Last modified by Eric Nantel on 2024/09/06 14:52

From version < 57.1 >
edited by Coleman Benson
on 2023/07/27 13:46
To version < 34.1 >
edited by Coleman Benson
on 2023/07/25 15:26
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,7 +1,6 @@
1 1  {{warningBox warningText="More information coming soon"/}}
2 2  
3 3  
4 -
5 5  (% class="wikigeneratedid" id="HTableofContents" %)
6 6  **Page Contents**
7 7  
... ... @@ -30,88 +30,104 @@
30 30  
31 31  == Modifiers ==
32 32  
33 -Modifiers can only be used with certain **action commands**. The format to include a modifier is:
32 +{{html clean="false" wiki="true"}}
33 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
34 +Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div>
34 34  
35 -1. Start with a number sign **#** (Unicode Character: U+0023)
36 +1. Start with a number sign **#** (Unicode Character: U+0023)
36 36  1. Servo ID number as an integer
37 37  1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
38 38  1. Action value in the correct units with no decimal
39 -1. Modifier command (one or two letters from the list of modifiers below)
40 +1. Modifier command (one or two letters from the list of modifiers below)
40 40  1. Modifier value in the correct units with no decimal
41 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
42 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)
42 42  
43 -Ex: #5D13000T1500<cr>This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).
44 +Ex: #5D13000T1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
44 44  
45 -== Queries ==
46 +This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div>
47 +<div class="wikimodel-emptyline"></div></div></div>
46 46  
47 -Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:
49 +<h2>Queries</h2>
50 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
51 +Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div>
48 48  
49 -1. Start with a number sign **#** (Unicode Character: U+0023)
53 +1. Start with a number sign **#** (Unicode Character: U+0023)
50 50  1. Servo ID number as an integer
51 51  1. Query command (one to four letters, no spaces, capital or lower case)
52 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
56 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
53 53  
54 -Ex: #5QD<cr> Query the position in (hundredths of) degrees for servo with ID #5The query will return a serial string (almost instantaneously) via the servo's Tx in the following format:
58 +Ex: #5QD&lt;cr&gt; Query the position in (hundredths of) degrees for servo with ID #5<div class="wikimodel-emptyline"></div>
55 55  
60 +The query will return a serial string (almost instantaneously) via the servo's Tx in the following format:
61 +
56 56  1. Start with an asterisk * (Unicode Character: U+0023)
57 57  1. Servo ID number as an integer
58 58  1. Query command (one to four letters, no spaces, capital letters)
59 59  1. The reported value in the units described, no decimals.
60 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
66 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
61 61  
62 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:
68 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div>
63 63  
64 -Ex: *5QD13000<cr>
70 +Ex: *5QD13000&lt;cr&gt;<div class="wikimodel-emptyline"></div>
65 65  
66 66  This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees).
73 +<div class="wikimodel-emptyline"></div></div></div>
67 67  
68 -== Configurations ==
75 +<h2>Configurations</h2>
69 69  
70 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.
77 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
78 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div>
71 71  
72 -The format to send a configuration command is identical to that of an action command:
80 +These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>
73 73  
74 -1. Start with a number sign **#** (Unicode Character: U+0023)
82 +The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div>
83 +
84 +1. Start with a number sign **#** (Unicode Character: U+0023)
75 75  1. Servo ID number as an integer
76 76  1. Configuration command (two to four letters, no spaces, capital or lower case)
77 77  1. Configuration value in the correct units with no decimal
78 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
88 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
79 79  
80 -Ex: #5CO-500<cr>
90 +Ex: #5CO-500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
81 81  
82 -This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).
92 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div>
83 83  
84 -**Session vs Configuration Query**
94 +**Session vs Configuration Query**<div class="wikimodel-emptyline"></div>
85 85  
86 -By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
96 +By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div>
87 87  
88 -Ex: #5CSR10<cr> immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.
98 +Ex: #5CSR10&lt;cr&gt; immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>
89 89  
90 -After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
100 +After RESET, a command of #5SR4&lt;cr&gt; sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>
91 91  
92 -#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas
102 +#5QSR&lt;cr&gt; or #5QSR0&lt;cr&gt; would return *5QSR4&lt;cr&gt; which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>
93 93  
94 -#5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM
104 +#5QSR1&lt;cr&gt; would return *5QSR10&lt;cr&gt; which represents the value in EEPROM
105 +<div class="wikimodel-emptyline"></div></div></div>
95 95  
96 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).
107 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
108 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div>
97 97  
98 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]
110 +[[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div>
99 99  
100 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
112 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div>
101 101  
102 -#1D-3000<cr> This causes the servo to move to -30.00 degrees (green arrow)
114 +#1D-3000&lt;cr&gt; This causes the servo to move to -30.00 degrees (green arrow)<div class="wikimodel-emptyline"></div>
103 103  
104 -#1D21000<cr> This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)
116 +#1D21000&lt;cr&gt; This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)<div class="wikimodel-emptyline"></div>
105 105  
106 -#1D-42000<cr> This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.
118 +#1D-42000&lt;cr&gt; This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div>
107 107  
108 -Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees.
120 +Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees.<div class="wikimodel-emptyline"></div>
109 109  
110 -#1D48000<cr> This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
122 +#1D48000&lt;cr&gt; This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div>
111 111  
112 -#1D33000<cr> would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).
124 +#1D33000&lt;cr&gt; would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>
113 113  
114 114  If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.00 degrees before power is cycled, upon power up the servo's position will be read as +120.00 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.00°, 180.00°].
127 +<div class="wikimodel-emptyline"></div></div></div>
128 +
129 +{{/html}}
115 115  )))
116 116  
117 117  = Command List =
... ... @@ -124,10 +124,10 @@
124 124  | |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Revert to firmware default values. See command for details
125 125  | |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Update firmware. See command for details.
126 126  | |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) | | |
127 -| |[[**ID** Number >>||anchor="HIDNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
128 -| |[[**E**nable CAN **T**erminal>>doc:||anchor="HEnableCANTerminalResistor28ET29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0 or 1|0: Disable  1: Enable
129 -| |[[**U**SB **C**onnection Status>>||anchor="HUSBConnectionStatus28UC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected
130 -| |[[**Q**uery **F**irmware **R**elease>>doc:||anchor="HFirmwareRelease28FR29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | |
142 +| |[[**E**nable CAN **T**erminal>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0 or 1|0: Disable  1: Enable
143 +| |[[**ID** Number >>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
144 +| |[[**U**SB **C**onnection State>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected
145 +| |**Q**uery **F**irmware **R**elease|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | |
131 131  
132 132  |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]]
133 133  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
... ... @@ -141,15 +141,19 @@
141 141  
142 142  |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]]
143 143  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
159 +| |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|1| |EM1: trapezoidal motion profile / EM0: no motion profile
160 +| |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|5| |Affects motion only when motion profile is disabled (EM0)
144 144  | |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|0|1/10°|
145 145  | |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|1800|1/10°|
163 +| |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|0|-4 to +4 integer|Suggested values are between 0 to +4
164 +| |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|4|-10 to +10 integer|
146 146  | |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
147 147  | |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
148 148  | |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
149 149  | |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|No value|1/10°|Reset required after change.
169 +| |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |1023|255 to 1023 integer|
150 150  | |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
151 151  | |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
152 -| |[[Step Mode>>doc:||anchor="HStepMode28SM29"]]|(% style="text-align:center" %)SM|(% style="text-align:center" %)QM|(% style="text-align:center" %)CSM|2|1, 2, 4|Numbers represent fractions: full step, &frac12; step, &frac14; step
153 153  
154 154  |(% colspan="8" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]]
155 155  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
... ... @@ -163,123 +163,37 @@
163 163  | |[[**Q**uery **M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) | | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
164 164  | |[[**Q**uery **F**irmware Version>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) | | |
165 165  | |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) | | |Returns the unique serial number for the servo
166 -| |[[**Q**uery **T**emperature **P**robe>>doc:||anchor="HQueryTemperatureProbe28QTP29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | | |Queries temperature probe fixed to the stepper motor
167 -| |[[**Q**uery **T**emp of **M**CU>>doc:||anchor="HQueryMCUTemperature28QTM29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTM|(% style="text-align:center" %) | | |
168 -| |[[**Q**uery **T**emp of **C**ontroller>>doc:||anchor="HQueryTempofController28QTCW29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW, QTCE|(% style="text-align:center" %) | | |(((
185 +| |**Q**uery **T**emperature **P**robe|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | | |Queries temperature probe fixed to stepper motor
186 +| |**Q**uery **T**emp of **C**ontroller|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW, QTCE|(% style="text-align:center" %) | | |(((
169 169  QTCW: Queries the temperature status of the motor controller (pre-warning)
170 170  
171 171  QTCE: Queries the temperature status of the motor controller (over-temp error)
172 172  )))
173 -| |[[**Q**uery **I**MU Linear **X**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2|
174 -| |[[**Q**uery **I**MU Linear **Y**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2|
175 -| |[[**Q**uery **I**MU Linear **Z**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2|
176 -| |[[**Q**uery **I**MU Angular Accel **α** >>doc:||anchor="HQueryIMUAngular28QIAQIBQIC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha)
177 -| |[[**Q**uery **I**MU Angular Accel **β**>>doc:||anchor="HQueryIMUAngular28QIAQIBQIC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta)
178 -| |[[**Q**uery **I**MU Angular Accel **γ**>>doc:||anchor="HQueryIMUAngular28QIAQIBQIC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIC / QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma)
191 +| |**Q**uery **C**urrent **S**peed |(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | | |Queries the motor controller's calculated speed
192 +| |**Q**uery **I**MU Linear **X**|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2|
193 +| |**Q**uery **I**MU Linear **Y**|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2|
194 +| |**Q**uery **I**MU Linear **Z**|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2|
195 +| |**Q**uery **I**MU Angular Accel **α** |(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha)
196 +| |**Q**uery **I**MU Angular Accel **β**|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta)
197 +| |**Q**uery **I**MU Angular Accel **γ**|(% style="text-align:center" %) |(% style="text-align:center" %)QIC / QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma)
179 179  
180 180  |(% colspan="8" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]]
181 181  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
182 182  | |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
202 +| |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB| |0 to 63 integer|Reset required after change. See command for details.
183 183  
184 184  = (% style="color:inherit; font-family:inherit" %)Details(%%) =
185 185  
186 186  == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
187 187  
188 -|(% colspan="2" %)(((
189 -====== __Reset__ ======
190 -)))
191 -| |(((
192 -Ex: #5RESET<cr>
193 193  
194 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See Session, note #2 for more details.
195 -)))
196 -
197 -|(% colspan="2" %)(((
198 -====== (% style="color:inherit; font-family:inherit" %)__Default & confirm__(%%) ======
199 -)))
200 -| |(((
201 -Ex: #5RESET<cr>
202 -
203 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See Session, note #2 for more details.
204 -)))
205 -
206 206  ====== ======
207 207  
208 -(% style="color:inherit; font-family:inherit" %)Ex: #5DEFAULT<cr>
209 -
210 -(% style="color:inherit; font-family:inherit" %)This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
211 -
212 -(% style="color:inherit; font-family:inherit" %)EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
213 -
214 -(% style="color:inherit; font-family:inherit" %)Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
215 -
216 -(% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
217 -
218 -====== (% style="color:inherit; font-family:inherit" %)__Update & confirm__(%%) ======
219 -
220 -(% style="color:inherit; font-family:inherit" %)Ex: #5UPDATE<cr>
221 -
222 -(% style="color:inherit; font-family:inherit" %)This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
223 -
224 -(% style="color:inherit; font-family:inherit" %)EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
225 -
226 -(% style="color:inherit; font-family:inherit" %)Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
227 -
228 -(% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
229 -
230 -====== (% style="color:inherit; font-family:inherit" %)__Confirm__(%%) ======
231 -
232 -(% style="color:inherit; font-family:inherit" %)Ex: #5CONFIRM<cr>
233 -
234 -(% style="color:inherit; font-family:inherit" %)This command is used to confirm changes after a Default or Update command.
235 -Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
236 -
237 -====== (% style="color:inherit; font-family:inherit" %)__ID Number (**ID**)__(%%) ======
238 -
239 -(% style="color:inherit; font-family:inherit" %)Configure ID Number (**CID**)
240 -
241 -(% style="color:inherit; font-family:inherit" %)Ex: #0CID5<cr>
242 -
243 -The default ID is 0, so this sets the servo to ID 5.
244 -
245 -Query ID Number (**QID**)
246 -
247 -Ex: #254QID<cr> might return *254QID5<cr>
248 -
249 -In this case, the broadcast ID is used to ensure the servo connected will reply with the ID. This can be used in case the ID assigned to a servo is forgotten.
250 -
251 -====== (% style="color:inherit; font-family:inherit" %)__Enable CAN Terminal Resistor (**ET**)__(%%) ======
252 -
253 -Query Enable CAN Terminal Resistor (**QET**)
254 -
255 -Ex: #5QET<cr> might return *QET0<cr>
256 -
257 -This means that servo with ID 5 is NOT configured as the last servo in the CAN bus.
258 -
259 -Configure Enable CAN Terminal Resistor (**CET**)
260 -
261 -(% style="color:inherit; font-family:inherit" %)Ex: #5CET1<cr>
262 -
263 -(% style="color:inherit; font-family:inherit" %)This commands sets servo with ID 5 as being the last in the CAN Bus. The last servo in a CAN bus must be configured this way.
264 -
265 -====== __USB Connection Status (**UC**)__ ======
266 -
267 -Query USB Connection Status (**QUC**)
268 -
269 -Ex: #5QUC<cr> might return *5QUC1<cr> meaning the servo is connected via USB
270 -
271 -====== __Firmware Release (**FR**)__ ======
272 -
273 -Query Firmware Release (**QFR**)
274 -
275 -Ex: #5QFR<cr> might return *QFR11<cr> meaning it has a (random) firmware release version number 11.
276 -
277 -This is used to verify if the firmware on the servos is up to date, or which version is running on the microcontroller.
278 -
279 279  == Motion ==
280 280  
281 281  ====== __Position in Degrees (**D**)__ ======
282 282  
215 +
283 283  Example: #5D1456<cr>
284 284  
285 285  This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction.
... ... @@ -307,6 +307,7 @@
307 307  
308 308  ====== __Wheel Mode in Degrees (**WD**)__ ======
309 309  
243 +
310 310  Ex: #5WD90<cr>
311 311  
312 312  This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
... ... @@ -319,6 +319,7 @@
319 319  
320 320  ====== __Wheel Mode in RPM (**WR**)__ ======
321 321  
256 +
322 322  Ex: #5WR40<cr>
323 323  
324 324  This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
... ... @@ -329,16 +329,19 @@
329 329  
330 330  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
331 331  
267 +====== ======
268 +
332 332  ====== __(Relative) Move in Degrees (**MD**)__ ======
333 333  
334 -(% class="wikigeneratedid" id="HExample:235M15003Ccr3E" %)
335 -Example: #5M1500<cr>
271 +======
272 +Example: #5M1500<cr> ======
336 336  
337 -(% class="wikigeneratedid" id="HTherelativemoveinPWMcommandcausestheservotoreaditscurrentpositionandmovebythespecifiednumberofPWMsignal.ForexampleiftheservoissettorotateCW28default29andanMcommandof1500issenttotheservo2Citwillcausetheservotorotateclockwiseby90degrees.NegativePWMvaluewouldcausetheservotorotateintheoppositeconfigureddirection." %)
338 -The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
274 +(% class="wikigeneratedid" %)
275 +====== The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. ======
339 339  
340 340  ====== __Query Status (**Q**)__ ======
341 341  
279 +
342 342  The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.
343 343  
344 344  Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
... ... @@ -362,6 +362,7 @@
362 362  
363 363  If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
364 364  
303 +
365 365  |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
366 366  | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
367 367  | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
... ... @@ -370,6 +370,7 @@
370 370  
371 371  ====== __Limp (**L**)__ ======
372 372  
312 +
373 373  Example: #5L<cr>
374 374  
375 375  This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
... ... @@ -376,6 +376,7 @@
376 376  
377 377  ====== __Halt & Hold (**H**)__ ======
378 378  
319 +
379 379  Example: #5H<cr>
380 380  
381 381  This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
... ... @@ -384,6 +384,7 @@
384 384  
385 385  ====== __Origin Offset (**O**)__ ======
386 386  
328 +
387 387  Example: #5O2400<cr>This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
388 388  
389 389  [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
... ... @@ -480,10 +480,8 @@
480 480  
481 481  This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
482 482  
483 -Query Gyre Direction (**QG**)
425 +Query Gyre Direction (**QG**)Ex: #5QG<cr> might return *5QG-1<cr>
484 484  
485 -Ex: #5QG<cr> might return *5QG-1<cr>
486 -
487 487  The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.
488 488  
489 489  Configure Gyre (**CG**)
... ... @@ -520,24 +520,6 @@
520 520  
521 521  Configure Speed in RPM (**CSR**)Ex: #5CSR45<cr>Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
522 522  
523 -====== __Step Mode (**SM**)__ ======
524 -
525 -Ex: #8SM2<cr>
526 -
527 -This sets servo with ID 8 to 1/2 step mode. Since this is an action as opposed to a configuration, it only affects that session.
528 -
529 -Note that the torque and max RPM of the actuator will be affected.
530 -
531 -Query Step Mode (**QSM**)
532 -
533 -Ex: #8QSM<cr> might return *8QSM2<cr> meaning servo with ID 8 is set to half step mode.
534 -
535 -Configure Step Mode (**CSM**)
536 -
537 -Ex: #8SM2<cr>
538 -
539 -This sets servo with ID 8 to 1/2 step mode. Since this is a configuration as opposed to a configuration and the servo will be in 1/2 step mode when powered.
540 -
541 541  == Modifiers ==
542 542  
543 543  ====== __Speed (**SD**) modifier__ ======
... ... @@ -557,6 +557,7 @@
557 557  (% class="wikigeneratedid" %)
558 558  This command queries the current speed in microseconds per second.
559 559  
482 +(% class="wikigeneratedid" %)
560 560  ====== __Timed move (**T**) modifier__ ======
561 561  
562 562  Example: #5D15000T2500<cr>
... ... @@ -569,27 +569,23 @@
569 569  
570 570  == Telemetry ==
571 571  
572 -====== __Query PCB Temperature (**QT**)__ ======
495 +====== __Query Voltage (**QV**)__ ======
573 573  
574 -Ex: #5QT<cr> might return *5QT564<cr>
497 +Ex: #5QV<cr> might return *5QV11200<cr>
575 575  
576 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
499 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.
577 577  
578 -====== __Query Temperature Probe (**QTP**)__ ======
501 +====== __Query Temperature (**QT**)__ ======
579 579  
580 -Ex:
503 +Ex: #5QT<cr> might return *5QT564<cr>
581 581  
582 -====== __Query Temp of Controller (**QTCW**)__ ======
505 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
583 583  
584 -Ex:
507 +====== __Query Motor Driver Current (**QC**)__ ======
585 585  
586 -An alternative is QTCE
587 -
588 -====== __Query Current (**QC**)__ ======
589 -
590 590  Ex: #5QC<cr> might return *5QC140<cr>
591 591  
592 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value. The query calculates the RMS value of the current sent from the motor driver to the stepper motor.
511 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value.
593 593  
594 594  ====== __Query Model String (**QMS**)__ ======
595 595  
... ... @@ -608,17 +608,3 @@
608 608  Ex: #5QN<cr> might return *5QN12345678<cr>
609 609  
610 610  The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
611 -
612 -====== __Query IMU Linear (**QIX** **QIY** **QIZ**)__ ======
613 -
614 -Ex: #6QIX<cr> might return *6QIX30<cr>
615 -
616 -This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 30mm per second squared.
617 -
618 -====== __Query IMU Angular (**QIA** **QIB** **QIC**)__ ======
619 -
620 -Ex: #6QIB<cr> might return *6QIB44<cr>
621 -
622 -This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 4.4 degrees per second squared.
623 -
624 -
Copyright RobotShop 2018