QSD**)Ex: #5QSD<cr> might return *5QSD1800<cr>By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 492 492 493 493 |**Command sent**|**Returned value (1/10 °)** ... ... @@ -497,11 +497,14 @@ 497 497 |ex: #5QSD3<cr>|Target travel speed 498 498 499 499 Configure Speed in Degrees (**CSD**)Ex: #5CSD1800<cr>Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 594 +))) 500 500 596 +|(% colspan="2" %)((( 501 501 ====== __Maximum Speed in RPM (**SR**)__ ====== 598 +))) 599 +|(% style="width:30px" %) |((( 600 +====== Ex: #5SR45<cr>This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in RPM (**QSR**)Ex: #5QSR<cr> might return *5QSR45<cr>By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: ====== 502 502 503 -Ex: #5SR45<cr>This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in RPM (**QSR**)Ex: #5QSR<cr> might return *5QSR45<cr>By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 504 - 505 505 |**Command sent**|**Returned value (1/10 °)** 506 506 |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 507 507 |ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) ... ... @@ -509,14 +509,16 @@ 509 509 |ex: #5QSR3<cr>|Target travel speed 510 510 511 511 Configure Speed in RPM (**CSR**)Ex: #5CSR45<cr>Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 609 +))) 512 512 513 513 == Modifiers == 514 514 613 +|(% colspan="2" %)((( 515 515 ====== __Speed (**SD**) modifier__ ====== 615 +))) 616 +|(% style="width:30px" %) |((( 617 +====== Example: #5D0SD180<cr> ====== 516 516 517 -(% class="wikigeneratedid" id="HTimedmove28T29modifier" %) 518 -Example: #5D0SD180<cr> 519 - 520 520 (% class="wikigeneratedid" %) 521 521 Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second. 522 522 ... ... @@ -528,51 +528,115 @@ 528 528 529 529 (% class="wikigeneratedid" %) 530 530 This command queries the current speed in microseconds per second. 630 +))) 531 531 632 +|(% colspan="2" %)((( 532 532 ====== __Timed move (**T**) modifier__ ====== 533 - 634 +))) 635 +|(% style="width:30px" %) |((( 534 534 Example: #5D15000T2500<cr> 535 535 536 536 Timed move can be used only as a modifier for a position (D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 537 537 538 538 **Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested 641 +))) 539 539 540 -====== ====== 541 - 542 542 == Telemetry == 543 543 544 -====== __Query Voltage (**QV**)__ ====== 645 +|(% colspan="2" %)((( 646 +====== __**Q**uery PCB **T**emperature (**QT**)__ ====== 647 +))) 648 +|(% style="width:30px" %) |((( 649 +Ex: #5QT<cr> might return *5QT564<cr> 545 545 546 -Ex: #5QV<cr> might return *5QV11200<cr> 651 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 652 +))) 547 547 548 -The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V. 654 +|(% colspan="2" %)((( 655 +====== __**Q**uery **C**urrent (**QC**)__ ====== 656 +))) 657 +|(% style="width:30px" %) |((( 658 +====== Ex: #5QC<cr> might return *5QC140<cr> ====== 549 549 550 -====== __Query Temperature (**QT**)__ ====== 660 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value. The query calculates the RMS value of the current sent from the motor driver to the stepper motor. 661 +))) 551 551 552 -Ex: #5QT<cr> might return *5QT564<cr> 663 +|(% colspan="2" %)((( 664 +====== __**Q**uery **M**odel **S**tring (**QMS**)__ ====== 665 +))) 666 +|(% style="width:30px" %) |((( 667 +====== Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr> ====== 553 553 554 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 669 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision. 670 +))) 555 555 556 -====== __Query Motor Driver Current (**QC**)__ ====== 672 +|(% colspan="2" %)((( 673 +====== __**Q**uery **F**irmware (**QF**)__ ====== 674 +))) 675 +|(% style="width:30px" %) |((( 676 +Ex: #5QF<cr> might return *5QF368<cr> 557 557 558 -Ex: #5QC<cr> might return *5QC140<cr> 678 +The number in the reply represents the firmware version, in this example being 368.The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14 679 +))) 559 559 560 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value. 681 +|(% colspan="2" %)((( 682 +====== __**Q**uery Serial **N**umber (**QN**)__ ====== 683 +))) 684 +|(% style="width:30px" %) |((( 685 +====== Ex: #5QN<cr> might return *5QN12345678<cr> ====== 561 561 562 -====== __Query Model String (**QMS**)__ ====== 687 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user. 688 +))) 563 563 564 -Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr> 690 +|(% colspan="2" %)((( 691 +====== __**Q**uery **T**emperature **P**robe (**QTP**)__ ====== 692 +))) 693 +|(% style="width:30px" %) |((( 694 + 695 +))) 565 565 566 -This reply means that the servo model is LSS-HS1: a high speed servo, first revision. 697 +|(% colspan="2" %)((( 698 +====== __**Q**uery **T**emperature **M**CU (**QTM**)__ ====== 699 +))) 700 +|(% style="width:30px" %) |((( 701 + 702 +))) 567 567 568 -====== __Query Firmware (**QF**)__ ====== 704 +|(% colspan="2" %)((( 705 +====== __Query Temp Controller Error (**QTCE**)__ ====== 706 +))) 707 +|(% style="width:30px" %) |((( 708 + 709 +))) 569 569 570 -Ex: #5QF<cr> might return *5QF368<cr> 711 +|(% colspan="2" %)((( 712 +====== __Query Temp Controller Warning (**QTCW**)__ ====== 713 +))) 714 +|(% style="width:30px" %) |((( 715 + 716 +))) 571 571 572 -The number in the reply represents the firmware version, in this example being 368.The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14 718 +|(% colspan="2" %)((( 719 +====== __Query Error Flag (**QEF**)__ ====== 720 +))) 721 +|(% style="width:30px" %) |((( 722 + 723 +))) 573 573 574 -====== __Query Serial Number (**QN**)__ ====== 725 +|(% colspan="2" %)__**Q**uery **I**MU Linear (**QIX** **QIY** **QIZ**)__ 726 +|(% style="width:30px" %) |((( 727 +====== Ex: #6QIX<cr> might return *6QIX30<cr> ====== 575 575 576 -Ex: #5QN<cr> might return *5QN12345678<cr> 729 +This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 30mm per second squared. 730 +))) 577 577 578 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user. 732 +|(% colspan="2" %)((( 733 +====== __**Q**uery **I**MU Angular (**QIA** **QIB** **QIG**)__ ====== 734 +))) 735 +|(% style="width:30px" %) |((( 736 +====== Ex: #6QIB<cr> might return *6QIB44<cr> ====== 737 + 738 +This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 4.4 degrees per second squared. 739 +))) 740 + 741 +