Changes for page LSS-PRO Communication Protocol
Last modified by Eric Nantel on 2024/09/06 14:52
Change comment: There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Hidden
-
... ... @@ -1,1 +1,1 @@ 1 - false1 +true - Content
-
... ... @@ -1,5 +1,6 @@ 1 1 {{warningBox warningText="More information coming soon"/}} 2 2 3 + 3 3 (% class="wikigeneratedid" id="HTableofContents" %) 4 4 **Page Contents** 5 5 ... ... @@ -28,88 +28,104 @@ 28 28 29 29 == Modifiers == 30 30 31 -Modifiers can only be used with certain **action commands**. The format to include a modifier is: 32 +{{html clean="false" wiki="true"}} 33 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 34 +Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div> 32 32 33 -1. Start with a number sign 36 +1. Start with a number sign **#** (Unicode Character: U+0023) 34 34 1. Servo ID number as an integer 35 35 1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below) 36 36 1. Action value in the correct units with no decimal 37 -1. Modifier command (one or two letters from the list of modifiers below) 40 +1. Modifier command (one or two letters from the list of modifiers below) 38 38 1. Modifier value in the correct units with no decimal 39 -1. End with a carriage return \r**<cr>**42 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 40 40 41 -Ex: #5D13000T1500 <cr>Thisresultsin theservowith ID #5 rotating toa position (1800 in tenths ofdegrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).44 +Ex: #5D13000T1500<cr><div class="wikimodel-emptyline"></div> 42 42 43 -== Queries == 46 +This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div> 47 +<div class="wikimodel-emptyline"></div></div></div> 44 44 45 -Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format: 49 +<h2>Queries</h2> 50 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 51 +Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div> 46 46 47 -1. Start with a number sign 53 +1. Start with a number sign **#** (Unicode Character: U+0023) 48 48 1. Servo ID number as an integer 49 49 1. Query command (one to four letters, no spaces, capital or lower case) 50 -1. End with a carriage return \r**<cr>**56 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 51 51 52 -Ex: #5QD <cr>Query the position in (hundredths of) degrees for servo with ID #5The query willreturnaerialstring (almost instantaneously) via theservo's Tx inthe following format:58 +Ex: #5QD<cr> Query the position in (hundredths of) degrees for servo with ID #5<div class="wikimodel-emptyline"></div> 53 53 60 +The query will return a serial string (almost instantaneously) via the servo's Tx in the following format: 61 + 54 54 1. Start with an asterisk * (Unicode Character: U+0023) 55 55 1. Servo ID number as an integer 56 56 1. Query command (one to four letters, no spaces, capital letters) 57 57 1. The reported value in the units described, no decimals. 58 -1. End with a carriage return \r**<cr>**66 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 59 59 60 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be: 68 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div> 61 61 62 -Ex: *5QD13000 <cr>70 +Ex: *5QD13000<cr><div class="wikimodel-emptyline"></div> 63 63 64 64 This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees). 73 +<div class="wikimodel-emptyline"></div></div></div> 65 65 66 - ==Configurations==75 +<h2>Configurations</h2> 67 67 68 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored. 77 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 78 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div> 69 69 70 -The format to send a configuration command is identical t othat ofanaction command:80 +These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div> 71 71 72 -1. Start with a number sign **#** (Unicode Character: U+0023) 82 +The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div> 83 + 84 +1. Start with a number sign **#** (Unicode Character: U+0023) 73 73 1. Servo ID number as an integer 74 74 1. Configuration command (two to four letters, no spaces, capital or lower case) 75 75 1. Configuration value in the correct units with no decimal 76 -1. End with a carriage return \r**<cr>**88 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 77 77 78 -Ex: #5CO-500 <cr>90 +Ex: #5CO-500<cr><div class="wikimodel-emptyline"></div> 79 79 80 -This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below). 92 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div> 81 81 82 -**Session vs Configuration Query** 94 +**Session vs Configuration Query**<div class="wikimodel-emptyline"></div> 83 83 84 -By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command: 96 +By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div> 85 85 86 -Ex: #5CSR10 <cr>immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.98 +Ex: #5CSR10<cr> immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div> 87 87 88 -After RESET, a command of #5SR4 <cr>sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:100 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div> 89 89 90 -#5QSR <cr>or #5QSR0<cr>would return *5QSR4<cr>which represents the value for that session, whereas102 +#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas<div class="wikimodel-emptyline"></div> 91 91 92 -#5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM 104 +#5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM 105 +<div class="wikimodel-emptyline"></div></div></div> 93 93 94 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset). 107 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 108 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div> 95 95 96 -[[image: https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]110 +[[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div> 97 97 98 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: 112 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div> 99 99 100 -#1D-3000 <cr>This causes the servo to move to -30.00 degrees (green arrow)114 +#1D-3000<cr> This causes the servo to move to -30.00 degrees (green arrow)<div class="wikimodel-emptyline"></div> 101 101 102 -#1D21000 <cr>This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)116 +#1D21000<cr> This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)<div class="wikimodel-emptyline"></div> 103 103 104 -#1D-42000 <cr>This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.118 +#1D-42000<cr> This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div> 105 105 106 -Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees. 120 +Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees.<div class="wikimodel-emptyline"></div> 107 107 108 -#1D48000 <cr>This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.122 +#1D48000<cr> This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div> 109 109 110 -#1D33000 <cr>would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).124 +#1D33000<cr> would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).<div class="wikimodel-emptyline"></div> 111 111 112 112 If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.00 degrees before power is cycled, upon power up the servo's position will be read as +120.00 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.00°, 180.00°]. 127 +<div class="wikimodel-emptyline"></div></div></div> 128 + 129 +{{/html}} 113 113 ))) 114 114 115 115 = Command List = ... ... @@ -122,10 +122,10 @@ 122 122 | |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Revert to firmware default values. See command for details 123 123 | |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Update firmware. See command for details. 124 124 | |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) | | | 125 -| |[[** ID** NumberIDNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0||Resetrequiredafterchange. ID254is"broadcast"whichall servos respond to.126 -| |[[** E**nableCAN**T**erminal>>doc:||anchor="HEnableCANTerminalResistor28ET29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0or1|0:Disable1:Enable127 -| |[[**U**SB **C**onnection Stat us>>||anchor="HUSBConnectionStatus28UC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected128 -| | [[**Q**uery **F**irmware **R**elease>>doc:||anchor="HFirmwareRelease28FR29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | |142 +| |[[**E**nable CAN **T**erminal>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0 or 1|0: Disable 1: Enable 143 +| |[[**ID** Number >>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 144 +| |[[**U**SB **C**onnection State>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected 145 +| |**Q**uery **F**irmware **R**elease|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | | 129 129 130 130 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]] 131 131 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** ... ... @@ -139,15 +139,19 @@ 139 139 140 140 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]] 141 141 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 159 +| |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|1| |EM1: trapezoidal motion profile / EM0: no motion profile 160 +| |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|5| |Affects motion only when motion profile is disabled (EM0) 142 142 | |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|0|1/10°| 143 143 | |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|1800|1/10°| 163 +| |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|0|-4 to +4 integer|Suggested values are between 0 to +4 164 +| |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|4|-10 to +10 integer| 144 144 | |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 145 145 | |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 146 146 | |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise) 147 147 | |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|No value|1/10°|Reset required after change. 169 +| |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |1023|255 to 1023 integer| 148 148 | |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa 149 149 | |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa 150 -| |[[Step Mode>>doc:||anchor="HStepMode28SM29"]]|(% style="text-align:center" %)SM|(% style="text-align:center" %)QM|(% style="text-align:center" %)CSM|2|1, 2, 4|Numbers represent fractions: full step, ½ step, ¼ step 151 151 152 152 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]] 153 153 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** ... ... @@ -161,141 +161,37 @@ 161 161 | |[[**Q**uery **M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) | | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1) 162 162 | |[[**Q**uery **F**irmware Version>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) | | | 163 163 | |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) | | |Returns the unique serial number for the servo 164 -| |[[**Q**uery **T**emperature **P**robe>>doc:||anchor="HQueryTemperatureProbe28QTP29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | | |Queries temperature probe fixed to the stepper motor 165 -| |[[**Q**uery **T**emp of **M**CU>>doc:||anchor="HQueryMCUTemperature28QTM29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTM|(% style="text-align:center" %) | | | 166 -| |[[**Q**uery **T**emp of **C**ontroller>>doc:||anchor="HQueryTempofController28QTCW29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW, QTCE|(% style="text-align:center" %) | | |((( 185 +| |**Q**uery **T**emperature **P**robe|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | | |Queries temperature probe fixed to stepper motor 186 +| |**Q**uery **T**emp of **C**ontroller|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW, QTCE|(% style="text-align:center" %) | | |((( 167 167 QTCW: Queries the temperature status of the motor controller (pre-warning) 168 168 169 169 QTCE: Queries the temperature status of the motor controller (over-temp error) 170 170 ))) 171 -| |[[**Q**uery **I**MU Linear **X**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2| 172 -| |[[**Q**uery **I**MU Linear **Y**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2| 173 -| |[[**Q**uery **I**MU Linear **Z**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2| 174 -| |[[**Q**uery **I**MU Angular Accel **α** >>doc:||anchor="HQueryIMUAngular28QIAQIBQIC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha) 175 -| |[[**Q**uery **I**MU Angular Accel **β**>>doc:||anchor="HQueryIMUAngular28QIAQIBQIC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta) 176 -| |[[**Q**uery **I**MU Angular Accel **γ**>>doc:||anchor="HQueryIMUAngular28QIAQIBQIC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIC / QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma) 191 +| |**Q**uery **C**urrent **S**peed |(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | | |Queries the motor controller's calculated speed 192 +| |**Q**uery **I**MU Linear **X**|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2| 193 +| |**Q**uery **I**MU Linear **Y**|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2| 194 +| |**Q**uery **I**MU Linear **Z**|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2| 195 +| |**Q**uery **I**MU Angular Accel **α** |(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha) 196 +| |**Q**uery **I**MU Angular Accel **β**|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta) 197 +| |**Q**uery **I**MU Angular Accel **γ**|(% style="text-align:center" %) |(% style="text-align:center" %)QIC / QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma) 177 177 178 178 |(% colspan="8" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]] 179 179 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 180 180 | |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White 202 +| |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB| |0 to 63 integer|Reset required after change. See command for details. 181 181 182 182 = (% style="color:inherit; font-family:inherit" %)Details(%%) = 183 183 184 184 == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) == 185 185 186 -|(% colspan="2" %)((( 187 -====== __Reset__ ====== 188 -))) 189 -| |((( 190 -Ex: #5RESET<cr> 191 191 192 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See Session, note #2 for more details. 193 -))) 209 +====== ====== 194 194 195 -|(% colspan="2" %)((( 196 -====== (% style="color:inherit; font-family:inherit" %)__Default & confirm__(%%) ====== 197 -))) 198 -|(% style="width:30px" %) |((( 199 -(% style="color:inherit; font-family:inherit" %)Ex: #5DEFAULT<cr> 200 - 201 -(% style="color:inherit; font-family:inherit" %)This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 202 - 203 -(% style="color:inherit; font-family:inherit" %)EX: #5DEFAULT<cr> followed by #5CONFIRM<cr> 204 - 205 -(% style="color:inherit; font-family:inherit" %)Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command. 206 - 207 -(% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET. 208 -))) 209 - 210 -|(% colspan="2" %)((( 211 -====== (% style="color:inherit; font-family:inherit" %)__Update & confirm__(%%) ====== 212 -))) 213 -|(% style="width:30px" %) |((( 214 -(% style="color:inherit; font-family:inherit" %)Ex: #5UPDATE<cr> 215 - 216 -(% style="color:inherit; font-family:inherit" %)This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function. 217 - 218 -(% style="color:inherit; font-family:inherit" %)EX: #5UPDATE<cr> followed by #5CONFIRM<cr> 219 - 220 -(% style="color:inherit; font-family:inherit" %)Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 221 - 222 -(% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET. 223 -))) 224 - 225 -|(% colspan="2" %)((( 226 -====== (% style="color:inherit; font-family:inherit" %)__Confirm__(%%) ====== 227 -))) 228 -|(% style="width:30px" %) |((( 229 -(% style="color:inherit; font-family:inherit" %)Ex: #5CONFIRM<cr> 230 - 231 -(% style="color:inherit; font-family:inherit" %)This command is used to confirm changes after a Default or Update command. 232 -Note: After the CONFIRM command is sent, the servo will automatically perform a RESET. 233 -))) 234 - 235 -|(% colspan="2" %)((( 236 -====== (% style="color:inherit; font-family:inherit" %)__ID Number__(%%) ====== 237 -))) 238 -|(% style="width:30px" %) |((( 239 -This assigns ID #5 to the servo previously assigned to ID 0 240 - 241 -(% style="color:inherit; font-family:inherit" %)Configure ID Number (**CID**) 242 - 243 -(% style="color:inherit; font-family:inherit" %)Ex: #0CID5<cr> 244 - 245 -The default ID is 0, so this sets the servo to ID 5. 246 - 247 -Query ID Number (**QID**) 248 - 249 -Ex: #254QID<cr> might return *254QID5<cr> 250 - 251 -In this case, the broadcast ID is used to ensure the servo connected will reply with the ID. This can be used in case the ID assigned to a servo is forgotten. 252 -))) 253 - 254 -|(% colspan="2" %)((( 255 -====== (% style="color:inherit; font-family:inherit" %)__Enable CAN Terminal Resistor__(%%) ====== 256 -))) 257 -|(% style="width:30px" %) |((( 258 -Query Enable CAN Terminal Resistor (**QET**) 259 - 260 -Ex: #5QET<cr> might return *QET0<cr> 261 - 262 -This means that servo with ID 5 is NOT configured as the last servo in the CAN bus. 263 - 264 -Configure Enable CAN Terminal Resistor (**CET**) 265 - 266 -(% style="color:inherit; font-family:inherit" %)Ex: #5CET1<cr> 267 - 268 -(% style="color:inherit; font-family:inherit" %)This commands sets servo with ID 5 as being the last in the CAN Bus. The last servo in a CAN bus must be configured this way. 269 -))) 270 - 271 -|(% colspan="2" %)((( 272 -====== __USB Connection Status__ ====== 273 -))) 274 -|(% style="width:30px" %) |((( 275 -Query USB Connection Status (**QUC**) 276 - 277 -Ex: #5QUC<cr> might return *5QUC1<cr> meaning the servo is connected via USB 278 -))) 279 - 280 -|(% colspan="2" %)((( 281 -====== __Firmware Release__ ====== 282 -))) 283 -|(% style="width:30px" %) |((( 284 -Query Firmware Release (**QFR**) 285 - 286 -Ex: #5QFR<cr> might return *QFR11<cr> meaning it has a (random) firmware release version number 11. 287 - 288 -This is used to verify if the firmware on the servos is up to date, or which version is running on the microcontroller. 289 -))) 290 - 291 291 == Motion == 292 292 293 -|(% colspan="2" %)((( 294 -====== __Position in Degrees__ ====== 295 -))) 296 -|(% style="width:30px" %) |((( 297 -Position in Degrees (**D**) 213 +====== __Position in Degrees (**D**)__ ====== 298 298 215 + 299 299 Example: #5D1456<cr> 300 300 301 301 This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. ... ... @@ -313,25 +313,17 @@ 313 313 Ex: #5QDT<cr> might return *5QDT6783<cr> 314 314 315 315 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 316 -))) 317 317 318 -|(% colspan="2" %)((( 319 -====== __(Relative) Move in Degrees__ ====== 320 -))) 321 -|(% style="width:30px" %) |((( 322 -Move in Degrees (**MD**) 234 +====== __(Relative) Move in Degrees (**MD**)__ ====== 323 323 236 + 324 324 Example: #5MD123<cr> 325 325 326 326 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 327 -))) 328 328 329 -|(% colspan="2" %)((( 330 -====== __Wheel Mode in Degrees__ ====== 331 -))) 332 -|(% style="width:30px" %) |((( 333 -Wheel mode in Degrees (**WD**) 241 +====== __Wheel Mode in Degrees (**WD**)__ ====== 334 334 243 + 335 335 Ex: #5WD90<cr> 336 336 337 337 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations). ... ... @@ -341,14 +341,10 @@ 341 341 Ex: #5QWD<cr> might return *5QWD90<cr> 342 342 343 343 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 344 -))) 345 345 346 -|(% colspan="2" %)((( 347 -====== __Wheel Mode in RPM__ ====== 348 -))) 349 -|(% style="width:30px" %) |((( 350 -Wheel moed in RPM (**WR**) 254 +====== __Wheel Mode in RPM (**WR**)__ ====== 351 351 256 + 352 352 Ex: #5WR40<cr> 353 353 354 354 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). ... ... @@ -358,28 +358,20 @@ 358 358 Ex: #5QWR<cr> might return *5QWR40<cr> 359 359 360 360 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 361 -))) 362 362 363 -|(% colspan="2" %)((( 364 -====== __(Relative) Move in Degrees__ ====== 365 -))) 366 -|(% style="width:30px" %) |((( 367 -(% class="wikigeneratedid" %) 368 -Move in Degrees (**MD**) 267 +====== ====== 369 369 370 -(% class="wikigeneratedid" id="HExample:235M15003Ccr3E" %) 371 -Example: #5M1500<cr> 269 +====== __(Relative) Move in Degrees (**MD**)__ ====== 372 372 373 -(% class="wikigeneratedid" id="HTherelativemoveinPWMcommandcausestheservotoreaditscurrentpositionandmovebythespecifiednumberofPWMsignal.ForexampleiftheservoissettorotateCW28default29andanMcommandof1500issenttotheservo2Citwillcausetheservotorotateclockwiseby90degrees.NegativePWMvaluewouldcausetheservotorotateintheoppositeconfigureddirection." %) 374 -The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 375 -))) 271 +====== 272 +Example: #5M1500<cr> ====== 376 376 377 -|(% colspan="2" %)((( 378 -====== __Query Status__ ====== 379 -))) 380 -|(% style="width:30px" %) |((( 381 -Query Status (**Q**) 274 +(% class="wikigeneratedid" %) 275 +====== The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. ====== 382 382 277 +====== __Query Status (**Q**)__ ====== 278 + 279 + 383 383 The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below. 384 384 385 385 Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. ... ... @@ -391,7 +391,7 @@ 391 391 | |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 392 392 | |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 393 393 | |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 394 -| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nor mally be holding)291 +| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding) 395 395 | |ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 396 396 | |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 397 397 | |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) ... ... @@ -403,274 +403,508 @@ 403 403 404 404 If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 405 405 303 + 406 406 |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description** 407 407 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 408 408 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 409 409 | |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 410 410 | |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 411 -))) 412 412 413 -|(% colspan="2" %)((( 414 -====== __Limp__ ====== 415 -))) 416 -|(% style="width:30px" %) |((( 417 -Limp (**L**) 310 +====== __Limp (**L**)__ ====== 418 418 312 + 419 419 Example: #5L<cr> 420 420 421 421 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 422 -))) 423 423 424 -|(% colspan="2" %)((( 425 -====== __Halt & Hold__ ====== 426 -))) 427 -|(% style="width:30px" %) |((( 428 -Halt & Hold (**H**) 317 +====== __Halt & Hold (**H**)__ ====== 429 429 319 + 430 430 Example: #5H<cr> 431 431 432 432 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 433 -))) 434 434 435 435 == Motion Setup == 436 436 437 -====== __ OriginOffset(**O**)__ ======326 +====== __Enable Motion Profile (**EM**)__ ====== 438 438 439 -Example: #5O2400<cr>This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered). 328 +{{html clean="false" wiki="true"}} 329 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 330 +EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div> 440 440 441 - [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]332 +Ex: #5EM1<cr><div class="wikimodel-emptyline"></div> 442 442 334 +This command enables a trapezoidal motion profile for servo #5 <div class="wikimodel-emptyline"></div> 443 443 444 - Inthe second image,the origin,and thecorresponding angular range(explainedbelow) have been shifted by +240.0 degrees:336 +Ex: #5EM0<cr><div class="wikimodel-emptyline"></div> 445 445 446 - [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]338 +This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command). 447 447 340 +<div class="wikimodel-emptyline"></div> 448 448 449 - OriginOffsetQuery(**QO**)342 +Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div> 450 450 451 -Ex ample: #5QO<cr>might return *5QO-13344 +Ex: #5QEM<cr> might return *5QEM1<cr><div class="wikimodel-emptyline"></div> 452 452 453 -This all owsyou toquery theangle (intenths of degrees)oftheoriginin relationtothefactory zeroposition.In this example,thew originisat -1.3degrees fromhe factoryzero.346 +This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div> 454 454 455 -Configure OriginOffset(**CO**)348 +Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div> 456 456 457 -Ex ample: #5CO-24<cr>350 +Ex: #5CEM0<cr><div class="wikimodel-emptyline"></div> 458 458 352 +This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 353 +<div class="wikimodel-emptyline"></div></div></div> 354 +{{/html}} 355 + 356 +====== __Filter Position Count (**FPC**)__ ====== 357 + 358 +{{html clean="false" wiki="true"}} 359 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 360 +The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default. 361 +<div class="wikimodel-emptyline"></div> 362 +Ex: #5FPC10<cr><div class="wikimodel-emptyline"></div> 363 +This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div> 364 + 365 +Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div> 366 + 367 +Ex: #5QFPC<cr> might return *5QFPC10<cr><div class="wikimodel-emptyline"></div> 368 + 369 +This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div> 370 + 371 +Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div> 372 + 373 +Ex: #5CFPC10<cr><div class="wikimodel-emptyline"></div> 374 + 375 +This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 376 +<div class="wikimodel-emptyline"></div></div></div> 377 +{{/html}} 378 + 379 +====== __Origin Offset (**O**)__ ====== 380 + 381 +{{html wiki="true" clean="false"}} 382 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 383 +Example: #5O2400<cr><div class="wikimodel-emptyline"></div> 384 + 385 +This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div> 386 + 387 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div> 388 + 389 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div> 390 + 391 +[[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div> 392 + 393 +Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div> 394 + 395 +Example: #5QO<cr> might return *5QO-13<div class="wikimodel-emptyline"></div> 396 + 397 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div> 398 + 399 +Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div> 400 + 401 +Example: #5CO-24<cr><div class="wikimodel-emptyline"></div> 402 + 459 459 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 404 +<div class="wikimodel-emptyline"></div></div></div> 405 +{{/html}} 460 460 461 461 ====== __Angular Range (**AR**)__ ====== 462 462 463 -Example: #5AR1800<cr> 409 +{{html wiki="true" clean="false"}} 410 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 411 +Example: #5AR1800<cr><div class="wikimodel-emptyline"></div> 464 464 465 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: 413 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div> 466 466 467 -[[image: https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]415 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div> 468 468 469 -Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 417 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div> 470 470 471 -[[image: https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]419 +[[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div> 472 472 421 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div> 473 473 474 - Finally, the angular rangeaction command (ex. #5AR1800<cr>) andoriginoffset action command(ex. #5O-1200<cr>) areused tomove both the center andlimit the angular range:423 +[[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div> 475 475 476 - [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]425 +Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div> 477 477 427 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div> 478 478 479 - QueryAngular Range (**QAR**)429 +Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div> 480 480 481 -Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees. 431 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 432 +<div class="wikimodel-emptyline"></div></div></div> 433 +{{/html}} 482 482 483 - ConfigureAngularRange (**CAR**)435 +====== __Angular Stiffness (**AS**)__ ====== 484 484 485 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 437 +{{html wiki="true" clean="false"}} 438 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 439 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div> 486 486 441 +A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div> 442 + 443 +* The more torque will be applied to try to keep the desired position against external input / changes 444 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div> 445 + 446 +A lower value on the other hand:<div class="wikimodel-emptyline"></div> 447 + 448 +* Causes a slower acceleration to the travel speed, and a slower deceleration 449 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div> 450 + 451 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 452 + 453 +Ex: #5AS-2<cr><div class="wikimodel-emptyline"></div> 454 + 455 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div> 456 + 457 +Ex: #5QAS<cr><div class="wikimodel-emptyline"></div> 458 + 459 +Queries the value being used.<div class="wikimodel-emptyline"></div> 460 + 461 +Ex: #5CAS-2<cr><div class="wikimodel-emptyline"></div> 462 + 463 +Writes the desired angular stiffness value to EEPROM. 464 +<div class="wikimodel-emptyline"></div></div></div> 465 +{{/html}} 466 + 467 +====== __Angular Holding Stiffness (**AH**)__ ====== 468 + 469 +{{html wiki="true" clean="false"}} 470 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 471 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 472 + 473 +Ex: #5AH3<cr><div class="wikimodel-emptyline"></div> 474 + 475 +This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div> 476 + 477 +Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div> 478 + 479 +Ex: #5QAH<cr> might return *5QAH3<cr><div class="wikimodel-emptyline"></div> 480 + 481 +This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div> 482 + 483 +Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div> 484 + 485 +Ex: #5CAH2<cr><div class="wikimodel-emptyline"></div> 486 + 487 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM. 488 +<div class="wikimodel-emptyline"></div></div></div> 489 +{{/html}} 490 + 487 487 ====== __Angular Acceleration (**AA**)__ ====== 488 488 489 -The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 493 +{{html wiki="true" clean="false"}} 494 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 495 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 490 490 491 -Ex: #5AA30 <cr>497 +Ex: #5AA30<cr><div class="wikimodel-emptyline"></div> 492 492 493 -This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). 499 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 494 494 495 -Query Angular Acceleration (**QAA**) 501 +Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div> 496 496 497 -Ex: #5QAA <cr>might return *5QAA30<cr>503 +Ex: #5QAA<cr> might return *5QAA30<cr><div class="wikimodel-emptyline"></div> 498 498 499 -This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^). 505 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 500 500 501 -Configure Angular Acceleration (**CAA**) 507 +Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div> 502 502 503 -Ex: #5CAA30 <cr>509 +Ex: #5CAA30<cr><div class="wikimodel-emptyline"></div> 504 504 505 505 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 512 +<div class="wikimodel-emptyline"></div></div></div> 513 +{{/html}} 506 506 507 507 ====== __Angular Deceleration (**AD**)__ ====== 508 508 509 -The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 517 +{{html wiki="true" clean="false"}} 518 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 519 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 510 510 511 -Ex: #5AD30 <cr>521 +Ex: #5AD30<cr><div class="wikimodel-emptyline"></div> 512 512 513 -This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). 523 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 514 514 515 -Query Angular Deceleration (**QAD**) 525 +Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div> 516 516 517 -Ex: #5QAD <cr>might return *5QAD30<cr>527 +Ex: #5QAD<cr> might return *5QAD30<cr><div class="wikimodel-emptyline"></div> 518 518 519 -This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^). 529 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 520 520 521 -Configure Angular Deceleration (**CAD**) 531 +Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div> 522 522 523 -Ex: #5CAD30 <cr>533 +Ex: #5CAD30<cr><div class="wikimodel-emptyline"></div> 524 524 525 -This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 535 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 536 +<div class="wikimodel-emptyline"></div></div></div> 537 +{{/html}} 526 526 527 527 ====== __Gyre Direction (**G**)__ ====== 528 528 529 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1. 541 +{{html wiki="true" clean="false"}} 542 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 543 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div> 530 530 531 -Ex: #5G-1 <cr>545 +Ex: #5G-1<cr><div class="wikimodel-emptyline"></div> 532 532 533 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 547 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div> 534 534 535 -Query Gyre Direction (**QG**) 549 +Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div> 536 536 537 -Ex: #5QG <cr>might return *5QG-1<cr>551 +Ex: #5QG<cr> might return *5QG-1<cr><div class="wikimodel-emptyline"></div> 538 538 539 -The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM. 553 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div> 540 540 541 -Configure Gyre (**CG**) 555 +Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div> 542 542 543 -Ex: #5CG-1 <cr>557 +Ex: #5CG-1<cr><div class="wikimodel-emptyline"></div> 544 544 545 545 This changes the gyre direction as described above and also writes to EEPROM. 560 +<div class="wikimodel-emptyline"></div></div></div> 561 +{{/html}} 546 546 547 547 ====== __First Position__ ====== 548 548 549 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.Query First Position in Degrees (**QFD**)Ex: #5QFD<cr> might return *5QFD900<cr>The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.Configure First Position in Degrees (**CFD**)Ex: #5CFD900<cr>This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 565 +{{html wiki="true" clean="false"}} 566 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 567 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div> 550 550 551 - ======__MaximumSpeedin Degrees (**SD**)__======569 +Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div> 552 552 553 -Ex: #5 SD1800<cr>This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above,the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higherthanits physical limit at agiven voltage. The SD actioncommand overrides CSD (described below) forthat session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD andSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in Degrees (**QSD**)Ex: #5QSD<cr> might return *5QSD1800<cr>By defaultQSD will return thecurrentsessionvalue,which is set to the value of CSDasreset/power cycle and changed whenever an SD/SR commandis processed. If #5QSD1<cr>is sent, the configuredmaximum speed (CSD value) will be returned instead. You can also querythe current speed using"2" andthe current target travel speed using "3". See the table below for an example:571 +Ex: #5QFD<cr> might return *5QFD900<cr> <div class="wikimodel-emptyline"></div> 554 554 555 -|**Command sent**|**Returned value (1/10 °)** 556 -|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 557 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 558 -|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 559 -|ex: #5QSD3<cr>|Target travel speed 573 +The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div> 560 560 561 -Configure Speedin Degrees (**CSD**)Ex: #5CSD1800<cr>Using the CSD commandsets the servo's maximum speed which is savedin EEPROM. In the exampleabove, theservo'smaximum speedwill be set to 180.0 degrees per second. When the servois poweredon (or after a reset), the CSD valueis used. Note that CSD and CSR (described below) are effectively the same, butallow the user to specify the speed inither unit. The last command(either CSR or CSD) is what the servo uses for that session.575 +Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div> 562 562 563 - ======__MaximumSpeedn RPM (**SR**)__ ======577 +Ex: #5CFD900<cr><div class="wikimodel-emptyline"></div> 564 564 565 -Ex: #5SR45<cr>This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in RPM (**QSR**)Ex: #5QSR<cr> might return *5QSR45<cr>By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 579 +This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 580 +<div class="wikimodel-emptyline"></div></div></div> 581 +{{/html}} 566 566 567 -|**Command sent**|**Returned value (1/10 °)** 568 -|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 569 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 570 -|ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 571 -|ex: #5QSR3<cr>|Target travel speed 583 +====== __Maximum Motor Duty (**MMD**)__ ====== 572 572 573 -Configure Speed in RPM (**CSR**)Ex: #5CSR45<cr>Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 585 +{{html wiki="true" clean="false"}} 586 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 587 +This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div> 574 574 575 - ======__StepMode(**SM**)__ ======589 +Ex: #5MMD512<cr><div class="wikimodel-emptyline"></div> 576 576 577 - Ex:#8SM2<cr>591 +This will set the duty-cycle to 512 for servo with ID 5 for that session.<div class="wikimodel-emptyline"></div> 578 578 579 - This sets servowithID 8to1/2 stepmode. Sincethis is an actionasopposed to a configuration, it only affects that session.593 +Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div> 580 580 581 - Notethatthetorqueandmax RPMofthe actuatorwillbeaffected.595 +Ex: #5QMMDD<cr> might return *5QMMD512<cr> <div class="wikimodel-emptyline"></div> 582 582 583 -Query Step Mode (**QSM**) 597 +This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023. 598 +<div class="wikimodel-emptyline"></div></div></div> 599 +{{/html}} 584 584 585 - Ex:#8QSM<cr> might return*8QSM2<cr> meaning servowithID8 is set to half step mode.601 +====== __Maximum Speed in Degrees (**SD**)__ ====== 586 586 587 -Configure Step Mode (**CSM**) 603 +{{html wiki="true" clean="false"}} 604 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 605 +Ex: #5SD1800<cr><div class="wikimodel-emptyline"></div> 606 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 588 588 589 - Ex:#8SM2<cr>608 +Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div> 590 590 591 - Thissets servowithID 8to1/2 step mode. Sincethis is a configurationas opposedto aconfigurationand theservowill bein 1/2 stepmodewhenpowered.610 +Ex: #5QSD<cr> might return *5QSD1800<cr><div class="wikimodel-emptyline"></div> 592 592 593 - ==Modifiers ==612 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 594 594 595 -====== __Speed (**SD**) modifier__ ====== 614 +|**Command sent**|**Returned value (1/10 °)** 615 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 616 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 617 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 618 +|ex: #5QSD3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 596 596 597 -(% class="wikigeneratedid" id="HTimedmove28T29modifier" %) 598 -Example: #5D0SD180<cr> 620 +Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div> 599 599 600 -(% class="wikigeneratedid" %) 601 -Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second. 622 +Ex: #5CSD1800<cr><div class="wikimodel-emptyline"></div> 623 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 624 +</div></div> 625 +{{/html}} 602 602 603 -(% class="wikigeneratedid" %) 604 -Query Speed (**QS**) 627 +====== __Maximum Speed in RPM (**SR**)__ ====== 605 605 606 -(% class="wikigeneratedid" %) 607 -Example: #5QS<cr> might return *5QS300<cr> 629 +{{html wiki="true" clean="false"}} 630 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 631 +Ex: #5SR45<cr><div class="wikimodel-emptyline"></div> 632 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 608 608 609 -(% class="wikigeneratedid" %) 610 -This command queries the current speed in microseconds per second. 634 +Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div> 611 611 612 - ======__Timedmove(**T**)modifier__ ======636 +Ex: #5QSR<cr> might return *5QSR45<cr><div class="wikimodel-emptyline"></div> 613 613 614 - Example:#5D15000T2500<cr>638 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 615 615 616 -Timed move can be used only as a modifier for a position (D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 640 +|**Command sent**|**Returned value (1/10 °)** 641 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 642 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 643 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 644 +|ex: #5QSR3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 617 617 618 - **Note:** Ifthe calculated speed at which a servo mustrotatefor a timed move is greater than its maximum speed(which dependsonvoltage and load), thenit will moveat itsmaximumspeed, and the timeof themoveaybelonger than requested646 +Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div> 619 619 620 -====== ====== 648 +Ex: #5CSR45<cr><div class="wikimodel-emptyline"></div> 649 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 650 +</div></div> 651 +{{/html}} 621 621 622 -== Telemetry==653 +== Modifiers == 623 623 624 -====== __ Query PCB Temperature (**QT**)__ ======655 +====== __Speed (**S**, **SD**) modifier__ ====== 625 625 626 -Ex: #5QT<cr> might return *5QT564<cr> 657 +{{html clean="false" wiki="true"}} 658 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 659 +Example: #5P1500S750<cr><div class="wikimodel-emptyline"></div> 660 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 661 +Example: #5D0SD180<cr><div class="wikimodel-emptyline"></div> 662 +Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.<div class="wikimodel-emptyline"></div> 663 +Query Speed (**QS**)<div class="wikimodel-emptyline"></div> 664 +Example: #5QS<cr> might return *5QS300<cr><div class="wikimodel-emptyline"></div> 665 +This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div> 666 +</div></div> 667 +{{/html}} 627 627 628 - Theunits arein tenths ofdegreesCelcius, so in the example above,the servo's internal temperature is 56.4 degrees C.Toconvert fromdegrees Celcius toegrees Farenheit, multiply by 1.8 and add 32. Therefore56.4C=133.52F.669 +====== __Timed move (**T**) modifier__ ====== 629 629 630 -====== __Query Temperature Probe (**QTP**)__ ====== 671 +{{html wiki="true" clean="false"}} 672 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 673 +Example: #5P1500T2500<cr><div class="wikimodel-emptyline"></div> 631 631 632 -Ex: 675 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 676 +**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div> 677 +</div></div> 678 +{{/html}} 633 633 634 -====== __ Query TempofController(**QTCW**)__ ======680 +====== __Current Halt & Hold (**CH**) modifier__ ====== 635 635 636 -Ex: 682 +{{html wiki="true" clean="false"}} 683 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 684 +Example: #5D1423CH400<cr><div class="wikimodel-emptyline"></div> 637 637 638 -An alternative is QTCE 686 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div> 687 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 688 +</div></div> 689 +{{/html}} 639 639 640 -====== __ QueryCurrent (**QC**)__ ======691 +====== __Current Limp (**CL**) modifier__ ====== 641 641 642 -Ex: #5QC<cr> might return *5QC140<cr> 693 +{{html wiki="true" clean="false"}} 694 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 695 +Example: #5D1423CL400<cr><div class="wikimodel-emptyline"></div> 643 643 644 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value. The query calculates the RMS value of the current sent from the motor driver to the stepper motor. 697 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div> 698 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 699 +</div></div> 700 +{{/html}} 645 645 646 -== ====__Query ModelString(**QMS**)__======702 +== Telemetry == 647 647 648 - Ex:#5QMS<cr>mightreturn*5QMSLSS-HS1<cr>704 +====== __Query Voltage (**QV**)__ ====== 649 649 650 -This reply means that the servo model is LSS-HS1: a high speed servo, first revision. 706 +{{html wiki="true" clean="false"}} 707 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 708 +Ex: #5QV<cr> might return *5QV11200<cr><div class="wikimodel-emptyline"></div> 709 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div> 710 +</div></div> 711 +{{/html}} 651 651 652 -====== __Query Firmware (**QF**)__ ======713 +====== __Query Temperature (**QT**)__ ====== 653 653 654 -Ex: #5QF<cr> might return *5QF368<cr> 715 +{{html wiki="true" clean="false"}} 716 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 717 +Ex: #5QT<cr> might return *5QT564<cr><div class="wikimodel-emptyline"></div> 718 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div> 719 +</div></div> 720 +{{/html}} 655 655 656 - Thenumberin the reply representsthe firmware version, in this example being 368.The command #5QF3<cr>can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14722 +====== __Query Current (**QC**)__ ====== 657 657 724 +{{html wiki="true" clean="false"}} 725 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 726 +Ex: #5QC<cr> might return *5QC140<cr><div class="wikimodel-emptyline"></div> 727 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div> 728 +</div></div> 729 +{{/html}} 730 + 731 +====== __Query Model String (**QMS**)__ ====== 732 + 733 +{{html wiki="true" clean="false"}} 734 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 735 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr><div class="wikimodel-emptyline"></div> 736 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div> 737 +</div></div> 738 +{{/html}} 739 + 740 +====== __Query Firmware (**QF**)__ ====== 741 + 742 +{{html wiki="true" clean="false"}} 743 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 744 +Ex: #5QF<cr> might return *5QF368<cr><div class="wikimodel-emptyline"></div> 745 +The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div> 746 +The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div> 747 +</div></div> 748 +{{/html}} 749 + 658 658 ====== __Query Serial Number (**QN**)__ ====== 659 659 660 -Ex: #5QN<cr> might return *5QN12345678<cr> 752 +{{html wiki="true" clean="false"}} 753 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 754 +Ex: #5QN<cr> might return *5QN12345678<cr><div class="wikimodel-emptyline"></div> 755 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div> 756 +</div></div> 757 +{{/html}} 661 661 662 - Thenumberinthe response (12345678) would be the servo's serial number which is set and should not be changed by the user.759 +== RGB LED == 663 663 664 -====== __ Query IMULinear (**QIX****QIY** **QIZ**)__ ======761 +====== __LED Color (**LED**)__ ====== 665 665 666 -Ex: #6QIX<cr> might return *6QIX30<cr> 763 +{{html wiki="true" clean="false"}} 764 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 765 +Ex: #5LED3<cr><div class="wikimodel-emptyline"></div> 766 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div> 767 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div> 768 +Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div> 769 +Ex: #5QLED<cr> might return *5QLED5<cr><div class="wikimodel-emptyline"></div> 770 +This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div> 771 +Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div> 772 +Ex: #5CLED3<cr><div class="wikimodel-emptyline"></div> 773 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div> 774 +</div></div> 775 +{{/html}} 667 667 668 - Thiscommand queriesservo6's IMU'slinear accelerometerintheX direction. The response is 30mm per second squared.777 +====== __Configure LED Blinking (**CLB**)__ ====== 669 669 670 -====== __Query IMU Angular (**QIA** **QIB** **QIC**)__ ====== 779 +{{html wiki="true" clean="false"}} 780 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 781 +This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div> 671 671 672 -Ex: #6QIB<cr> might return *6QIB44<cr> 783 +(% style="width:195px" %) 784 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 785 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 786 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1 787 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2 788 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 789 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 790 +|(% style="width:134px" %)Free|(% style="width:58px" %)16 791 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 792 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div> 673 673 674 -This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 4.4 degrees per second squared. 794 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div> 795 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div> 796 +Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div> 797 +Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div> 798 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div> 799 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div> 800 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div> 801 +RESETTING the servo is needed.<div class="wikimodel-emptyline"></div> 802 +</div></div> 803 +{{/html}} 675 675 676 - 805 +== RGB LED == 806 + 807 +The LED can be