Changes for page LSS-PRO Communication Protocol
Last modified by Eric Nantel on 2024/09/06 14:52
Change comment: There is no comment for this version
Summary
-
Page properties (5 modified, 0 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LSS-P ROCommunication Protocol1 +LSS-P - Communication Protocol - Parent
-
... ... @@ -1,1 +1,1 @@ 1 -s es-pro.lss-pro.WebHome1 +lynxmotion-smart-servo-pro.WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -xwiki:XWiki. ENantel1 +xwiki:XWiki.CBenson - Hidden
-
... ... @@ -1,1 +1,1 @@ 1 - false1 +true - Content
-
... ... @@ -1,3 +1,6 @@ 1 +{{warningBox warningText="More information coming soon"/}} 2 + 3 + 1 1 (% class="wikigeneratedid" id="HTableofContents" %) 2 2 **Page Contents** 3 3 ... ... @@ -26,88 +26,104 @@ 26 26 27 27 == Modifiers == 28 28 29 -Modifiers can only be used with certain **action commands**. The format to include a modifier is: 32 +{{html clean="false" wiki="true"}} 33 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 34 +Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div> 30 30 31 -1. Start with a number sign 36 +1. Start with a number sign **#** (Unicode Character: U+0023) 32 32 1. Servo ID number as an integer 33 33 1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below) 34 34 1. Action value in the correct units with no decimal 35 -1. Modifier command (one or two letters from the list of modifiers below) 40 +1. Modifier command (one or two letters from the list of modifiers below) 36 36 1. Modifier value in the correct units with no decimal 37 -1. End with a carriage return \r**<cr>**42 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 38 38 39 -Ex: #5D13000T1500 <cr>Thisresultsin theservowith ID #5 rotating toa position (1800 in tenths ofdegrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).44 +Ex: #5D13000T1500<cr><div class="wikimodel-emptyline"></div> 40 40 41 -== Queries == 46 +This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div> 47 +<div class="wikimodel-emptyline"></div></div></div> 42 42 43 -Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format: 49 +<h2>Queries</h2> 50 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 51 +Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div> 44 44 45 -1. Start with a number sign 53 +1. Start with a number sign **#** (Unicode Character: U+0023) 46 46 1. Servo ID number as an integer 47 47 1. Query command (one to four letters, no spaces, capital or lower case) 48 -1. End with a carriage return \r**<cr>**56 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 49 49 50 -Ex: #5QD <cr>Query the position in (hundredths of) degrees for servo with ID #5The query willreturnaerialstring (almost instantaneously) via theservo's Tx inthe following format:58 +Ex: #5QD<cr> Query the position in (hundredths of) degrees for servo with ID #5<div class="wikimodel-emptyline"></div> 51 51 60 +The query will return a serial string (almost instantaneously) via the servo's Tx in the following format: 61 + 52 52 1. Start with an asterisk * (Unicode Character: U+0023) 53 53 1. Servo ID number as an integer 54 54 1. Query command (one to four letters, no spaces, capital letters) 55 55 1. The reported value in the units described, no decimals. 56 -1. End with a carriage return \r**<cr>**66 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 57 57 58 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be: 68 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div> 59 59 60 -Ex: *5QD13000 <cr>70 +Ex: *5QD13000<cr><div class="wikimodel-emptyline"></div> 61 61 62 62 This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees). 73 +<div class="wikimodel-emptyline"></div></div></div> 63 63 64 - ==Configurations==75 +<h2>Configurations</h2> 65 65 66 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored. 77 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 78 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div> 67 67 68 -The format to send a configuration command is identical t othat ofanaction command:80 +These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div> 69 69 70 -1. Start with a number sign **#** (Unicode Character: U+0023) 82 +The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div> 83 + 84 +1. Start with a number sign **#** (Unicode Character: U+0023) 71 71 1. Servo ID number as an integer 72 72 1. Configuration command (two to four letters, no spaces, capital or lower case) 73 73 1. Configuration value in the correct units with no decimal 74 -1. End with a carriage return \r**<cr>**88 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 75 75 76 -Ex: #5CO-500 <cr>90 +Ex: #5CO-500<cr><div class="wikimodel-emptyline"></div> 77 77 78 -This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below). 92 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div> 79 79 80 -**Session vs Configuration Query** 94 +**Session vs Configuration Query**<div class="wikimodel-emptyline"></div> 81 81 82 -By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command: 96 +By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div> 83 83 84 -Ex: #5CSR10 <cr>immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.98 +Ex: #5CSR10<cr> immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div> 85 85 86 -After RESET, a command of #5SR4 <cr>sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:100 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div> 87 87 88 -#5QSR <cr>or #5QSR0<cr>would return *5QSR4<cr>which represents the value for that session, whereas102 +#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas<div class="wikimodel-emptyline"></div> 89 89 90 -#5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM 104 +#5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM 105 +<div class="wikimodel-emptyline"></div></div></div> 91 91 92 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset). 107 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 108 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div> 93 93 94 -[[image: https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]110 +[[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div> 95 95 96 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: 112 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div> 97 97 98 -#1D-3000 <cr>This causes the servo to move to -30.00 degrees (green arrow)114 +#1D-3000<cr> This causes the servo to move to -30.00 degrees (green arrow)<div class="wikimodel-emptyline"></div> 99 99 100 -#1D21000 <cr>This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)116 +#1D21000<cr> This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)<div class="wikimodel-emptyline"></div> 101 101 102 -#1D-42000 <cr>This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.118 +#1D-42000<cr> This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div> 103 103 104 -Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees. 120 +Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees.<div class="wikimodel-emptyline"></div> 105 105 106 -#1D48000 <cr>This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.122 +#1D48000<cr> This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div> 107 107 108 -#1D33000 <cr>would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).124 +#1D33000<cr> would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).<div class="wikimodel-emptyline"></div> 109 109 110 110 If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.00 degrees before power is cycled, upon power up the servo's position will be read as +120.00 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.00°, 180.00°]. 127 +<div class="wikimodel-emptyline"></div></div></div> 128 + 129 +{{/html}} 111 111 ))) 112 112 113 113 = Command List = ... ... @@ -120,10 +120,10 @@ 120 120 | |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Revert to firmware default values. See command for details 121 121 | |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Update firmware. See command for details. 122 122 | |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) | | | 123 -| |[[** ID** NumberIDNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0||Resetrequiredafterchange. ID254is"broadcast"whichall servos respond to.124 -| |[[** E**nableCAN**T**erminal>>doc:||anchor="HEnableCANTerminalResistor28ET29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0or1|0:Disable1:Enable125 -| |[[**U**SB **C**onnection Stat us>>||anchor="HUSBConnectionStatus28UC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected126 -| | [[**Q**uery **F**irmware **R**elease>>doc:||anchor="HFirmwareRelease28FR29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | |142 +| |[[**E**nable CAN **T**erminal>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0 or 1|0: Disable 1: Enable 143 +| |[[**ID** Number >>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 144 +| |[[**U**SB **C**onnection State>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected 145 +| |**Q**uery **F**irmware **R**elease|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | | 127 127 128 128 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]] 129 129 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** ... ... @@ -137,15 +137,19 @@ 137 137 138 138 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]] 139 139 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 159 +| |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|1| |EM1: trapezoidal motion profile / EM0: no motion profile 160 +| |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|5| |Affects motion only when motion profile is disabled (EM0) 140 140 | |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|0|1/10°| 141 141 | |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|1800|1/10°| 163 +| |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|0|-4 to +4 integer|Suggested values are between 0 to +4 164 +| |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|4|-10 to +10 integer| 142 142 | |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 143 143 | |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 144 144 | |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise) 145 145 | |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|No value|1/10°|Reset required after change. 169 +| |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |1023|255 to 1023 integer| 146 146 | |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa 147 147 | |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa 148 -| |[[Step Mode>>doc:||anchor="HStepMode28SM29"]]|(% style="text-align:center" %)SM|(% style="text-align:center" %)QM|(% style="text-align:center" %)CSM|2|1, 2, 4|Numbers represent fractions: full step, ½ step, ¼ step 149 149 150 150 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]] 151 151 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** ... ... @@ -159,141 +159,37 @@ 159 159 | |[[**Q**uery **M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) | | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1) 160 160 | |[[**Q**uery **F**irmware Version>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) | | | 161 161 | |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) | | |Returns the unique serial number for the servo 162 -| |[[**Q**uery **T**emperature **P**robe>>doc:||anchor="HQueryTemperatureProbe28QTP29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | | |Queries temperature probe fixed to the stepper motor 163 -| |[[**Q**uery **T**emp of **M**CU>>doc:||anchor="HQueryMCUTemperature28QTM29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTM|(% style="text-align:center" %) | | | 164 -| |[[**Q**uery **T**emp of **C**ontroller>>doc:||anchor="HQueryTempofController28QTCW29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW, QTCE|(% style="text-align:center" %) | | |((( 185 +| |**Q**uery **T**emperature **P**robe|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | | |Queries temperature probe fixed to stepper motor 186 +| |**Q**uery **T**emp of **C**ontroller|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW, QTCE|(% style="text-align:center" %) | | |((( 165 165 QTCW: Queries the temperature status of the motor controller (pre-warning) 166 166 167 167 QTCE: Queries the temperature status of the motor controller (over-temp error) 168 168 ))) 169 -| |[[**Q**uery **I**MU Linear **X**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2| 170 -| |[[**Q**uery **I**MU Linear **Y**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2| 171 -| |[[**Q**uery **I**MU Linear **Z**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2| 172 -| |[[**Q**uery **I**MU Angular Accel **α** >>doc:||anchor="HQueryIMUAngular28QIAQIBQIC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha) 173 -| |[[**Q**uery **I**MU Angular Accel **β**>>doc:||anchor="HQueryIMUAngular28QIAQIBQIC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta) 174 -| |[[**Q**uery **I**MU Angular Accel **γ**>>doc:||anchor="HQueryIMUAngular28QIAQIBQIC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIC / QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma) 191 +| |**Q**uery **C**urrent **S**peed |(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | | |Queries the motor controller's calculated speed 192 +| |**Q**uery **I**MU Linear **X**|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2| 193 +| |**Q**uery **I**MU Linear **Y**|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2| 194 +| |**Q**uery **I**MU Linear **Z**|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2| 195 +| |**Q**uery **I**MU Angular Accel **α** |(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha) 196 +| |**Q**uery **I**MU Angular Accel **β**|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta) 197 +| |**Q**uery **I**MU Angular Accel **γ**|(% style="text-align:center" %) |(% style="text-align:center" %)QIC / QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma) 175 175 176 176 |(% colspan="8" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]] 177 177 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 178 178 | |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White 202 +| |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB| |0 to 63 integer|Reset required after change. See command for details. 179 179 180 180 = (% style="color:inherit; font-family:inherit" %)Details(%%) = 181 181 182 182 == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) == 183 183 184 -|(% colspan="2" %)((( 185 -====== __Reset__ ====== 186 -))) 187 -| |((( 188 -Ex: #5RESET<cr> 189 189 190 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See Session, note #2 for more details. 191 -))) 209 +====== ====== 192 192 193 -|(% colspan="2" %)((( 194 -====== (% style="color:inherit; font-family:inherit" %)__Default & confirm__(%%) ====== 195 -))) 196 -|(% style="width:30px" %) |((( 197 -(% style="color:inherit; font-family:inherit" %)Ex: #5DEFAULT<cr> 198 - 199 -(% style="color:inherit; font-family:inherit" %)This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 200 - 201 -(% style="color:inherit; font-family:inherit" %)EX: #5DEFAULT<cr> followed by #5CONFIRM<cr> 202 - 203 -(% style="color:inherit; font-family:inherit" %)Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command. 204 - 205 -(% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET. 206 -))) 207 - 208 -|(% colspan="2" %)((( 209 -====== (% style="color:inherit; font-family:inherit" %)__Update & confirm__(%%) ====== 210 -))) 211 -|(% style="width:30px" %) |((( 212 -(% style="color:inherit; font-family:inherit" %)Ex: #5UPDATE<cr> 213 - 214 -(% style="color:inherit; font-family:inherit" %)This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function. 215 - 216 -(% style="color:inherit; font-family:inherit" %)EX: #5UPDATE<cr> followed by #5CONFIRM<cr> 217 - 218 -(% style="color:inherit; font-family:inherit" %)Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 219 - 220 -(% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET. 221 -))) 222 - 223 -|(% colspan="2" %)((( 224 -====== (% style="color:inherit; font-family:inherit" %)__Confirm__(%%) ====== 225 -))) 226 -|(% style="width:30px" %) |((( 227 -(% style="color:inherit; font-family:inherit" %)Ex: #5CONFIRM<cr> 228 - 229 -(% style="color:inherit; font-family:inherit" %)This command is used to confirm changes after a Default or Update command. 230 -Note: After the CONFIRM command is sent, the servo will automatically perform a RESET. 231 -))) 232 - 233 -|(% colspan="2" %)((( 234 -====== (% style="color:inherit; font-family:inherit" %)__ID Number__(%%) ====== 235 -))) 236 -|(% style="width:30px" %) |((( 237 -This assigns ID #5 to the servo previously assigned to ID 0 238 - 239 -(% style="color:inherit; font-family:inherit" %)Configure ID Number (**CID**) 240 - 241 -(% style="color:inherit; font-family:inherit" %)Ex: #0CID5<cr> 242 - 243 -The default ID is 0, so this sets the servo to ID 5. 244 - 245 -Query ID Number (**QID**) 246 - 247 -Ex: #254QID<cr> might return *254QID5<cr> 248 - 249 -In this case, the broadcast ID is used to ensure the servo connected will reply with the ID. This can be used in case the ID assigned to a servo is forgotten. 250 -))) 251 - 252 -|(% colspan="2" %)((( 253 -====== (% style="color:inherit; font-family:inherit" %)__Enable CAN Terminal Resistor__(%%) ====== 254 -))) 255 -|(% style="width:30px" %) |((( 256 -Query Enable CAN Terminal Resistor (**QET**) 257 - 258 -Ex: #5QET<cr> might return *QET0<cr> 259 - 260 -This means that servo with ID 5 is NOT configured as the last servo in the CAN bus. 261 - 262 -Configure Enable CAN Terminal Resistor (**CET**) 263 - 264 -(% style="color:inherit; font-family:inherit" %)Ex: #5CET1<cr> 265 - 266 -(% style="color:inherit; font-family:inherit" %)This commands sets servo with ID 5 as being the last in the CAN Bus. The last servo in a CAN bus must be configured this way. 267 -))) 268 - 269 -|(% colspan="2" %)((( 270 -====== __USB Connection Status__ ====== 271 -))) 272 -|(% style="width:30px" %) |((( 273 -Query USB Connection Status (**QUC**) 274 - 275 -Ex: #5QUC<cr> might return *5QUC1<cr> meaning the servo is connected via USB 276 -))) 277 - 278 -|(% colspan="2" %)((( 279 -====== __Firmware Release__ ====== 280 -))) 281 -|(% style="width:30px" %) |((( 282 -Query Firmware Release (**QFR**) 283 - 284 -Ex: #5QFR<cr> might return *QFR11<cr> meaning it has a (random) firmware release version number 11. 285 - 286 -This is used to verify if the firmware on the servos is up to date, or which version is running on the microcontroller. 287 -))) 288 - 289 289 == Motion == 290 290 291 -|(% colspan="2" %)((( 292 -====== __Position in Degrees__ ====== 293 -))) 294 -|(% style="width:30px" %) |((( 295 -Position in Degrees (**D**) 213 +====== __Position in Degrees (**D**)__ ====== 296 296 215 + 297 297 Example: #5D1456<cr> 298 298 299 299 This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. ... ... @@ -311,25 +311,17 @@ 311 311 Ex: #5QDT<cr> might return *5QDT6783<cr> 312 312 313 313 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 314 -))) 315 315 316 -|(% colspan="2" %)((( 317 -====== __(Relative) Move in Degrees__ ====== 318 -))) 319 -|(% style="width:30px" %) |((( 320 -Move in Degrees (**MD**) 234 +====== __(Relative) Move in Degrees (**MD**)__ ====== 321 321 236 + 322 322 Example: #5MD123<cr> 323 323 324 324 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 325 -))) 326 326 327 -|(% colspan="2" %)((( 328 -====== __Wheel Mode in Degrees__ ====== 329 -))) 330 -|(% style="width:30px" %) |((( 331 -Wheel mode in Degrees (**WD**) 241 +====== __Wheel Mode in Degrees (**WD**)__ ====== 332 332 243 + 333 333 Ex: #5WD90<cr> 334 334 335 335 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations). ... ... @@ -339,14 +339,10 @@ 339 339 Ex: #5QWD<cr> might return *5QWD90<cr> 340 340 341 341 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 342 -))) 343 343 344 -|(% colspan="2" %)((( 345 -====== __Wheel Mode in RPM__ ====== 346 -))) 347 -|(% style="width:30px" %) |((( 348 -Wheel moed in RPM (**WR**) 254 +====== __Wheel Mode in RPM (**WR**)__ ====== 349 349 256 + 350 350 Ex: #5WR40<cr> 351 351 352 352 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). ... ... @@ -356,28 +356,20 @@ 356 356 Ex: #5QWR<cr> might return *5QWR40<cr> 357 357 358 358 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 359 -))) 360 360 361 -|(% colspan="2" %)((( 362 -====== __(Relative) Move in Degrees__ ====== 363 -))) 364 -|(% style="width:30px" %) |((( 365 -(% class="wikigeneratedid" %) 366 -Move in Degrees (**MD**) 267 +====== ====== 367 367 368 -(% class="wikigeneratedid" id="HExample:235M15003Ccr3E" %) 369 -Example: #5M1500<cr> 269 +====== __(Relative) Move in Degrees (**MD**)__ ====== 370 370 371 -(% class="wikigeneratedid" id="HTherelativemoveinPWMcommandcausestheservotoreaditscurrentpositionandmovebythespecifiednumberofPWMsignal.ForexampleiftheservoissettorotateCW28default29andanMcommandof1500issenttotheservo2Citwillcausetheservotorotateclockwiseby90degrees.NegativePWMvaluewouldcausetheservotorotateintheoppositeconfigureddirection." %) 372 -The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 373 -))) 271 +====== 272 +Example: #5M1500<cr> ====== 374 374 375 -|(% colspan="2" %)((( 376 -====== __Query Status__ ====== 377 -))) 378 -|(% style="width:30px" %) |((( 379 -Query Status (**Q**) 274 +(% class="wikigeneratedid" %) 275 +====== The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. ====== 380 380 277 +====== __Query Status (**Q**)__ ====== 278 + 279 + 381 381 The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below. 382 382 383 383 Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. ... ... @@ -389,7 +389,7 @@ 389 389 | |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 390 390 | |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 391 391 | |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 392 -| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nor mally be holding)291 +| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding) 393 393 | |ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 394 394 | |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 395 395 | |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) ... ... @@ -401,39 +401,32 @@ 401 401 402 402 If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 403 403 303 + 404 404 |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description** 405 405 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 406 406 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 407 407 | |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 408 408 | |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 409 -))) 410 410 411 -|(% colspan="2" %)((( 412 -====== __Limp__ ====== 413 -))) 414 -|(% style="width:30px" %) |((( 415 -Limp (**L**) 310 +====== __Limp (**L**)__ ====== 416 416 312 + 417 417 Example: #5L<cr> 418 418 419 419 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 420 -))) 421 421 422 -|(% colspan="2" %)((( 423 -====== __Halt & Hold__ ====== 424 -))) 425 -|(% style="width:30px" %) |((( 426 -Halt & Hold (**H**) 317 +====== __Halt & Hold (**H**)__ ====== 427 427 319 + 428 428 Example: #5H<cr> 429 429 430 430 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 431 -))) 432 432 433 433 == Motion Setup == 434 434 435 435 ====== __Origin Offset (**O**)__ ====== 436 436 328 + 437 437 Example: #5O2400<cr>This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered). 438 438 439 439 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]] ... ... @@ -530,10 +530,8 @@ 530 530 531 531 This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 532 532 533 -Query Gyre Direction (**QG**) 425 +Query Gyre Direction (**QG**)Ex: #5QG<cr> might return *5QG-1<cr> 534 534 535 -Ex: #5QG<cr> might return *5QG-1<cr> 536 - 537 537 The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM. 538 538 539 539 Configure Gyre (**CG**) ... ... @@ -570,24 +570,6 @@ 570 570 571 571 Configure Speed in RPM (**CSR**)Ex: #5CSR45<cr>Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 572 572 573 -====== __Step Mode (**SM**)__ ====== 574 - 575 -Ex: #8SM2<cr> 576 - 577 -This sets servo with ID 8 to 1/2 step mode. Since this is an action as opposed to a configuration, it only affects that session. 578 - 579 -Note that the torque and max RPM of the actuator will be affected. 580 - 581 -Query Step Mode (**QSM**) 582 - 583 -Ex: #8QSM<cr> might return *8QSM2<cr> meaning servo with ID 8 is set to half step mode. 584 - 585 -Configure Step Mode (**CSM**) 586 - 587 -Ex: #8SM2<cr> 588 - 589 -This sets servo with ID 8 to 1/2 step mode. Since this is a configuration as opposed to a configuration and the servo will be in 1/2 step mode when powered. 590 - 591 591 == Modifiers == 592 592 593 593 ====== __Speed (**SD**) modifier__ ====== ... ... @@ -607,6 +607,7 @@ 607 607 (% class="wikigeneratedid" %) 608 608 This command queries the current speed in microseconds per second. 609 609 482 +(% class="wikigeneratedid" %) 610 610 ====== __Timed move (**T**) modifier__ ====== 611 611 612 612 Example: #5D15000T2500<cr> ... ... @@ -619,27 +619,23 @@ 619 619 620 620 == Telemetry == 621 621 622 -====== __Query PCB Temperature (**QT**)__ ======495 +====== __Query Voltage (**QV**)__ ====== 623 623 624 -Ex: #5Q T<cr> might return *5QT564<cr>497 +Ex: #5QV<cr> might return *5QV11200<cr> 625 625 626 -The unitsareintenths of degreesCelcius, so in theexample above,theservo'sinternaltemperatureis56.4degreesC. To convertfrom degrees Celciustodegrees Farenheit, multiply by 1.8and add 32. Therefore56.4C =133.52F.499 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V. 627 627 628 -====== __Query Temperature Probe(**QTP**)__ ======501 +====== __Query Temperature (**QT**)__ ====== 629 629 630 -Ex: 503 +Ex: #5QT<cr> might return *5QT564<cr> 631 631 632 - ======__QueryTemp ofController(**QTCW**)__======505 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 633 633 634 - Ex:507 +====== __Query Motor Driver Current (**QC**)__ ====== 635 635 636 -An alternative is QTCE 637 - 638 -====== __Query Current (**QC**)__ ====== 639 - 640 640 Ex: #5QC<cr> might return *5QC140<cr> 641 641 642 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value. The query calculates the RMS value of the current sent from the motor driver to the stepper motor.511 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value. 643 643 644 644 ====== __Query Model String (**QMS**)__ ====== 645 645 ... ... @@ -658,17 +658,3 @@ 658 658 Ex: #5QN<cr> might return *5QN12345678<cr> 659 659 660 660 The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user. 661 - 662 -====== __Query IMU Linear (**QIX** **QIY** **QIZ**)__ ====== 663 - 664 -Ex: #6QIX<cr> might return *6QIX30<cr> 665 - 666 -This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 30mm per second squared. 667 - 668 -====== __Query IMU Angular (**QIA** **QIB** **QIC**)__ ====== 669 - 670 -Ex: #6QIB<cr> might return *6QIB44<cr> 671 - 672 -This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 4.4 degrees per second squared. 673 - 674 -