Last modified by Eric Nantel on 2024/09/06 14:52

From version < 46.1 >
edited by Coleman Benson
on 2023/07/27 09:26
To version < 28.1 >
edited by Coleman Benson
on 2023/07/25 15:05
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,7 +1,6 @@
1 1  {{warningBox warningText="More information coming soon"/}}
2 2  
3 3  
4 -
5 5  (% class="wikigeneratedid" id="HTableofContents" %)
6 6  **Page Contents**
7 7  
... ... @@ -30,88 +30,104 @@
30 30  
31 31  == Modifiers ==
32 32  
33 -Modifiers can only be used with certain **action commands**. The format to include a modifier is:
32 +{{html clean="false" wiki="true"}}
33 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
34 +Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div>
34 34  
35 -1. Start with a number sign **#** (Unicode Character: U+0023)
36 +1. Start with a number sign **#** (Unicode Character: U+0023)
36 36  1. Servo ID number as an integer
37 37  1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
38 38  1. Action value in the correct units with no decimal
39 -1. Modifier command (one or two letters from the list of modifiers below)
40 +1. Modifier command (one or two letters from the list of modifiers below)
40 40  1. Modifier value in the correct units with no decimal
41 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
42 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)
42 42  
43 -Ex: #5D13000T1500<cr>This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).
44 +Ex: #5D13000T1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
44 44  
45 -== Queries ==
46 +This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div>
47 +<div class="wikimodel-emptyline"></div></div></div>
46 46  
47 -Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:
49 +<h2>Queries</h2>
50 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
51 +Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div>
48 48  
49 -1. Start with a number sign **#** (Unicode Character: U+0023)
53 +1. Start with a number sign **#** (Unicode Character: U+0023)
50 50  1. Servo ID number as an integer
51 51  1. Query command (one to four letters, no spaces, capital or lower case)
52 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
56 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
53 53  
54 -Ex: #5QD<cr> Query the position in (hundredths of) degrees for servo with ID #5The query will return a serial string (almost instantaneously) via the servo's Tx in the following format:
58 +Ex: #5QD&lt;cr&gt; Query the position in (hundredths of) degrees for servo with ID #5<div class="wikimodel-emptyline"></div>
55 55  
60 +The query will return a serial string (almost instantaneously) via the servo's Tx in the following format:
61 +
56 56  1. Start with an asterisk * (Unicode Character: U+0023)
57 57  1. Servo ID number as an integer
58 58  1. Query command (one to four letters, no spaces, capital letters)
59 59  1. The reported value in the units described, no decimals.
60 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
66 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
61 61  
62 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:
68 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div>
63 63  
64 -Ex: *5QD13000<cr>
70 +Ex: *5QD13000&lt;cr&gt;<div class="wikimodel-emptyline"></div>
65 65  
66 66  This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees).
73 +<div class="wikimodel-emptyline"></div></div></div>
67 67  
68 -== Configurations ==
75 +<h2>Configurations</h2>
69 69  
70 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.
77 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
78 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div>
71 71  
72 -The format to send a configuration command is identical to that of an action command:
80 +These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>
73 73  
74 -1. Start with a number sign **#** (Unicode Character: U+0023)
82 +The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div>
83 +
84 +1. Start with a number sign **#** (Unicode Character: U+0023)
75 75  1. Servo ID number as an integer
76 76  1. Configuration command (two to four letters, no spaces, capital or lower case)
77 77  1. Configuration value in the correct units with no decimal
78 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
88 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
79 79  
80 -Ex: #5CO-500<cr>
90 +Ex: #5CO-500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
81 81  
82 -This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).
92 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div>
83 83  
84 -**Session vs Configuration Query**
94 +**Session vs Configuration Query**<div class="wikimodel-emptyline"></div>
85 85  
86 -By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
96 +By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div>
87 87  
88 -Ex: #5CSR10<cr> immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.
98 +Ex: #5CSR10&lt;cr&gt; immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>
89 89  
90 -After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
100 +After RESET, a command of #5SR4&lt;cr&gt; sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>
91 91  
92 -#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas
102 +#5QSR&lt;cr&gt; or #5QSR0&lt;cr&gt; would return *5QSR4&lt;cr&gt; which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>
93 93  
94 -#5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM
104 +#5QSR1&lt;cr&gt; would return *5QSR10&lt;cr&gt; which represents the value in EEPROM
105 +<div class="wikimodel-emptyline"></div></div></div>
95 95  
96 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).
107 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
108 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div>
97 97  
98 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]
110 +[[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div>
99 99  
100 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
112 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div>
101 101  
102 -#1D-3000<cr> This causes the servo to move to -30.00 degrees (green arrow)
114 +#1D-3000&lt;cr&gt; This causes the servo to move to -30.00 degrees (green arrow)<div class="wikimodel-emptyline"></div>
103 103  
104 -#1D21000<cr> This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)
116 +#1D21000&lt;cr&gt; This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)<div class="wikimodel-emptyline"></div>
105 105  
106 -#1D-42000<cr> This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.
118 +#1D-42000&lt;cr&gt; This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div>
107 107  
108 -Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees.
120 +Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees.<div class="wikimodel-emptyline"></div>
109 109  
110 -#1D48000<cr> This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
122 +#1D48000&lt;cr&gt; This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div>
111 111  
112 -#1D33000<cr> would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).
124 +#1D33000&lt;cr&gt; would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>
113 113  
114 114  If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.00 degrees before power is cycled, upon power up the servo's position will be read as +120.00 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.00°, 180.00°].
127 +<div class="wikimodel-emptyline"></div></div></div>
128 +
129 +{{/html}}
115 115  )))
116 116  
117 117  = Command List =
... ... @@ -124,10 +124,10 @@
124 124  | |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Revert to firmware default values. See command for details
125 125  | |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Update firmware. See command for details.
126 126  | |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) | | |
127 -| |[[**ID** Number >>||anchor="HIDNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
128 -| |[[**E**nable CAN **T**erminal>>doc:||anchor="HEnableCANTerminalResistor28ET29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0 or 1|0: Disable  1: Enable
129 -| |[[**U**SB **C**onnection Status>>||anchor="HUSBConnectionStatus28UC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected
130 -| |[[**Q**uery **F**irmware **R**elease>>doc:||anchor="HFirmwareRelease28FR29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | |
142 +| |[[**E**nable CAN **T**erminal>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0 or 1|0: Disable  1: Enable
143 +| |[[**ID** Number >>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
144 +| |[[**U**SB **C**onnection State>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected
145 +| |**Q**uery **F**irmware **R**elease|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | |
131 131  
132 132  |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]]
133 133  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
... ... @@ -141,15 +141,19 @@
141 141  
142 142  |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]]
143 143  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
159 +| |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|1| |EM1: trapezoidal motion profile / EM0: no motion profile
160 +| |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|5| |Affects motion only when motion profile is disabled (EM0)
144 144  | |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|0|1/10°|
145 145  | |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|1800|1/10°|
163 +| |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|0|-4 to +4 integer|Suggested values are between 0 to +4
164 +| |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|4|-10 to +10 integer|
146 146  | |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
147 147  | |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
148 148  | |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
149 149  | |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|No value|1/10°|Reset required after change.
169 +| |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |1023|255 to 1023 integer|
150 150  | |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
151 151  | |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
152 -| |[[Step Mode>>doc:||anchor="HStepMode"]]|(% style="text-align:center" %)SM|(% style="text-align:center" %)QM|(% style="text-align:center" %)CSM|2|1, 2, 4|Numbers represent fractions: full step, &frac12; step, &frac14; step
153 153  
154 154  |(% colspan="8" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]]
155 155  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
... ... @@ -180,93 +180,20 @@
180 180  |(% colspan="8" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]]
181 181  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
182 182  | |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
202 +| |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB| |0 to 63 integer|Reset required after change. See command for details.
183 183  
184 184  = (% style="color:inherit; font-family:inherit" %)Details(%%) =
185 185  
186 186  == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
187 187  
188 -====== (% style="color:inherit; font-family:inherit" %)__Reset__(%%) ======
189 189  
190 -(% style="color:inherit; font-family:inherit" %)Ex: #5RESET<cr>
191 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See Session, note #2 for more details.
209 +====== ======
192 192  
193 -====== (% style="color:inherit; font-family:inherit" %)__Default & confirm__(%%) ======
194 -
195 -(% style="color:inherit; font-family:inherit" %)Ex: #5DEFAULT<cr>
196 -
197 -(% style="color:inherit; font-family:inherit" %)This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
198 -
199 -(% style="color:inherit; font-family:inherit" %)EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
200 -
201 -(% style="color:inherit; font-family:inherit" %)Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
202 -
203 -(% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
204 -
205 -====== (% style="color:inherit; font-family:inherit" %)__Update & confirm__(%%) ======
206 -
207 -(% style="color:inherit; font-family:inherit" %)Ex: #5UPDATE<cr>
208 -
209 -(% style="color:inherit; font-family:inherit" %)This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
210 -
211 -(% style="color:inherit; font-family:inherit" %)EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
212 -
213 -(% style="color:inherit; font-family:inherit" %)Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
214 -
215 -(% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
216 -
217 -====== (% style="color:inherit; font-family:inherit" %)__Confirm__(%%) ======
218 -
219 -(% style="color:inherit; font-family:inherit" %)Ex: #5CONFIRM<cr>
220 -
221 -(% style="color:inherit; font-family:inherit" %)This command is used to confirm changes after a Default or Update command.
222 -Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
223 -
224 -====== (% style="color:inherit; font-family:inherit" %)__ID Number (**ID**)__(%%) ======
225 -
226 -(% style="color:inherit; font-family:inherit" %)Configure ID Number (**CID**)
227 -
228 -(% style="color:inherit; font-family:inherit" %)Ex: #0CID5<cr>
229 -
230 -The default ID is 0, so this sets the servo to ID 5.
231 -
232 -Query ID Number (**QID**)
233 -
234 -Ex: #254QID<cr> might return *254QID5<cr>
235 -
236 -In this case, the broadcast ID is used to ensure the servo connected will reply with the ID. This can be used in case the ID assigned to a servo is forgotten.
237 -
238 -====== (% style="color:inherit; font-family:inherit" %)__Enable CAN Terminal Resistor (**ET**)__(%%) ======
239 -
240 -Query Enable CAN Terminal Resistor (**QET**)
241 -
242 -Ex: #5QET<cr> might return *QET0<cr>
243 -
244 -This means that servo with ID 5 is NOT configured as the last servo in the CAN bus.
245 -
246 -Configure Enable CAN Terminal Resistor (**CET**)
247 -
248 -(% style="color:inherit; font-family:inherit" %)Ex: #5CET1<cr>
249 -
250 -(% style="color:inherit; font-family:inherit" %)This commands sets servo with ID 5 as being the last in the CAN Bus. The last servo in a CAN bus must be configured this way.
251 -
252 -====== __USB Connection Status (**UC**)__ ======
253 -
254 -Query USB Connection Status (**QUC**)
255 -
256 -Ex: #5QUC<cr> might return *5QUC1<cr> meaning the servo is connected via USB
257 -
258 -====== __Firmware Release (**FR**)__ ======
259 -
260 -Query Firmware Release (**QFR**)
261 -
262 -Ex: #5QFR<cr> might return *QFR11<cr> meaning it has a (random) firmware release version number 11.
263 -
264 -This is used to verify if the firmware on the servos is up to date, or which version is running on the microcontroller.
265 -
266 266  == Motion ==
267 267  
268 268  ====== __Position in Degrees (**D**)__ ======
269 269  
215 +
270 270  Example: #5D1456<cr>
271 271  
272 272  This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction.
... ... @@ -294,6 +294,7 @@
294 294  
295 295  ====== __Wheel Mode in Degrees (**WD**)__ ======
296 296  
243 +
297 297  Ex: #5WD90<cr>
298 298  
299 299  This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
... ... @@ -306,6 +306,7 @@
306 306  
307 307  ====== __Wheel Mode in RPM (**WR**)__ ======
308 308  
256 +
309 309  Ex: #5WR40<cr>
310 310  
311 311  This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
... ... @@ -316,16 +316,19 @@
316 316  
317 317  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
318 318  
267 +====== ======
268 +
319 319  ====== __(Relative) Move in Degrees (**MD**)__ ======
320 320  
321 -(% class="wikigeneratedid" id="HExample:235M15003Ccr3E" %)
322 -Example: #5M1500<cr>
271 +======
272 +Example: #5M1500<cr> ======
323 323  
324 -(% class="wikigeneratedid" id="HTherelativemoveinPWMcommandcausestheservotoreaditscurrentpositionandmovebythespecifiednumberofPWMsignal.ForexampleiftheservoissettorotateCW28default29andanMcommandof1500issenttotheservo2Citwillcausetheservotorotateclockwiseby90degrees.NegativePWMvaluewouldcausetheservotorotateintheoppositeconfigureddirection." %)
325 -The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
274 +(% class="wikigeneratedid" %)
275 +====== The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. ======
326 326  
327 327  ====== __Query Status (**Q**)__ ======
328 328  
279 +
329 329  The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.
330 330  
331 331  Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
... ... @@ -349,6 +349,7 @@
349 349  
350 350  If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
351 351  
303 +
352 352  |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
353 353  | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
354 354  | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
... ... @@ -357,6 +357,7 @@
357 357  
358 358  ====== __Limp (**L**)__ ======
359 359  
312 +
360 360  Example: #5L<cr>
361 361  
362 362  This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
... ... @@ -363,6 +363,7 @@
363 363  
364 364  ====== __Halt & Hold (**H**)__ ======
365 365  
319 +
366 366  Example: #5H<cr>
367 367  
368 368  This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
... ... @@ -369,205 +369,485 @@
369 369  
370 370  == Motion Setup ==
371 371  
372 -====== __Origin Offset (**O**)__ ======
326 +====== __Enable Motion Profile (**EM**)__ ======
373 373  
374 -Example: #5O2400<cr>This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
328 +{{html clean="false" wiki="true"}}
329 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
330 +EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div>
375 375  
376 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
332 +Ex: #5EM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
377 377  
334 +This command enables a trapezoidal motion profile for servo #5 <div class="wikimodel-emptyline"></div>
378 378  
379 -In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
336 +Ex: #5EM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
380 380  
381 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]
338 +This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command).
382 382  
340 +<div class="wikimodel-emptyline"></div>
383 383  
384 -Origin Offset Query (**QO**)
342 +Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div>
385 385  
386 -Example: #5QO<cr> might return *5QO-13
344 +Ex: #5QEM&lt;cr&gt; might return *5QEM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
387 387  
388 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
346 +This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div>
389 389  
390 -Configure Origin Offset (**CO**)
348 +Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div>
391 391  
392 -Example: #5CO-24<cr>
350 +Ex: #5CEM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
393 393  
352 +This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
353 +<div class="wikimodel-emptyline"></div></div></div>
354 +{{/html}}
355 +
356 +====== __Filter Position Count (**FPC**)__ ======
357 +
358 +{{html clean="false" wiki="true"}}
359 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
360 +The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default.
361 +<div class="wikimodel-emptyline"></div>
362 +Ex: #5FPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
363 +This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div>
364 +
365 +Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div>
366 +
367 +Ex: #5QFPC&lt;cr&gt; might return *5QFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
368 +
369 +This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div>
370 +
371 +Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div>
372 +
373 +Ex: #5CFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
374 +
375 +This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
376 +<div class="wikimodel-emptyline"></div></div></div>
377 +{{/html}}
378 +
379 +====== __Origin Offset (**O**)__ ======
380 +
381 +{{html wiki="true" clean="false"}}
382 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
383 +Example: #5O2400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
384 +
385 +This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div>
386 +
387 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
388 +
389 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div>
390 +
391 +[[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div>
392 +
393 +Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div>
394 +
395 +Example: #5QO&lt;cr&gt; might return *5QO-13<div class="wikimodel-emptyline"></div>
396 +
397 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div>
398 +
399 +Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div>
400 +
401 +Example: #5CO-24&lt;cr&gt;<div class="wikimodel-emptyline"></div>
402 +
394 394  This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
404 +<div class="wikimodel-emptyline"></div></div></div>
405 +{{/html}}
395 395  
396 396  ====== __Angular Range (**AR**)__ ======
397 397  
398 -Example: #5AR1800<cr>
409 +{{html wiki="true" clean="false"}}
410 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
411 +Example: #5AR1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
399 399  
400 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
413 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div>
401 401  
402 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
415 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
403 403  
404 -Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
417 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div>
405 405  
406 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]
419 +[[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div>
407 407  
421 +Finally, the angular range action command (ex. #5AR1800&lt;cr&gt;) and origin offset action command (ex. #5O-1200&lt;cr&gt;) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div>
408 408  
409 -Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
423 +[[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div>
410 410  
411 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]
425 +Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div>
412 412  
427 +Example: #5QAR&lt;cr&gt; might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div>
413 413  
414 -Query Angular Range (**QAR**)
429 +Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div>
415 415  
416 -Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
431 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
432 +<div class="wikimodel-emptyline"></div></div></div>
433 +{{/html}}
417 417  
418 -Configure Angular Range (**CAR**)
435 +====== __Angular Stiffness (**AS**)__ ======
419 419  
420 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
437 +{{html wiki="true" clean="false"}}
438 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
439 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div>
421 421  
441 +A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div>
442 +
443 +* The more torque will be applied to try to keep the desired position against external input / changes
444 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div>
445 +
446 +A lower value on the other hand:<div class="wikimodel-emptyline"></div>
447 +
448 +* Causes a slower acceleration to the travel speed, and a slower deceleration
449 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div>
450 +
451 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
452 +
453 +Ex: #5AS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
454 +
455 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div>
456 +
457 +Ex: #5QAS&lt;cr&gt;<div class="wikimodel-emptyline"></div>
458 +
459 +Queries the value being used.<div class="wikimodel-emptyline"></div>
460 +
461 +Ex: #5CAS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
462 +
463 +Writes the desired angular stiffness value to EEPROM.
464 +<div class="wikimodel-emptyline"></div></div></div>
465 +{{/html}}
466 +
467 +====== __Angular Holding Stiffness (**AH**)__ ======
468 +
469 +{{html wiki="true" clean="false"}}
470 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
471 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
472 +
473 +Ex: #5AH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
474 +
475 +This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div>
476 +
477 +Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div>
478 +
479 +Ex: #5QAH&lt;cr&gt; might return *5QAH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
480 +
481 +This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div>
482 +
483 +Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div>
484 +
485 +Ex: #5CAH2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
486 +
487 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM.
488 +<div class="wikimodel-emptyline"></div></div></div>
489 +{{/html}}
490 +
422 422  ====== __Angular Acceleration (**AA**)__ ======
423 423  
424 -The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
493 +{{html wiki="true" clean="false"}}
494 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
495 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
425 425  
426 -Ex: #5AA30<cr>
497 +Ex: #5AA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
427 427  
428 -This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
499 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
429 429  
430 -Query Angular Acceleration (**QAA**)
501 +Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div>
431 431  
432 -Ex: #5QAA<cr> might return *5QAA30<cr>
503 +Ex: #5QAA&lt;cr&gt; might return *5QAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
433 433  
434 -This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).
505 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
435 435  
436 -Configure Angular Acceleration (**CAA**)
507 +Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div>
437 437  
438 -Ex: #5CAA30<cr>
509 +Ex: #5CAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
439 439  
440 440  This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
512 +<div class="wikimodel-emptyline"></div></div></div>
513 +{{/html}}
441 441  
442 442  ====== __Angular Deceleration (**AD**)__ ======
443 443  
444 -The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
517 +{{html wiki="true" clean="false"}}
518 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
519 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
445 445  
446 -Ex: #5AD30<cr>
521 +Ex: #5AD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
447 447  
448 -This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
523 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
449 449  
450 -Query Angular Deceleration (**QAD**)
525 +Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div>
451 451  
452 -Ex: #5QAD<cr> might return *5QAD30<cr>
527 +Ex: #5QAD&lt;cr&gt; might return *5QAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
453 453  
454 -This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).
529 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
455 455  
456 -Configure Angular Deceleration (**CAD**)
531 +Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div>
457 457  
458 -Ex: #5CAD30<cr>
533 +Ex: #5CAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
459 459  
460 -This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
535 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
536 +<div class="wikimodel-emptyline"></div></div></div>
537 +{{/html}}
461 461  
462 462  ====== __Gyre Direction (**G**)__ ======
463 463  
464 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.
541 +{{html wiki="true" clean="false"}}
542 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
543 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div>
465 465  
466 -Ex: #5G-1<cr>
545 +Ex: #5G-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
467 467  
468 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
547 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div>
469 469  
470 -Query Gyre Direction (**QG**)Ex: #5QG<cr> might return *5QG-1<cr>
549 +Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div>
471 471  
472 -The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.
551 +Ex: #5QG&lt;cr&gt; might return *5QG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
473 473  
474 -Configure Gyre (**CG**)
553 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div>
475 475  
476 -Ex: #5CG-1<cr>
555 +Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div>
477 477  
557 +Ex: #5CG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
558 +
478 478  This changes the gyre direction as described above and also writes to EEPROM.
560 +<div class="wikimodel-emptyline"></div></div></div>
561 +{{/html}}
479 479  
480 480  ====== __First Position__ ======
481 481  
482 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.Query First Position in Degrees (**QFD**)Ex: #5QFD<cr> might return *5QFD900<cr>The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.Configure First Position in Degrees (**CFD**)Ex: #5CFD900<cr>This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
565 +{{html wiki="true" clean="false"}}
566 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
567 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div>
483 483  
569 +Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div>
570 +
571 +Ex: #5QFD&lt;cr&gt; might return *5QFD900&lt;cr&gt; <div class="wikimodel-emptyline"></div>
572 +
573 +The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div>
574 +
575 +Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div>
576 +
577 +Ex: #5CFD900&lt;cr&gt;<div class="wikimodel-emptyline"></div>
578 +
579 +This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD&lt;cr&gt;) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD&lt;cr&gt;
580 +<div class="wikimodel-emptyline"></div></div></div>
581 +{{/html}}
582 +
583 +====== __Maximum Motor Duty (**MMD**)__ ======
584 +
585 +{{html wiki="true" clean="false"}}
586 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
587 +This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div>
588 +
589 +Ex: #5MMD512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
590 +
591 +This will set the duty-cycle to 512 for servo with ID 5 for that session.<div class="wikimodel-emptyline"></div>
592 +
593 +Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div>
594 +
595 +Ex: #5QMMDD&lt;cr&gt; might return *5QMMD512&lt;cr&gt; <div class="wikimodel-emptyline"></div>
596 +
597 +This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023.
598 +<div class="wikimodel-emptyline"></div></div></div>
599 +{{/html}}
600 +
484 484  ====== __Maximum Speed in Degrees (**SD**)__ ======
485 485  
486 -Ex: #5SD1800<cr>This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in Degrees (**QSD**)Ex: #5QSD<cr> might return *5QSD1800<cr>By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
603 +{{html wiki="true" clean="false"}}
604 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
605 +Ex: #5SD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
606 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
487 487  
608 +Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div>
609 +
610 +Ex: #5QSD&lt;cr&gt; might return *5QSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
611 +
612 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1&lt;cr&gt; is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
613 +
488 488  |**Command sent**|**Returned value (1/10 °)**
489 -|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
490 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
491 -|ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
492 -|ex: #5QSD3<cr>|Target travel speed
615 +|ex: #5QSD&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
616 +|ex: #5QSD1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
617 +|ex: #5QSD2&lt;cr&gt;|Instantaneous speed (same as QWD)
618 +|ex: #5QSD3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
493 493  
494 -Configure Speed in Degrees (**CSD**)Ex: #5CSD1800<cr>Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
620 +Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div>
495 495  
622 +Ex: #5CSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
623 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
624 +</div></div>
625 +{{/html}}
626 +
496 496  ====== __Maximum Speed in RPM (**SR**)__ ======
497 497  
498 -Ex: #5SR45<cr>This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in RPM (**QSR**)Ex: #5QSR<cr> might return *5QSR45<cr>By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
629 +{{html wiki="true" clean="false"}}
630 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
631 +Ex: #5SR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
632 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
499 499  
634 +Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div>
635 +
636 +Ex: #5QSR&lt;cr&gt; might return *5QSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
637 +
638 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1&lt;cr&gt; is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
639 +
500 500  |**Command sent**|**Returned value (1/10 °)**
501 -|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
502 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
503 -|ex: #5QSR2<cr>|Instantaneous speed (same as QWD)
504 -|ex: #5QSR3<cr>|Target travel speed
641 +|ex: #5QSR&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
642 +|ex: #5QSR1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
643 +|ex: #5QSR2&lt;cr&gt;|Instantaneous speed (same as QWD)
644 +|ex: #5QSR3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
505 505  
506 -Configure Speed in RPM (**CSR**)Ex: #5CSR45<cr>Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
646 +Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div>
507 507  
648 +Ex: #5CSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
649 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
650 +</div></div>
651 +{{/html}}
652 +
508 508  == Modifiers ==
509 509  
510 -====== __Speed (**SD**) modifier__ ======
655 +====== __Speed (**S**, **SD**) modifier__ ======
511 511  
512 -(% class="wikigeneratedid" id="HTimedmove28T29modifier" %)
513 -Example: #5D0SD180<cr>
657 +{{html clean="false" wiki="true"}}
658 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
659 +Example: #5P1500S750&lt;cr&gt;<div class="wikimodel-emptyline"></div>
660 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
661 +Example: #5D0SD180&lt;cr&gt;<div class="wikimodel-emptyline"></div>
662 +Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.<div class="wikimodel-emptyline"></div>
663 +Query Speed (**QS**)<div class="wikimodel-emptyline"></div>
664 +Example: #5QS&lt;cr&gt; might return *5QS300&lt;cr&gt;<div class="wikimodel-emptyline"></div>
665 +This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div>
666 +</div></div>
667 +{{/html}}
514 514  
515 -(% class="wikigeneratedid" %)
516 -Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.
669 +====== __Timed move (**T**) modifier__ ======
517 517  
518 -(% class="wikigeneratedid" %)
519 -Query Speed (**QS**)
671 +{{html wiki="true" clean="false"}}
672 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
673 +Example: #5P1500T2500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
520 520  
521 -(% class="wikigeneratedid" %)
522 -Example: #5QS<cr> might return *5QS300<cr>
675 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
676 +**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div>
677 +</div></div>
678 +{{/html}}
523 523  
524 -(% class="wikigeneratedid" %)
525 -This command queries the current speed in microseconds per second.
680 +====== __Current Halt & Hold (**CH**) modifier__ ======
526 526  
527 -====== __Timed move (**T**) modifier__ ======
682 +{{html wiki="true" clean="false"}}
683 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
684 +Example: #5D1423CH400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
528 528  
529 -Example: #5D15000T2500<cr>
686 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div>
687 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
688 +</div></div>
689 +{{/html}}
530 530  
531 -Timed move can be used only as a modifier for a position (D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
691 +====== __Current Limp (**CL**) modifier__ ======
532 532  
533 -**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested
693 +{{html wiki="true" clean="false"}}
694 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
695 +Example: #5D1423CL400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
534 534  
535 -====== ======
697 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div>
698 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
699 +</div></div>
700 +{{/html}}
536 536  
537 537  == Telemetry ==
538 538  
539 539  ====== __Query Voltage (**QV**)__ ======
540 540  
541 -Ex: #5QV<cr> might return *5QV11200<cr>
706 +{{html wiki="true" clean="false"}}
707 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
708 +Ex: #5QV&lt;cr&gt; might return *5QV11200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
709 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div>
710 +</div></div>
711 +{{/html}}
542 542  
543 -The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.
544 -
545 545  ====== __Query Temperature (**QT**)__ ======
546 546  
547 -Ex: #5QT<cr> might return *5QT564<cr>
715 +{{html wiki="true" clean="false"}}
716 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
717 +Ex: #5QT&lt;cr&gt; might return *5QT564&lt;cr&gt;<div class="wikimodel-emptyline"></div>
718 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div>
719 +</div></div>
720 +{{/html}}
548 548  
549 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
722 +====== __Query Current (**QC**)__ ======
550 550  
551 -====== __Query Motor Driver Current (**QC**)__ ======
724 +{{html wiki="true" clean="false"}}
725 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
726 +Ex: #5QC&lt;cr&gt; might return *5QC140&lt;cr&gt;<div class="wikimodel-emptyline"></div>
727 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div>
728 +</div></div>
729 +{{/html}}
552 552  
553 -Ex: #5QC<cr> might return *5QC140<cr>
731 +====== __Query Model String (**QMS**)__ ======
554 554  
555 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value.
733 +{{html wiki="true" clean="false"}}
734 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
735 +Ex: #5QMS&lt;cr&gt; might return *5QMSLSS-HS1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
736 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div>
737 +</div></div>
738 +{{/html}}
556 556  
557 -====== __Query Model String (**QMS**)__ ======
740 +====== __Query Firmware (**QF**)__ ======
558 558  
559 -Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
742 +{{html wiki="true" clean="false"}}
743 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
744 +Ex: #5QF&lt;cr&gt; might return *5QF368&lt;cr&gt;<div class="wikimodel-emptyline"></div>
745 +The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div>
746 +The command #5QF3&lt;cr&gt; can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div>
747 +</div></div>
748 +{{/html}}
560 560  
561 -This reply means that the servo model is LSS-HS1: a high speed servo, first revision.
750 +====== __Query Serial Number (**QN**)__ ======
562 562  
563 -====== __Query Firmware (**QF**)__ ======
752 +{{html wiki="true" clean="false"}}
753 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
754 +Ex: #5QN&lt;cr&gt; might return *5QN12345678&lt;cr&gt;<div class="wikimodel-emptyline"></div>
755 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div>
756 +</div></div>
757 +{{/html}}
564 564  
565 -Ex: #5QF<cr> might return *5QF368<cr>
759 +== RGB LED ==
566 566  
567 -The number in the reply represents the firmware version, in this example being 368.The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14
761 +====== __LED Color (**LED**)__ ======
568 568  
569 -====== __Query Serial Number (**QN**)__ ======
763 +{{html wiki="true" clean="false"}}
764 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
765 +Ex: #5LED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
766 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div>
767 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div>
768 +Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div>
769 +Ex: #5QLED&lt;cr&gt; might return *5QLED5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
770 +This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div>
771 +Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div>
772 +Ex: #5CLED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
773 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div>
774 +</div></div>
775 +{{/html}}
570 570  
571 -Ex: #5QN<cr> might return *5QN12345678<cr>
777 +====== __Configure LED Blinking (**CLB**)__ ======
572 572  
573 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
779 +{{html wiki="true" clean="false"}}
780 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
781 +This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div>
782 +
783 +(% style="width:195px" %)
784 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
785 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0
786 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1
787 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2
788 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
789 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
790 +|(% style="width:134px" %)Free|(% style="width:58px" %)16
791 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32
792 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div>
793 +
794 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div>
795 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div>
796 +Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div>
797 +Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div>
798 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div>
799 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div>
800 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div>
801 +RESETTING the servo is needed.<div class="wikimodel-emptyline"></div>
802 +</div></div>
803 +{{/html}}
804 +
805 +== RGB LED ==
806 +
807 +The LED can be
Copyright RobotShop 2018