Last modified by Eric Nantel on 2024/09/06 14:52

From version < 76.2 >
edited by Eric Nantel
on 2024/07/22 13:54
To version < 34.1 >
edited by Coleman Benson
on 2023/07/25 15:26
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSS-PRO Communication Protocol
1 +LSS-P - Communication Protocol
Parent
... ... @@ -1,1 +1,1 @@
1 -ses-pro.lss-pro.WebHome
1 +lynxmotion-smart-servo-pro.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -xwiki:XWiki.ENantel
1 +xwiki:XWiki.CBenson
Hidden
... ... @@ -1,1 +1,1 @@
1 -false
1 +true
Content
... ... @@ -1,3 +1,6 @@
1 +{{warningBox warningText="More information coming soon"/}}
2 +
3 +
1 1  (% class="wikigeneratedid" id="HTableofContents" %)
2 2  **Page Contents**
3 3  
... ... @@ -26,88 +26,104 @@
26 26  
27 27  == Modifiers ==
28 28  
29 -Modifiers can only be used with certain **action commands**. The format to include a modifier is:
32 +{{html clean="false" wiki="true"}}
33 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
34 +Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div>
30 30  
31 -1. Start with a number sign **#** (Unicode Character: U+0023)
36 +1. Start with a number sign **#** (Unicode Character: U+0023)
32 32  1. Servo ID number as an integer
33 33  1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
34 34  1. Action value in the correct units with no decimal
35 -1. Modifier command (one or two letters from the list of modifiers below)
40 +1. Modifier command (one or two letters from the list of modifiers below)
36 36  1. Modifier value in the correct units with no decimal
37 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
42 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)
38 38  
39 -Ex: #5D13000T1500<cr>This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).
44 +Ex: #5D13000T1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
40 40  
41 -== Queries ==
46 +This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div>
47 +<div class="wikimodel-emptyline"></div></div></div>
42 42  
43 -Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:
49 +<h2>Queries</h2>
50 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
51 +Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div>
44 44  
45 -1. Start with a number sign **#** (Unicode Character: U+0023)
53 +1. Start with a number sign **#** (Unicode Character: U+0023)
46 46  1. Servo ID number as an integer
47 47  1. Query command (one to four letters, no spaces, capital or lower case)
48 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
56 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
49 49  
50 -Ex: #5QD<cr> Query the position in (hundredths of) degrees for servo with ID #5The query will return a serial string (almost instantaneously) via the servo's Tx in the following format:
58 +Ex: #5QD&lt;cr&gt; Query the position in (hundredths of) degrees for servo with ID #5<div class="wikimodel-emptyline"></div>
51 51  
60 +The query will return a serial string (almost instantaneously) via the servo's Tx in the following format:
61 +
52 52  1. Start with an asterisk * (Unicode Character: U+0023)
53 53  1. Servo ID number as an integer
54 54  1. Query command (one to four letters, no spaces, capital letters)
55 55  1. The reported value in the units described, no decimals.
56 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
66 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
57 57  
58 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:
68 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div>
59 59  
60 -Ex: *5QD13000<cr>
70 +Ex: *5QD13000&lt;cr&gt;<div class="wikimodel-emptyline"></div>
61 61  
62 62  This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees).
73 +<div class="wikimodel-emptyline"></div></div></div>
63 63  
64 -== Configurations ==
75 +<h2>Configurations</h2>
65 65  
66 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.
77 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
78 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div>
67 67  
68 -The format to send a configuration command is identical to that of an action command:
80 +These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>
69 69  
70 -1. Start with a number sign **#** (Unicode Character: U+0023)
82 +The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div>
83 +
84 +1. Start with a number sign **#** (Unicode Character: U+0023)
71 71  1. Servo ID number as an integer
72 72  1. Configuration command (two to four letters, no spaces, capital or lower case)
73 73  1. Configuration value in the correct units with no decimal
74 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
88 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
75 75  
76 -Ex: #5CO-500<cr>
90 +Ex: #5CO-500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
77 77  
78 -This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).
92 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div>
79 79  
80 -**Session vs Configuration Query**
94 +**Session vs Configuration Query**<div class="wikimodel-emptyline"></div>
81 81  
82 -By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
96 +By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div>
83 83  
84 -Ex: #5CSR10<cr> immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.
98 +Ex: #5CSR10&lt;cr&gt; immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>
85 85  
86 -After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
100 +After RESET, a command of #5SR4&lt;cr&gt; sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>
87 87  
88 -#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas
102 +#5QSR&lt;cr&gt; or #5QSR0&lt;cr&gt; would return *5QSR4&lt;cr&gt; which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>
89 89  
90 -#5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM
104 +#5QSR1&lt;cr&gt; would return *5QSR10&lt;cr&gt; which represents the value in EEPROM
105 +<div class="wikimodel-emptyline"></div></div></div>
91 91  
92 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).
107 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
108 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div>
93 93  
94 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]
110 +[[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div>
95 95  
96 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
112 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div>
97 97  
98 -#1D-3000<cr> This causes the servo to move to -30.00 degrees (green arrow)
114 +#1D-3000&lt;cr&gt; This causes the servo to move to -30.00 degrees (green arrow)<div class="wikimodel-emptyline"></div>
99 99  
100 -#1D21000<cr> This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)
116 +#1D21000&lt;cr&gt; This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)<div class="wikimodel-emptyline"></div>
101 101  
102 -#1D-42000<cr> This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.
118 +#1D-42000&lt;cr&gt; This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div>
103 103  
104 -Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees.
120 +Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees.<div class="wikimodel-emptyline"></div>
105 105  
106 -#1D48000<cr> This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
122 +#1D48000&lt;cr&gt; This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div>
107 107  
108 -#1D33000<cr> would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).
124 +#1D33000&lt;cr&gt; would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>
109 109  
110 110  If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.00 degrees before power is cycled, upon power up the servo's position will be read as +120.00 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.00°, 180.00°].
127 +<div class="wikimodel-emptyline"></div></div></div>
128 +
129 +{{/html}}
111 111  )))
112 112  
113 113  = Command List =
... ... @@ -116,184 +116,84 @@
116 116  
117 117  |(% colspan="8" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]]
118 118  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
119 -| |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Soft reset
120 -| |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Revert to firmware default values
121 -| |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Update firmware
122 -| |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Confirm the action for some commands
123 -| |[[**ID** Number >>||anchor="HIDNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %)0|(% style="text-align:center" %) |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
124 -| |[[**E**nable CAN **T**erminal>>doc:||anchor="HEnableCANTerminalResistor28ET29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET|(% style="text-align:center" %)1|(% style="text-align:center" %)0 or 1|0: Disable  1: Enable
125 -| |[[**U**SB **C**onnection Status>>||anchor="HUSBConnectionStatus28UC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)0 or 1|0: Not connected 1: Connected
138 +| |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Soft reset. See command for details.
139 +| |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Revert to firmware default values. See command for details
140 +| |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Update firmware. See command for details.
141 +| |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) | | |
142 +| |[[**E**nable CAN **T**erminal>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0 or 1|0: Disable  1: Enable
143 +| |[[**ID** Number >>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
144 +| |[[**U**SB **C**onnection State>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected
145 +| |**Q**uery **F**irmware **R**elease|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | |
126 126  
127 127  |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]]
128 128  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
129 -| |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD|(% style="text-align:center" %) | |0.01°|
130 -| |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) | |0.01°|
131 -| |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD|(% style="text-align:center" %) | |0.01°/s|A.K.A. "Speed mode" or "Continuous rotation"
149 +| |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) | |1/100°|
150 +| |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) | |1/100°|
151 +| |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) | |°/s|A.K.A. "Speed mode" or "Continuous rotation"
132 132  | |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM28WR29"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) | |RPM|A.K.A. "Speed mode" or "Continuous rotation"
133 133  | |[[**Q**uery Motion Status>>||anchor="HQueryStatus28Q29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) | |1 to 8 integer|See command description for details
134 -| |[[**Q**uery **M**otion **T**ime>>doc:||anchor="HMotionTime"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMT|(% style="text-align:center" %) | |0.01s|
135 -| |[[**Q**uery **C**urrent **S**peed>>doc:||anchor="HCurrentSpeed"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | |0.01°/s|
136 136  | |[[**L**imp>>||anchor="HLimp28L29"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Removes power from stepper coils
137 -| |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Stops (halts) motion and holds last position
155 +| |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Stops (halts) motion profile and holds last position
138 138  
139 139  |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]]
140 140  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
141 -| |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)0|(% style="text-align:center" %)0.01°|
142 -| |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)36000|(% style="text-align:center" %)0.01°|
143 -| |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s^2|
144 -| |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s^2|
145 -| |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)1|(% style="text-align:center" %)1 or -1|Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
146 -| |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°|Reset required after change.
147 -| |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s|SD / CSD overwrites SR / CSR
148 -| |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %) |(% style="text-align:center" %)RPM|SR / CSR overwrites SD / CSD
159 +| |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|1| |EM1: trapezoidal motion profile / EM0: no motion profile
160 +| |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|5| |Affects motion only when motion profile is disabled (EM0)
161 +| |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|0|1/10°|
162 +| |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|1800|1/10°|
163 +| |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|0|-4 to +4 integer|Suggested values are between 0 to +4
164 +| |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|4|-10 to +10 integer|
165 +| |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
166 +| |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
167 +| |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
168 +| |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|No value|1/10°|Reset required after change.
169 +| |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |1023|255 to 1023 integer|
170 +| |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
171 +| |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
149 149  
150 150  |(% colspan="8" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]]
151 151  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
152 -| |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) | |0.01°/s|For D and MD action commands
175 +| |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) | |1°/s|For D and MD action commands
153 153  | |[[**T**imed move>>||anchor="HTimedmove28T29modifier"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) | |ms|Time associated with D, MD commands
154 154  
155 155  |(% colspan="8" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]]
156 156  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
157 -| |[[**Q**uery PCB **T**emperature>>doc:||anchor="HQueryPCBTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) | |0.1°C|
158 -| |[[**Q**uery **C**urrent>>doc:||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) | |mA|Nominal RMS value to stepper motor driver IC.
180 +| |[[**Q**uery PCB **T**emperature>>||anchor="HQueryTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) | |°C|
181 +| |[[**Q**uery **C**urrent>>||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) | |mA|Nominal RMS value to stepper motor driver IC.
159 159  | |[[**Q**uery **M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) | | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
160 160  | |[[**Q**uery **F**irmware Version>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) | | |
161 161  | |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) | | |Returns the unique serial number for the servo
162 -| |[[**Q**uery **T**emperature **P**robe>>doc:||anchor="HQueryTemperatureProbe28QTP29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | |0.1°C|Queries temperature probe fixed to the stepper motor
163 -| |[[**Q**uery **T**emp of **M**CU>>doc:||anchor="HQueryMCUTemperature28QTM29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTM|(% style="text-align:center" %) | |0.1°C|
164 -| |[[Query Temp of Controller Error>>doc:||anchor="HQueryTempControllerError28QTCE29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTCE|(% style="text-align:center" %) | | |(((
165 -Temperature error status of the motor controller (over-temp error)
185 +| |**Q**uery **T**emperature **P**robe|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | | |Queries temperature probe fixed to stepper motor
186 +| |**Q**uery **T**emp of **C**ontroller|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW, QTCE|(% style="text-align:center" %) | | |(((
187 +QTCW: Queries the temperature status of the motor controller (pre-warning)
188 +
189 +QTCE: Queries the temperature status of the motor controller (over-temp error)
166 166  )))
167 -| |[[Query Temp of Controller Pre-Warning>>doc:||anchor="HQueryTempControllerWarning28QTCW29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW|(% style="text-align:center" %) | | |Temperature error status of the motor controller (pre-warning)
168 -| |[[**Q**uery **E**rror **F**lag>>doc:||anchor="HQueryErrorFlag28QEF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QEF|(% style="text-align:center" %) | | |
169 -| |[[**Q**uery **I**MU Linear **X**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2|
170 -| |[[**Q**uery **I**MU Linear **Y**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2|
171 -| |[[**Q**uery **I**MU Linear **Z**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2|
172 -| |[[**Q**uery **I**MU Angular Accel **α** >>doc:||anchor="HQueryIMUAngular28QIAQIBQIC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha)
173 -| |[[**Q**uery **I**MU Angular Accel **β**>>doc:||anchor="HQueryIMUAngular28QIAQIBQIC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta)
174 -| |[[**Q**uery **I**MU Angular Accel **γ**>>doc:||anchor="HQueryIMUAngular28QIAQIBQIC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma)
191 +| |**Q**uery **C**urrent **S**peed |(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | | |Queries the motor controller's calculated speed
192 +| |**Q**uery **I**MU Linear **X**|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2|
193 +| |**Q**uery **I**MU Linear **Y**|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2|
194 +| |**Q**uery **I**MU Linear **Z**|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2|
195 +| |**Q**uery **I**MU Angular Accel **α** |(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha)
196 +| |**Q**uery **I**MU Angular Accel **β**|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta)
197 +| |**Q**uery **I**MU Angular Accel **γ**|(% style="text-align:center" %) |(% style="text-align:center" %)QIC / QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma)
175 175  
176 176  |(% colspan="8" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]]
177 177  |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
178 178  | |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
202 +| |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB| |0 to 63 integer|Reset required after change. See command for details.
179 179  
180 180  = (% style="color:inherit; font-family:inherit" %)Details(%%) =
181 181  
182 182  == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
183 183  
184 -|(% colspan="2" %)(((
185 -====== __Reset__ ======
186 -)))
187 -| |(((
188 -Ex: #5RESET<cr>
189 189  
190 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See Session, note #2 for more details.
191 -)))
209 +====== ======
192 192  
193 -|(% colspan="2" %)(((
194 -====== (% style="color:inherit; font-family:inherit" %)__Default & confirm__(%%) ======
195 -)))
196 -|(% style="width:30px" %) |(((
197 -(% style="color:inherit; font-family:inherit" %)Ex: #5DEFAULT<cr>
198 -
199 -(% style="color:inherit; font-family:inherit" %)This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
200 -
201 -(% style="color:inherit; font-family:inherit" %)EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
202 -
203 -(% style="color:inherit; font-family:inherit" %)Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
204 -
205 -(% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
206 -)))
207 -
208 -|(% colspan="2" %)(((
209 -====== (% style="color:inherit; font-family:inherit" %)__Update & confirm__(%%) ======
210 -)))
211 -|(% style="width:30px" %) |(((
212 -(% style="color:inherit; font-family:inherit" %)Ex: #5UPDATE<cr>
213 -
214 -(% style="color:inherit; font-family:inherit" %)This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
215 -
216 -(% style="color:inherit; font-family:inherit" %)EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
217 -
218 -(% style="color:inherit; font-family:inherit" %)Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
219 -
220 -(% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
221 -)))
222 -
223 -|(% colspan="2" %)(((
224 -====== (% style="color:inherit; font-family:inherit" %)__Confirm__(%%) ======
225 -)))
226 -|(% style="width:30px" %) |(((
227 -(% style="color:inherit; font-family:inherit" %)Ex: #5CONFIRM<cr>
228 -
229 -(% style="color:inherit; font-family:inherit" %)This command is used to confirm changes after a Default or Update command.
230 -Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
231 -)))
232 -
233 -|(% colspan="2" %)(((
234 -====== (% style="color:inherit; font-family:inherit" %)__ID Number__(%%) ======
235 -)))
236 -|(% style="width:30px" %) |(((
237 -This assigns ID #5 to the servo previously assigned to ID 0
238 -
239 -(% style="color:inherit; font-family:inherit" %)Configure ID Number (**CID**)
240 -
241 -(% style="color:inherit; font-family:inherit" %)Ex: #0CID5<cr>
242 -
243 -The default ID is 0, so this sets the servo to ID 5.
244 -
245 -Query ID Number (**QID**)
246 -
247 -Ex: #254QID<cr> might return *254QID5<cr>
248 -
249 -In this case, the broadcast ID is used to ensure the servo connected will reply with the ID. This can be used in case the ID assigned to a servo is forgotten.
250 -)))
251 -
252 -|(% colspan="2" %)(((
253 -====== (% style="color:inherit; font-family:inherit" %)__Enable CAN Terminal Resistor__(%%) ======
254 -)))
255 -|(% style="width:30px" %) |(((
256 -Query Enable CAN Terminal Resistor (**QET**)
257 -
258 -Ex: #5QET<cr> might return *QET0<cr>
259 -
260 -This means that servo with ID 5 is NOT configured as the last servo in the CAN bus.
261 -
262 -Configure Enable CAN Terminal Resistor (**CET**)
263 -
264 -(% style="color:inherit; font-family:inherit" %)Ex: #5CET1<cr>
265 -
266 -(% style="color:inherit; font-family:inherit" %)This commands sets servo with ID 5 as being the last in the CAN Bus. The last servo in a CAN bus must be configured this way.
267 -)))
268 -
269 -|(% colspan="2" %)(((
270 -====== __USB Connection Status__ ======
271 -)))
272 -|(% style="width:30px" %) |(((
273 -Query USB Connection Status (**QUC**)
274 -
275 -Ex: #5QUC<cr> might return *5QUC1<cr> meaning the servo is connected via USB
276 -)))
277 -
278 -|(% colspan="2" %)(((
279 -====== __Firmware Release__ ======
280 -)))
281 -|(% style="width:30px" %) |(((
282 -Query Firmware Release (**QFR**)
283 -
284 -Ex: #5QFR<cr> might return *QFR11<cr> meaning it has a (random) firmware release version number 11.
285 -
286 -This is used to verify if the firmware on the servos is up to date, or which version is running on the microcontroller.
287 -)))
288 -
289 289  == Motion ==
290 290  
291 -|(% colspan="2" %)(((
292 -====== __Position in Degrees__ ======
293 -)))
294 -|(% style="width:30px" %) |(((
295 -Position in Degrees (**D**)
213 +====== __Position in Degrees (**D**)__ ======
296 296  
215 +
297 297  Example: #5D1456<cr>
298 298  
299 299  This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction.
... ... @@ -311,25 +311,17 @@
311 311  Ex: #5QDT<cr> might return *5QDT6783<cr>
312 312  
313 313  The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
314 -)))
315 315  
316 -|(% colspan="2" %)(((
317 -====== __(Relative) Move in Degrees__ ======
318 -)))
319 -|(% style="width:30px" %) |(((
320 -Move in Degrees (**MD**)
234 +====== __(Relative) Move in Degrees (**MD**)__ ======
321 321  
236 +
322 322  Example: #5MD123<cr>
323 323  
324 324  The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
325 -)))
326 326  
327 -|(% colspan="2" %)(((
328 -====== __Wheel Mode in Degrees__ ======
329 -)))
330 -|(% style="width:30px" %) |(((
331 -Wheel mode in Degrees (**WD**)
241 +====== __Wheel Mode in Degrees (**WD**)__ ======
332 332  
243 +
333 333  Ex: #5WD90<cr>
334 334  
335 335  This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
... ... @@ -339,14 +339,10 @@
339 339  Ex: #5QWD<cr> might return *5QWD90<cr>
340 340  
341 341  The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
342 -)))
343 343  
344 -|(% colspan="2" %)(((
345 -====== __Wheel Mode in RPM__ ======
346 -)))
347 -|(% style="width:30px" %) |(((
348 -Wheel moed in RPM (**WR**)
254 +====== __Wheel Mode in RPM (**WR**)__ ======
349 349  
256 +
350 350  Ex: #5WR40<cr>
351 351  
352 352  This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
... ... @@ -356,28 +356,20 @@
356 356  Ex: #5QWR<cr> might return *5QWR40<cr>
357 357  
358 358  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
359 -)))
360 360  
361 -|(% colspan="2" %)(((
362 -====== __(Relative) Move in Degrees__ ======
363 -)))
364 -|(% style="width:30px" %) |(((
365 -(% class="wikigeneratedid" %)
366 -Move in Degrees (**MD**)
267 +====== ======
367 367  
368 -(% class="wikigeneratedid" id="HExample:235M15003Ccr3E" %)
369 -Example: #5M1500<cr>
269 +====== __(Relative) Move in Degrees (**MD**)__ ======
370 370  
371 -(% class="wikigeneratedid" id="HTherelativemoveinPWMcommandcausestheservotoreaditscurrentpositionandmovebythespecifiednumberofPWMsignal.ForexampleiftheservoissettorotateCW28default29andanMcommandof1500issenttotheservo2Citwillcausetheservotorotateclockwiseby90degrees.NegativePWMvaluewouldcausetheservotorotateintheoppositeconfigureddirection." %)
372 -The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
373 -)))
271 +======
272 +Example: #5M1500<cr> ======
374 374  
375 -|(% colspan="2" %)(((
376 -====== __Query Status__ ======
377 -)))
378 -|(% style="width:30px" %) |(((
379 -Query Status (**Q**)
274 +(% class="wikigeneratedid" %)
275 +====== The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. ======
380 380  
277 +====== __Query Status (**Q**)__ ======
278 +
279 +
381 381  The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.
382 382  
383 383  Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
... ... @@ -389,7 +389,7 @@
389 389  | |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
390 390  | |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
391 391  | |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
392 -| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will normally be holding)
291 +| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding)
393 393  | |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
394 394  | |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
395 395  | |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
... ... @@ -401,63 +401,40 @@
401 401  
402 402  If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
403 403  
303 +
404 404  |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
405 405  | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
406 406  | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
407 407  | |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
408 408  | |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
409 -)))
410 410  
411 -|(% colspan="2" %)(((
412 -====== __Motion Time__ ======
413 -)))
414 -|(% style="width:30px" %) |(((
415 -
416 -)))
310 +====== __Limp (**L**)__ ======
417 417  
418 -|(% colspan="2" %)(((
419 -====== __Current Speed__ ======
420 -)))
421 -|(% style="width:30px" %) |(((
422 -
423 -)))
424 424  
425 -|(% colspan="2" %)(((
426 -====== __Limp__ ======
427 -)))
428 -|(% style="width:30px" %) |(((
429 -Limp (**L**)
430 -
431 431  Example: #5L<cr>
432 432  
433 433  This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
434 -)))
435 435  
436 -|(% colspan="2" %)(((
437 -====== __Halt & Hold__ ======
438 -)))
439 -|(% style="width:30px" %) |(((
440 -Halt & Hold (**H**)
317 +====== __Halt & Hold (**H**)__ ======
441 441  
319 +
442 442  Example: #5H<cr>
443 443  
444 444  This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
445 -)))
446 446  
447 447  == Motion Setup ==
448 448  
449 -|(% colspan="2" %)(((
450 450  ====== __Origin Offset (**O**)__ ======
451 -)))
452 -|(% style="width:30px" %) |(((
327 +
328 +
453 453  Example: #5O2400<cr>This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
454 454  
455 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
331 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
456 456  
457 457  
458 458  In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
459 459  
460 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]
336 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]
461 461  
462 462  
463 463  Origin Offset Query (**QO**)
... ... @@ -471,26 +471,23 @@
471 471  Example: #5CO-24<cr>
472 472  
473 473  This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
474 -)))
475 475  
476 -|(% colspan="2" %)(((
477 477  ====== __Angular Range (**AR**)__ ======
478 -)))
479 -|(% style="width:30px" %) |(((
352 +
480 480  Example: #5AR1800<cr>
481 481  
482 482  This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
483 483  
484 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
357 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
485 485  
486 486  Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
487 487  
488 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]
361 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]
489 489  
490 490  
491 491  Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
492 492  
493 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]
366 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]
494 494  
495 495  
496 496  Query Angular Range (**QAR**)
... ... @@ -500,12 +500,9 @@
500 500  Configure Angular Range (**CAR**)
501 501  
502 502  This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
503 -)))
504 504  
505 -|(% colspan="2" %)(((
506 506  ====== __Angular Acceleration (**AA**)__ ======
507 -)))
508 -|(% style="width:30px" %) |(((
378 +
509 509  The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
510 510  
511 511  Ex: #5AA30<cr>
... ... @@ -523,12 +523,9 @@
523 523  Ex: #5CAA30<cr>
524 524  
525 525  This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
526 -)))
527 527  
528 -|(% colspan="2" %)(((
529 529  ====== __Angular Deceleration (**AD**)__ ======
530 -)))
531 -|(% style="width:30px" %) |(((
398 +
532 532  The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
533 533  
534 534  Ex: #5AD30<cr>
... ... @@ -546,12 +546,9 @@
546 546  Ex: #5CAD30<cr>
547 547  
548 548  This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
549 -)))
550 550  
551 -|(% colspan="2" %)(((
552 552  ====== __Gyre Direction (**G**)__ ======
553 -)))
554 -|(% style="width:30px" %) |(((
418 +
555 555  "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.
556 556  
557 557  Ex: #5G-1<cr>
... ... @@ -558,10 +558,8 @@
558 558  
559 559  This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
560 560  
561 -Query Gyre Direction (**QG**)
425 +Query Gyre Direction (**QG**)Ex: #5QG<cr> might return *5QG-1<cr>
562 562  
563 -Ex: #5QG<cr> might return *5QG-1<cr>
564 -
565 565  The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.
566 566  
567 567  Configure Gyre (**CG**)
... ... @@ -569,19 +569,13 @@
569 569  Ex: #5CG-1<cr>
570 570  
571 571  This changes the gyre direction as described above and also writes to EEPROM.
572 -)))
573 573  
574 -|(% colspan="2" %)(((
575 575  ====== __First Position__ ======
576 -)))
577 -|(% style="width:30px" %) |(((
436 +
578 578  In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.Query First Position in Degrees (**QFD**)Ex: #5QFD<cr> might return *5QFD900<cr>The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.Configure First Position in Degrees (**CFD**)Ex: #5CFD900<cr>This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
579 -)))
580 580  
581 -|(% colspan="2" %)(((
582 582  ====== __Maximum Speed in Degrees (**SD**)__ ======
583 -)))
584 -|(% style="width:30px" %) |(((
440 +
585 585  Ex: #5SD1800<cr>This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in Degrees (**QSD**)Ex: #5QSD<cr> might return *5QSD1800<cr>By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
586 586  
587 587  |**Command sent**|**Returned value (1/10 °)**
... ... @@ -591,14 +591,11 @@
591 591  |ex: #5QSD3<cr>|Target travel speed
592 592  
593 593  Configure Speed in Degrees (**CSD**)Ex: #5CSD1800<cr>Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
594 -)))
595 595  
596 -|(% colspan="2" %)(((
597 597  ====== __Maximum Speed in RPM (**SR**)__ ======
598 -)))
599 -|(% style="width:30px" %) |(((
600 -====== Ex: #5SR45<cr>This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in RPM (**QSR**)Ex: #5QSR<cr> might return *5QSR45<cr>By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: ======
601 601  
453 +Ex: #5SR45<cr>This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in RPM (**QSR**)Ex: #5QSR<cr> might return *5QSR45<cr>By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
454 +
602 602  |**Command sent**|**Returned value (1/10 °)**
603 603  |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
604 604  |ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
... ... @@ -606,16 +606,14 @@
606 606  |ex: #5QSR3<cr>|Target travel speed
607 607  
608 608  Configure Speed in RPM (**CSR**)Ex: #5CSR45<cr>Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
609 -)))
610 610  
611 611  == Modifiers ==
612 612  
613 -|(% colspan="2" %)(((
614 614  ====== __Speed (**SD**) modifier__ ======
615 -)))
616 -|(% style="width:30px" %) |(((
617 -====== Example: #5D0SD180<cr> ======
618 618  
467 +(% class="wikigeneratedid" id="HTimedmove28T29modifier" %)
468 +Example: #5D0SD180<cr>
469 +
619 619  (% class="wikigeneratedid" %)
620 620  Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.
621 621  
... ... @@ -627,115 +627,52 @@
627 627  
628 628  (% class="wikigeneratedid" %)
629 629  This command queries the current speed in microseconds per second.
630 -)))
631 631  
632 -|(% colspan="2" %)(((
482 +(% class="wikigeneratedid" %)
633 633  ====== __Timed move (**T**) modifier__ ======
634 -)))
635 -|(% style="width:30px" %) |(((
484 +
636 636  Example: #5D15000T2500<cr>
637 637  
638 638  Timed move can be used only as a modifier for a position (D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
639 639  
640 640  **Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested
641 -)))
642 642  
491 +====== ======
492 +
643 643  == Telemetry ==
644 644  
645 -|(% colspan="2" %)(((
646 -====== __**Q**uery PCB **T**emperature (**QT**)__ ======
647 -)))
648 -|(% style="width:30px" %) |(((
649 -Ex: #5QT<cr> might return *5QT564<cr>
495 +====== __Query Voltage (**QV**)__ ======
650 650  
651 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
652 -)))
497 +Ex: #5QV<cr> might return *5QV11200<cr>
653 653  
654 -|(% colspan="2" %)(((
655 -====== __**Q**uery **C**urrent (**QC**)__ ======
656 -)))
657 -|(% style="width:30px" %) |(((
658 -====== Ex: #5QC<cr> might return *5QC140<cr> ======
499 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.
659 659  
660 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value. The query calculates the RMS value of the current sent from the motor driver to the stepper motor.
661 -)))
501 +====== __Query Temperature (**QT**)__ ======
662 662  
663 -|(% colspan="2" %)(((
664 -====== __**Q**uery **M**odel **S**tring (**QMS**)__ ======
665 -)))
666 -|(% style="width:30px" %) |(((
667 -====== Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr> ======
503 +Ex: #5QT<cr> might return *5QT564<cr>
668 668  
669 -This reply means that the servo model is LSS-HS1: a high speed servo, first revision.
670 -)))
505 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
671 671  
672 -|(% colspan="2" %)(((
673 -====== __**Q**uery **F**irmware (**QF**)__ ======
674 -)))
675 -|(% style="width:30px" %) |(((
676 -Ex: #5QF<cr> might return *5QF368<cr>
507 +====== __Query Motor Driver Current (**QC**)__ ======
677 677  
678 -The number in the reply represents the firmware version, in this example being 368.The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14
679 -)))
509 +Ex: #5QC<cr> might return *5QC140<cr>
680 680  
681 -|(% colspan="2" %)(((
682 -====== __**Q**uery Serial **N**umber (**QN**)__ ======
683 -)))
684 -|(% style="width:30px" %) |(((
685 -====== Ex: #5QN<cr> might return *5QN12345678<cr> ======
511 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value.
686 686  
687 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
688 -)))
513 +====== __Query Model String (**QMS**)__ ======
689 689  
690 -|(% colspan="2" %)(((
691 -====== __**Q**uery **T**emperature **P**robe (**QTP**)__ ======
692 -)))
693 -|(% style="width:30px" %) |(((
694 -
695 -)))
515 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
696 696  
697 -|(% colspan="2" %)(((
698 -====== __**Q**uery **T**emperature **M**CU (**QTM**)__ ======
699 -)))
700 -|(% style="width:30px" %) |(((
701 -
702 -)))
517 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision.
703 703  
704 -|(% colspan="2" %)(((
705 -====== __Query Temp Controller Error (**QTCE**)__ ======
706 -)))
707 -|(% style="width:30px" %) |(((
708 -
709 -)))
519 +====== __Query Firmware (**QF**)__ ======
710 710  
711 -|(% colspan="2" %)(((
712 -====== __Query Temp Controller Warning (**QTCW**)__ ======
713 -)))
714 -|(% style="width:30px" %) |(((
715 -
716 -)))
521 +Ex: #5QF<cr> might return *5QF368<cr>
717 717  
718 -|(% colspan="2" %)(((
719 -====== __Query Error Flag (**QEF**)__ ======
720 -)))
721 -|(% style="width:30px" %) |(((
722 -
723 -)))
523 +The number in the reply represents the firmware version, in this example being 368.The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14
724 724  
725 -|(% colspan="2" %)__**Q**uery **I**MU Linear (**QIX** **QIY** **QIZ**)__
726 -|(% style="width:30px" %) |(((
727 -====== Ex: #6QIX<cr> might return *6QIX30<cr> ======
525 +====== __Query Serial Number (**QN**)__ ======
728 728  
729 -This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 30mm per second squared.
730 -)))
527 +Ex: #5QN<cr> might return *5QN12345678<cr>
731 731  
732 -|(% colspan="2" %)(((
733 -====== __**Q**uery **I**MU Angular (**QIA** **QIB** **QIG**)__ ======
734 -)))
735 -|(% style="width:30px" %) |(((
736 -====== Ex: #6QIB<cr> might return *6QIB44<cr> ======
737 -
738 -This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 4.4 degrees per second squared.
739 -)))
740 -
741 -
529 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
Copyright RobotShop 2018