Changes for page LSS-PRO Communication Protocol
Last modified by Eric Nantel on 2024/09/06 14:52
Change comment: There is no comment for this version
Summary
-
Page properties (5 modified, 0 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LSS-P ROCommunication Protocol1 +LSS-P - Communication Protocol - Parent
-
... ... @@ -1,1 +1,1 @@ 1 -s es-pro.lss-pro.WebHome1 +lynxmotion-smart-servo-pro.WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -xwiki:XWiki. ENantel1 +xwiki:XWiki.CBenson - Hidden
-
... ... @@ -1,1 +1,1 @@ 1 - false1 +true - Content
-
... ... @@ -1,3 +1,6 @@ 1 +{{warningBox warningText="More information coming soon"/}} 2 + 3 + 1 1 (% class="wikigeneratedid" id="HTableofContents" %) 2 2 **Page Contents** 3 3 ... ... @@ -26,88 +26,104 @@ 26 26 27 27 == Modifiers == 28 28 29 -Modifiers can only be used with certain **action commands**. The format to include a modifier is: 32 +{{html clean="false" wiki="true"}} 33 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 34 +Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div> 30 30 31 -1. Start with a number sign 36 +1. Start with a number sign **#** (Unicode Character: U+0023) 32 32 1. Servo ID number as an integer 33 33 1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below) 34 34 1. Action value in the correct units with no decimal 35 -1. Modifier command (one or two letters from the list of modifiers below) 40 +1. Modifier command (one or two letters from the list of modifiers below) 36 36 1. Modifier value in the correct units with no decimal 37 -1. End with a carriage return \r**<cr>**42 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 38 38 39 -Ex: #5D13000T1500 <cr>Thisresultsin theservowith ID #5 rotating toa position (1800 in tenths ofdegrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).44 +Ex: #5D13000T1500<cr><div class="wikimodel-emptyline"></div> 40 40 41 -== Queries == 46 +This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div> 47 +<div class="wikimodel-emptyline"></div></div></div> 42 42 43 -Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format: 49 +<h2>Queries</h2> 50 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 51 +Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div> 44 44 45 -1. Start with a number sign 53 +1. Start with a number sign **#** (Unicode Character: U+0023) 46 46 1. Servo ID number as an integer 47 47 1. Query command (one to four letters, no spaces, capital or lower case) 48 -1. End with a carriage return \r**<cr>**56 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 49 49 50 -Ex: #5QD <cr>Query the position in (hundredths of) degrees for servo with ID #5The query willreturnaerialstring (almost instantaneously) via theservo's Tx inthe following format:58 +Ex: #5QD<cr> Query the position in (hundredths of) degrees for servo with ID #5<div class="wikimodel-emptyline"></div> 51 51 60 +The query will return a serial string (almost instantaneously) via the servo's Tx in the following format: 61 + 52 52 1. Start with an asterisk * (Unicode Character: U+0023) 53 53 1. Servo ID number as an integer 54 54 1. Query command (one to four letters, no spaces, capital letters) 55 55 1. The reported value in the units described, no decimals. 56 -1. End with a carriage return \r**<cr>**66 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 57 57 58 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be: 68 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div> 59 59 60 -Ex: *5QD13000 <cr>70 +Ex: *5QD13000<cr><div class="wikimodel-emptyline"></div> 61 61 62 62 This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees). 73 +<div class="wikimodel-emptyline"></div></div></div> 63 63 64 - ==Configurations==75 +<h2>Configurations</h2> 65 65 66 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored. 77 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 78 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div> 67 67 68 -The format to send a configuration command is identical t othat ofanaction command:80 +These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div> 69 69 70 -1. Start with a number sign **#** (Unicode Character: U+0023) 82 +The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div> 83 + 84 +1. Start with a number sign **#** (Unicode Character: U+0023) 71 71 1. Servo ID number as an integer 72 72 1. Configuration command (two to four letters, no spaces, capital or lower case) 73 73 1. Configuration value in the correct units with no decimal 74 -1. End with a carriage return \r**<cr>**88 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 75 75 76 -Ex: #5CO-500 <cr>90 +Ex: #5CO-500<cr><div class="wikimodel-emptyline"></div> 77 77 78 -This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below). 92 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div> 79 79 80 -**Session vs Configuration Query** 94 +**Session vs Configuration Query**<div class="wikimodel-emptyline"></div> 81 81 82 -By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command: 96 +By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div> 83 83 84 -Ex: #5CSR10 <cr>immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.98 +Ex: #5CSR10<cr> immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div> 85 85 86 -After RESET, a command of #5SR4 <cr>sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:100 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div> 87 87 88 -#5QSR <cr>or #5QSR0<cr>would return *5QSR4<cr>which represents the value for that session, whereas102 +#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas<div class="wikimodel-emptyline"></div> 89 89 90 -#5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM 104 +#5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM 105 +<div class="wikimodel-emptyline"></div></div></div> 91 91 92 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset). 107 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 108 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div> 93 93 94 -[[image: https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]110 +[[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div> 95 95 96 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: 112 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div> 97 97 98 -#1D-3000 <cr>This causes the servo to move to -30.00 degrees (green arrow)114 +#1D-3000<cr> This causes the servo to move to -30.00 degrees (green arrow)<div class="wikimodel-emptyline"></div> 99 99 100 -#1D21000 <cr>This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)116 +#1D21000<cr> This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)<div class="wikimodel-emptyline"></div> 101 101 102 -#1D-42000 <cr>This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.118 +#1D-42000<cr> This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div> 103 103 104 -Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees. 120 +Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees.<div class="wikimodel-emptyline"></div> 105 105 106 -#1D48000 <cr>This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.122 +#1D48000<cr> This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div> 107 107 108 -#1D33000 <cr>would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).124 +#1D33000<cr> would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).<div class="wikimodel-emptyline"></div> 109 109 110 110 If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.00 degrees before power is cycled, upon power up the servo's position will be read as +120.00 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.00°, 180.00°]. 127 +<div class="wikimodel-emptyline"></div></div></div> 128 + 129 +{{/html}} 111 111 ))) 112 112 113 113 = Command List = ... ... @@ -116,713 +116,850 @@ 116 116 117 117 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]] 118 118 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 119 -| |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Soft reset 120 -| |[[**Default** Configuration>>||anchor="HDefault"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Revert to firmware default values 121 -| |[[Firmware **Update** Mode>>||anchor="HUpdate"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Update firmware 122 -| |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Confirm the action for some commands 123 -| |[[**ID** Number >>||anchor="HIDNumber"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %)0|(% style="text-align:center" %) |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 124 -| |[[**E**nable CAN **T**erminal>>doc:||anchor="HEnableCANTerminalResistor"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET|(% style="text-align:center" %)1|(% style="text-align:center" %)0 or 1|0: Disable 1: Enable 125 -| |[[**U**SB **C**onnection Status>>||anchor="HUSBConnectionStatus"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)0 or 1|0: Not connected 1: Connected 138 +| |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Soft reset. See command for details. 139 +| |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Revert to firmware default values. See command for details 140 +| |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Update firmware. See command for details. 141 +| |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) | | | 142 +| |[[**E**nable CAN **T**erminal>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0 or 1|0: Disable 1: Enable 143 +| |[[**ID** Number >>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 144 +| |[[**U**SB **C**onnection State>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected 145 +| |**Q**uery **F**irmware **R**elease|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | | 126 126 127 127 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]] 128 128 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 129 -| |[[Position in **D**egrees>>||anchor="HPositioninDegrees"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD|(% style="text-align:center" %) | |0.01°| 130 -| |[[**M**ove in **D**egrees (relative)>>||anchor="HRelativeMoveinDegrees"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) | |0.01°| 131 -| |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD|(% style="text-align:center" %) | |0.01°/s|A.K.A. "Speed mode" or "Continuous rotation" 132 -| |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) | |RPM|A.K.A. "Speed mode" or "Continuous rotation" 133 -| |[[**Q**uery Motion Status>>||anchor="HStatus"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) | |1 to 8 integer|See command description for details 134 -| |[[**Q**uery **M**otion **T**ime>>doc:||anchor="HMotionTime"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMT|(% style="text-align:center" %) | |0.01s| 135 -| |[[**Q**uery **C**urrent **S**peed>>doc:||anchor="HCurrentSpeed"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | |0.01°/s| 136 -| |[[**L**imp>>||anchor="HLimp"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Removes power from stepper coils 137 -| |[[**H**alt & Hold>>doc:||anchor="HHalt26Hold"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Stops (halts) motion and holds last position 149 +| |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) | |1/100°| 150 +| |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) | |1/100°| 151 +| |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) | |°/s|A.K.A. "Speed mode" or "Continuous rotation" 152 +| |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM28WR29"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) | |RPM|A.K.A. "Speed mode" or "Continuous rotation" 153 +| |[[**Q**uery Motion Status>>||anchor="HQueryStatus28Q29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) | |1 to 8 integer|See command description for details 154 +| |[[**L**imp>>||anchor="HLimp28L29"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Removes power from stepper coils 155 +| |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Stops (halts) motion profile and holds last position 138 138 139 139 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]] 140 140 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 141 -| |[[**O**rigin Offset>>||anchor="HOriginOffset"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)0|(% style="text-align:center" %)0.01°| 142 -| |[[**A**ngular **R**ange>>||anchor="HAngularRange"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)36000|(% style="text-align:center" %)0.01°| 143 -| |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s^2| 144 -| |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s^2| 145 -| |[[**G**yre Direction>>||anchor="HGyreDirection"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)1|(% style="text-align:center" %)1 or -1|Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise) 146 -| |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s|SD / CSD overwrites SR / CSR 147 -| |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %) |(% style="text-align:center" %)RPM|SR / CSR overwrites SD / CSD 159 +| |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|1| |EM1: trapezoidal motion profile / EM0: no motion profile 160 +| |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|5| |Affects motion only when motion profile is disabled (EM0) 161 +| |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|0|1/10°| 162 +| |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|1800|1/10°| 163 +| |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|0|-4 to +4 integer|Suggested values are between 0 to +4 164 +| |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|4|-10 to +10 integer| 165 +| |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 166 +| |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 167 +| |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise) 168 +| |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|No value|1/10°|Reset required after change. 169 +| |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |1023|255 to 1023 integer| 170 +| |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa 171 +| |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa 148 148 149 149 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]] 150 150 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 151 -| |[[**S**peed in **D**egrees>> doc:||anchor="HSpeed"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) | |0.01°/s|For D and MD action commands152 -| |[[**T**imed move>>||anchor="HTimedmove"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) | |ms|Time associated with D, MD commands 175 +| |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) | |1°/s|For D and MD action commands 176 +| |[[**T**imed move>>||anchor="HTimedmove28T29modifier"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) | |ms|Time associated with D, MD commands 153 153 154 154 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]] 155 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:100px" %)**Default**|(% style="text-align:center; width:170px" %)**Unit**|**Notes** 156 -| |[[PCB **T**emperature>>doc:||anchor="HTemperaturePCB"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) | |(% style="text-align:center" %)0.1°C| 157 -| |[[**C**urrent>>doc:||anchor="HCurrent"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) | |(% style="text-align:center" %)mA|Nominal RMS value to stepper motor driver IC. 158 -| |[[**M**odel **S**tring>>doc:||anchor="HModelString"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) | |(% style="text-align:center" %) |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1) 159 -| |[[**F**irmware Version>>doc:||anchor="HFirmware"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) | |(% style="text-align:center" %) | 160 -| |[[Serial **N**umber>>doc:||anchor="HSerialNumber"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) | |(% style="text-align:center" %) |Returns the unique serial number for the servo 161 -| |[[**T**emperature **P**robe>>doc:||anchor="HTemperatureProbe"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | |(% style="text-align:center" %)0.1°C|Queries temperature probe fixed to the stepper motor 162 -| |[[**T**emp of **M**CU>>doc:||anchor="HTemperatureMCU"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTM|(% style="text-align:center" %) | |(% style="text-align:center" %)0.1°C| 163 -| |[[**T**emp of **C**ontroller **E**rror>>doc:||anchor="HTempControllerError"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTCE|(% style="text-align:center" %) | |(% style="text-align:center" %) |((( 164 -Temperature error status of the motor controller (over-temp error) 179 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 180 +| |[[**Q**uery PCB **T**emperature>>||anchor="HQueryTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) | |°C| 181 +| |[[**Q**uery **C**urrent>>||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) | |mA|Nominal RMS value to stepper motor driver IC. 182 +| |[[**Q**uery **M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) | | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1) 183 +| |[[**Q**uery **F**irmware Version>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) | | | 184 +| |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) | | |Returns the unique serial number for the servo 185 +| |**Q**uery **T**emperature **P**robe|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | | |Queries temperature probe fixed to stepper motor 186 +| |**Q**uery **T**emp of **C**ontroller|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW, QTCE|(% style="text-align:center" %) | | |((( 187 +QTCW: Queries the temperature status of the motor controller (pre-warning) 188 + 189 +QTCE: Queries the temperature status of the motor controller (over-temp error) 165 165 ))) 166 -| |[[**T**emp of **C**ontroller **W**arning>>doc:||anchor="HTempControllerWarning"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW|(% style="text-align:center" %) | |(% style="text-align:center" %) |Temperature error status of the motor controller (pre-warning) 167 -| |[[**E**rror **F**lag>>doc:||anchor="HErrorFlag"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QEF|(% style="text-align:center" %) | |(% style="text-align:center" %) | 168 -| |[[**I**MU Linear **X**>>doc:||anchor="HIMULinear"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |(% style="text-align:center" %)mm/s^2| 169 -| |[[**I**MU Linear **Y**>>doc:||anchor="HIMULinear"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |(% style="text-align:center" %)mm/s^2| 170 -| |[[**I**MU Linear **Z**>>doc:||anchor="HIMULinear"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |(% style="text-align:center" %)mm/s^2| 171 -| |[[**I**MU Angular Accel **α** >>doc:||anchor="HIMUAngular"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |(% style="text-align:center" %)°/s^2|Query IMU Angular Accel α (Alpha) 172 -| |[[**I**MU Angular Accel **β**>>doc:||anchor="HIMUAngular"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |(% style="text-align:center" %)°/s^2|Query IMU Angular Accel β (Beta) 173 -| |[[**I**MU Angular Accel **γ**>>doc:||anchor="HIMUAngular"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIG|(% style="text-align:center" %) | |(% style="text-align:center" %)°/s^2|Query IMU Angular Accel γ (Gamma) 191 +| |**Q**uery **C**urrent **S**peed |(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | | |Queries the motor controller's calculated speed 192 +| |**Q**uery **I**MU Linear **X**|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2| 193 +| |**Q**uery **I**MU Linear **Y**|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2| 194 +| |**Q**uery **I**MU Linear **Z**|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2| 195 +| |**Q**uery **I**MU Angular Accel **α** |(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha) 196 +| |**Q**uery **I**MU Angular Accel **β**|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta) 197 +| |**Q**uery **I**MU Angular Accel **γ**|(% style="text-align:center" %) |(% style="text-align:center" %)QIC / QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma) 174 174 175 175 |(% colspan="8" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]] 176 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:100px" %)**Default**|(% style="text-align:center; width:170px" %)**Unit**|**Notes** 177 -| |[[**LED** Color>>||anchor="HLEDColor"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED|(% style="text-align:center" %)3|(% style="text-align:center" %)0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White 178 -| |[[**L**ED **B**linking>>doc:||anchor="HLEDBlinking"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QLB|(% style="text-align:center" %)CLB|(% style="text-align:center" %)0|(% style="text-align:center" %) | 179 -| |[[**L**ED **I**ndicator>>doc:||anchor="HLEDIndicator"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QLI|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) | 200 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 201 +| |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White 202 +| |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB| |0 to 63 integer|Reset required after change. See command for details. 180 180 181 181 = (% style="color:inherit; font-family:inherit" %)Details(%%) = 182 182 183 183 == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) == 184 184 185 -|(% colspan="2" %)((( 186 186 ====== __Reset__ ====== 187 -))) 188 -| |((( 189 -Reset (**RESET**) 190 190 191 -Ex: #5RESET<cr> 210 +{{html wiki="true" clean="false"}} 211 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 212 +Ex: #5RESET<cr><div class="wikimodel-emptyline"></div> 213 +This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). 214 +Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div> 215 +</div></div> 216 +{{/html}} 192 192 193 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See Session, note #2 for more details. 194 -))) 218 +====== __Default & confirm__ ====== 195 195 196 -|(% colspan="2" %)((( 197 -====== (% style="color:inherit; font-family:inherit" %)__Default__(%%) ====== 198 -))) 199 -|(% style="width:30px" %) |((( 200 -(% style="color:inherit; font-family:inherit" %)Default (**DEFAULT**) 220 +{{html wiki="true" clean="false"}} 221 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 222 +Ex: #5DEFAULT<cr><div class="wikimodel-emptyline"></div> 201 201 202 - (%style="color:inherit;font-family:inherit"%)Ex:#5DEFAULT<cr>224 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.<div class="wikimodel-emptyline"></div> 203 203 204 - (% style="color:inherit;font-family:inherit" %)Thiscommand sets in motion theresetofall values tothe default values included with the version of the firmwareinstalledonthat servo. The servo then waits for theCONFIRMcommand. Any othercommandreceivedwillcause theservotoexit theDEFAULT function.226 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 205 205 206 - (%style="color:inherit;font-family:inherit"%)EX: #5DEFAULT<cr>followed by#5CONFIRM<cr>228 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<div class="wikimodel-emptyline"></div> 207 207 208 -(% style="color:inherit; font-family:inherit" %)Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command. 230 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 231 +</div></div> 232 +{{/html}} 209 209 210 -(% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET. 211 -))) 234 +====== __Update & confirm__ ====== 212 212 213 -|(% colspan="2" %)((( 214 -====== (% style="color:inherit; font-family:inherit" %)__Update__(%%) ====== 215 -))) 216 -|(% style="width:30px" %) |((( 217 -(% style="color:inherit; font-family:inherit" %)Update (**UPDATE**) 236 +{{html wiki="true" clean="false"}} 237 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 238 +Ex: #5UPDATE<cr><div class="wikimodel-emptyline"></div> 218 218 219 - (%style="color:inherit;font-family:inherit"%)Ex:#5UPDATE<cr>240 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<div class="wikimodel-emptyline"></div> 220 220 221 - (%style="color:inherit; font-family:inherit" %)This command sets in motion the equivalentof a long button presswhen the servo is not poweredin order to enter firmware update mode. This is useful should thebuttonbe broken or inaccessible. The servo then waits for theCONFIRMcommand. Any othercommandreceivedwillcause theservotoexit theUPDATE function.242 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 222 222 223 - (%style="color:inherit;font-family:inherit"%)EX:#5UPDATE<cr>followedby#5CONFIRM<cr>244 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div> 224 224 225 -(% style="color:inherit; font-family:inherit" %)Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 246 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 247 +</div></div> 248 +{{/html}} 226 226 227 -(% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET. 228 -))) 250 +====== __Confirm__ ====== 229 229 230 -|(% colspan="2" %)((( 231 -====== (% style="color:inherit; font-family:inherit" %)__Confirm__(%%) ====== 232 -))) 233 -|(% style="width:30px" %) |((( 234 -(% style="color:inherit; font-family:inherit" %)Confirm (**CONFIRM**) 252 +{{html wiki="true" clean="false"}} 253 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 254 +Ex: #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 235 235 236 - (%style="color:inherit;font-family:inherit"%)Ex: #5CONFIRM<cr>256 +This command is used to confirm changes after a Default or Update command.<div class="wikimodel-emptyline"></div> 237 237 238 - (% style="color:inherit;font-family:inherit"%)Thiscommand isusedtoconfirm changesafteraDefault orUpdatecommand.239 - Note: After the CONFIRM commands sent, the servo will automatically perform a RESET.240 - )))258 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 259 +</div></div> 260 +{{/html}} 241 241 242 -|(% colspan="2" %)((( 243 -====== (% style="color:inherit; font-family:inherit" %)__ID Number__(%%) ====== 244 -))) 245 -|(% style="width:30px" %) |((( 246 -This assigns ID #5 to the servo previously assigned to ID 0 262 +====== ====== 247 247 248 - (%style="color:inherit;font-family:inherit" %)ConfigureIDNumber (**CID**)264 +====== __Identification Number (**ID**)__ ====== 249 249 250 -(% style="color:inherit; font-family:inherit" %)Ex: #0CID5<cr> 266 +{{html wiki="true" clean="false"}} 267 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 268 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div> 251 251 252 - The default IDs0,sohis sets the servo to ID 5.270 +Query Identification (**QID**)<div class="wikimodel-emptyline"></div> 253 253 254 - QueryIDNumber(**QID**)272 +EX: #254QID<cr> might return *QID5<cr><div class="wikimodel-emptyline"></div> 255 255 256 - Ex:#254QID<cr>might return*254QID5<cr>274 +When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.<div class="wikimodel-emptyline"></div> 257 257 258 -In this case, the broadcast ID is used to ensure the servo connected will reply with the ID. This can be used in case the ID assigned to a servo is forgotten. 259 -))) 276 +Configure ID (**CID**)<div class="wikimodel-emptyline"></div> 260 260 261 -|(% colspan="2" %)((( 262 -====== (% style="color:inherit; font-family:inherit" %)__Enable CAN Terminal Resistor__(%%) ====== 263 -))) 264 -|(% style="width:30px" %) |((( 265 -Query Enable CAN Terminal Resistor (**QET**) 278 +Ex: #4CID5<cr><div class="wikimodel-emptyline"></div> 266 266 267 -Ex: #5QET<cr> might return *QET0<cr> 280 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div> 281 +</div></div> 282 +{{/html}} 268 268 269 - Thismeans that servo with ID 5 is NOT configured asthelast servo in the CAN bus.284 +====== __Baud Rate__ ====== 270 270 271 -Configure Enable CAN Terminal Resistor (**CET**) 286 +{{html clean="false" wiki="true"}} 287 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 288 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div> 272 272 273 - (%style="color:inherit; font-family:inherit"%)Ex: #5CET1<cr>290 +Query Baud Rate (**QB**)<div class="wikimodel-emptyline"></div> 274 274 275 -(% style="color:inherit; font-family:inherit" %)This commands sets servo with ID 5 as being the last in the CAN Bus. The last servo in a CAN bus must be configured this way. 276 -))) 292 +Ex: #5QB<cr> might return *5QB115200<cr><div class="wikimodel-emptyline"></div> 277 277 278 -|(% colspan="2" %)((( 279 -====== __USB Connection Status__ ====== 280 -))) 281 -|(% style="width:30px" %) |((( 282 -Query USB Connection Status (**QUC**) 294 +Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.<div class="wikimodel-emptyline"></div> 283 283 284 -Ex: #5QUC<cr> might return *5QUC1<cr> meaning the servo is connected via USB 285 -))) 296 +Configure Baud Rate (**CB**)<div class="wikimodel-emptyline"></div> 286 286 298 +**Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.<div class="wikimodel-emptyline"></div> 299 + 300 +Ex: #5CB9600<cr><div class="wikimodel-emptyline"></div> 301 + 302 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div> 303 +</div></div> 304 +{{/html}} 305 + 306 +====== __Automatic Baud Rate__ ====== 307 + 308 +{{html clean="false" wiki="true"}} 309 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 310 +This option allows the LSS to listen to it's serial input and select the right baudrate automatically.<div class="wikimodel-emptyline"></div> 311 + 312 +Query Automatic Baud Rate (**QABR**)<div class="wikimodel-emptyline"></div> 313 + 314 +Ex: #5QABR<cr> might return *5ABR0<cr><div class="wikimodel-emptyline"></div> 315 + 316 +Enable Baud Rate (**ABR**)<div class="wikimodel-emptyline"></div> 317 + 318 +Ex: #5QABR1<cr><div class="wikimodel-emptyline"></div> 319 +Enable baudrate detection on first byte received after power-up.<div class="wikimodel-emptyline"></div> 320 + 321 +Ex: #5QABR2,30<cr><div class="wikimodel-emptyline"></div> 322 +Enable baudrate detection on first byte received after power-up. If no data for 30 seconds enable detection again on next byte.<div class="wikimodel-emptyline"></div> 323 + 324 +Warning: ABR doesnt work well with LSS Config at the moment.<div class="wikimodel-emptyline"></div> 325 +</div></div> 326 +{{/html}} 327 + 287 287 == Motion == 288 288 289 -|(% colspan="2" %)((( 290 -====== __Position in Degrees__ ====== 291 -))) 292 -|(% style="width:30px" %) |((( 293 -Position in Degrees (**D**) 330 +====== __Position in Degrees (**D**)__ ====== 294 294 295 -Example: #5D1456<cr> 332 +{{html wiki="true" clean="false"}} 333 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 334 +Example: #5D1456<cr><div class="wikimodel-emptyline"></div> 296 296 297 -This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. 336 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. <div class="wikimodel-emptyline"></div> 298 298 299 -Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). 338 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). <div class="wikimodel-emptyline"></div> 300 300 301 -Query Position in Degrees (**QD**) 340 +Query Position in Degrees (**QD**)<div class="wikimodel-emptyline"></div> 302 302 303 -Example: #5QD <cr>might return *5QD132<cr>342 +Example: #5QD<cr> might return *5QD132<cr><div class="wikimodel-emptyline"></div> 304 304 305 -This means the servo is located at 13.2 degrees. 344 +This means the servo is located at 13.2 degrees.<div class="wikimodel-emptyline"></div> 306 306 307 -Query Target Position in Degrees (**QDT**) 346 +(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 347 +Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div> 308 308 309 -Ex: #5QDT <cr>might return *5QDT6783<cr>349 +Ex: #5QDT<cr> might return *5QDT6783<cr><div class="wikimodel-emptyline"></div> 310 310 311 311 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 312 -))) 352 +<div class="wikimodel-emptyline"></div></div></div> 353 +{{/html}} 313 313 314 -|(% colspan="2" %)((( 315 -====== __Relative Move in Degrees__ ====== 316 -))) 317 -|(% style="width:30px" %) |((( 318 -(% class="wikigeneratedid" %) 319 -Move in Degrees (**MD**) 355 +====== __(Relative) Move in Degrees (**MD**)__ ====== 320 320 321 -(% class="wikigeneratedid" %) 322 -Example: #5M1500<cr> 357 +{{html wiki="true" clean="false"}} 358 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 359 +Example: #5MD123<cr><div class="wikimodel-emptyline"></div> 323 323 324 - (% class="wikigeneratedid" id="HTherelativemoveinPWMcommandcausestheservotoreaditscurrentpositionandmovebythespecifiednumberofPWMsignal.ForexampleiftheservoissettorotateCW28default29andanMcommandof1500issenttotheservo2Citwillcausetheservotorotateclockwiseby90degrees.NegativePWMvaluewouldcausetheservotorotateintheoppositeconfigureddirection." %)325 - The relativemove in PWMcommand causesthe servo to readits current position andmove by the specifiednumber of PWM signal. Forexample ifthe servo is set to rotate CW (default) and an M command of 1500is sent to theservo,it will cause the servo to rotate clockwise by 90degrees. Negative PWM value wouldcause the servo to rotatein the opposite configured direction.326 - )))361 +The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 362 +<div class="wikimodel-emptyline"></div></div></div> 363 +{{/html}} 327 327 328 -|(% colspan="2" %)((( 329 -====== __Wheel Mode in Degrees__ ====== 330 -))) 331 -|(% style="width:30px" %) |((( 332 -Wheel mode in Degrees (**WD**) 365 +====== __Wheel Mode in Degrees (**WD**)__ ====== 333 333 334 -Ex: #5WD90<cr> 367 +{{html wiki="true" clean="false"}} 368 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 369 +Ex: #5WD90<cr><div class="wikimodel-emptyline"></div> 335 335 336 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations). 371 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div> 337 337 338 -Query Wheel Mode in Degrees (**QWD**) 373 +Query Wheel Mode in Degrees (**QWD**)<div class="wikimodel-emptyline"></div> 339 339 340 -Ex: #5QWD <cr>might return *5QWD90<cr>375 +Ex: #5QWD<cr> might return *5QWD90<cr><div class="wikimodel-emptyline"></div> 341 341 342 342 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 343 -))) 378 +<div class="wikimodel-emptyline"></div></div></div> 379 +{{/html}} 344 344 345 -|(% colspan="2" %)((( 346 -====== __Wheel Mode in RPM__ ====== 347 -))) 348 -|(% style="width:30px" %) |((( 349 -Wheel moed in RPM (**WR**) 381 +====== __Wheel Mode in RPM (**WR**)__ ====== 350 350 351 -Ex: #5WR40<cr> 383 +{{html wiki="true" clean="false"}} 384 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 385 +Ex: #5WR40<cr><div class="wikimodel-emptyline"></div> 352 352 353 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). 387 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div> 354 354 355 -Query Wheel Mode in RPM (**QWR**) 389 +Query Wheel Mode in RPM (**QWR**)<div class="wikimodel-emptyline"></div> 356 356 357 -Ex: #5QWR <cr>might return *5QWR40<cr>391 +Ex: #5QWR<cr> might return *5QWR40<cr><div class="wikimodel-emptyline"></div> 358 358 359 359 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 360 -))) 394 +<div class="wikimodel-emptyline"></div></div></div> 395 +{{/html}} 361 361 362 -|(% colspan="2" %)((( 363 -====== __Status__ ====== 364 -))) 365 -|(% style="width:30px" %) |((( 366 -Query Status (**Q**) 397 +====== __Position in PWM (**P**)__ ====== 367 367 368 -The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below. 399 +{{html wiki="true" clean="false"}} 400 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 401 +Example: #5P2334<cr><div class="wikimodel-emptyline"></div> 369 369 370 - Ex:#5Q<cr>might return*5Q6<cr>,whichindicates the motor is holding aposition.403 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.<div class="wikimodel-emptyline"></div> 371 371 405 +Query Position in Pulse (**QP**)<div class="wikimodel-emptyline"></div> 406 + 407 +Example: #5QP<cr> might return *5QP2334<div class="wikimodel-emptyline"></div> 408 + 409 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 410 +Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 411 +<div class="wikimodel-emptyline"></div></div></div> 412 +{{/html}} 413 + 414 +====== __(Relative) Move in PWM (**M**)__ ====== 415 + 416 +{{html wiki="true" clean="false"}} 417 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 418 +Example: #5M1500<cr><div class="wikimodel-emptyline"></div> 419 + 420 +The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 421 +<div class="wikimodel-emptyline"></div></div></div> 422 +{{/html}} 423 + 424 +====== __Raw Duty-cycle Move (**RDM**)__ ====== 425 + 426 +{{html wiki="true" clean="false"}} 427 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 428 +Example: #5RDM512<cr><div class="wikimodel-emptyline"></div> 429 + 430 +The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.<div class="wikimodel-emptyline"></div> 431 + 432 +The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).<div class="wikimodel-emptyline"></div> 433 + 434 +Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div> 435 + 436 +Example: #5QMD<cr> might return *5QMD512<div class="wikimodel-emptyline"></div> 437 + 438 +This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle. 439 +<div class="wikimodel-emptyline"></div></div></div> 440 +{{/html}} 441 + 442 +====== __Query Status (**Q**)__ ====== 443 + 444 +{{html wiki="true" clean="false"}} 445 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 446 +The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div> 447 + 448 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div> 449 +</div></div> 450 +{{/html}} 451 + 372 372 |(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description** 373 373 | |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 374 374 | |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 375 -| |ex: *5Q2<cr>|2: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 376 -| |ex: *5Q3<cr>|3: Traveling|Moving at a stable speed 377 -| |ex: *5Q4<cr>|4: Decelerating|Decreasing from travel speed towards final position. 378 -| |ex: *5Q5<cr>|5: Holding|Keeping current position (in EM0 mode, return will normally be holding) 379 -| |ex: *5Q6<cr>|6: Error|If the status is Error, the error value consists of binary flags 455 +| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command 456 +| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 457 +| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 458 +| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 459 +| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding) 460 +| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 461 +| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 462 +| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 463 +| |ex: *5Q10<cr>|10: Safe Mode|((( 464 +A safety limit has been exceeded (temperature, peak current or extended high current draw). 380 380 381 -Query Error Flag (**QEF**) 466 +Send a Q1 command to know which limit has been reached (described below). 467 +))) 382 382 383 -|(% style="width:25px" %) |***Value returned (QEF)**|**Status**|**Detailed description** 384 -| |ex: *5QEF0<cr>|0: LSSP_ERROR_BITS_PCBOverTemerature| 385 -| |ex: *5QEF1<cr>|1: LSSP_ERROR_BITS_MCUOverTemerature| 386 -| |ex: *5QEF2<cr>|2: LSSP_ERROR_BITS_MotorProbeOverTemerature| 387 -| |ex: *5QEF3<cr>|3: LSSP_ERROR_BITS_MotorDriverOverTemerature| 388 -| |ex: *5QEF4<cr>|4: LSSP_ERROR_BITS_Blocked| 389 -| |ex: *5QEF5<cr>|5: LSSP_ERROR_BITS_ExceedSpeedLimit| 390 -| |ex: *5QEF6<cr>|6: LSSP_ERROR_BITS_ExceedAccelLimit| 391 -| |ex: *5QEF7<cr>|7: LSSP_ERROR_BITS_ExceedDecelLimit| 392 -| |ex: *5QEF8<cr>|8: LSSP_ERROR_BITS_CurrentPositionOutOfRangePlus| 393 -| |ex: *5QEF9<cr>|9: LSSP_ERROR_BITS_CurrentPositionOutOfRangeMinus| 394 -| |ex: *5QEF10<cr>|10: LSSP_ERROR_BITS_EEPROMHeaderDataError| 395 -| |ex: *5QEF11<cr>|11: LSSP_ERROR_BITS_EEPROMCheckSumError| 396 -| |ex: *5QEF12<cr>|12: LSSP_ERROR_BITS_EEPROMMapVersionIsNotSupported| 469 +{{html wiki="true" clean="false"}} 470 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 471 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div> 472 +</div></div> 473 +{{/html}} 397 397 398 -*Value returned (Q)StatusDetailed description 399 - 400 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 401 - 402 402 |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description** 403 403 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 404 404 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 405 405 | |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 406 406 | |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 407 -))) 408 408 409 -|(% colspan="2" %)((( 410 -====== __Motion Time__ ====== 411 -))) 412 -|(% style="width:30px" %) |((( 413 -Query Motion Time (**QMT**) 414 -))) 481 +====== __Limp (**L**)__ ====== 415 415 416 -|(% colspan="2" %)((( 417 -====== __Current Speed__ ====== 418 -))) 419 -|(% style="width:30px" %) |((( 420 -Query Current Speed (**QCS**) 421 -))) 483 +{{html wiki="true" clean="false"}} 484 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 485 +Example: #5L<cr><div class="wikimodel-emptyline"></div> 422 422 423 -|(% colspan="2" %)((( 424 -====== __Limp__ ====== 425 -))) 426 -|(% style="width:30px" %) |((( 427 -Example: #5L<cr> 487 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 488 +<div class="wikimodel-emptyline"></div></div></div> 489 +{{/html}} 428 428 429 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 430 -))) 491 +====== __Halt & Hold (**H**)__ ====== 431 431 432 -|(% colspan="2" %)((( 433 -====== __Halt & Hold__ ====== 434 -))) 435 -|(% style="width:30px" %) |((( 436 -Example: #5H<cr> 493 +{{html wiki="true" clean="false"}} 494 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 495 +Example: #5H<cr><div class="wikimodel-emptyline"></div> 437 437 438 438 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 439 -))) 498 +<div class="wikimodel-emptyline"></div></div></div> 499 +{{/html}} 440 440 441 441 == Motion Setup == 442 442 443 -|(% colspan="2" %)((( 444 -====== __Origin Offset__ ====== 445 -))) 446 -|(% style="width:30px" %) |((( 447 -Example: #5O2400<cr>This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered). 503 +====== __Enable Motion Profile (**EM**)__ ====== 448 448 449 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]] 505 +{{html clean="false" wiki="true"}} 506 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 507 +EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div> 450 450 509 +Ex: #5EM1<cr><div class="wikimodel-emptyline"></div> 451 451 452 - In thesecondimage,the origin,andthe correspondingangularrange(explainedbelow)havebeenshiftedby +240.0 degrees:511 +This command enables a trapezoidal motion profile for servo #5 <div class="wikimodel-emptyline"></div> 453 453 454 - [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]513 +Ex: #5EM0<cr><div class="wikimodel-emptyline"></div> 455 455 515 +This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command). 456 456 457 - OriginOffset Query(**QO**)517 +<div class="wikimodel-emptyline"></div> 458 458 459 - Example: #5QO<cr>might return*5QO-13519 +Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div> 460 460 461 - Thisallows youto querytheangle (in tenthsof degrees) ofthe originin relation to the factory zero position.In this example, the neworigin is at -1.3degrees fromhe factoryzero.521 +Ex: #5QEM<cr> might return *5QEM1<cr><div class="wikimodel-emptyline"></div> 462 462 463 - ConfigureOriginOffset(**CO**)523 +This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div> 464 464 465 -E xample: #5CO-24<cr>525 +Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div> 466 466 467 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 468 -))) 527 +Ex: #5CEM0<cr><div class="wikimodel-emptyline"></div> 469 469 470 -|(% colspan="2" %)((( 471 -====== __Angular Range__ ====== 472 -))) 473 -|(% style="width:30px" %) |((( 474 -Example: #5AR1800<cr> 529 +This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 530 +<div class="wikimodel-emptyline"></div></div></div> 531 +{{/html}} 475 475 476 - Thiscommand allows you to temporarily changethetotal angularrange of the servo in tenths of degrees. This applies to thePositionin Pulse (P) command and RCmode. The defaultfor(P) and RCmode is 1800 (180.0 degrees total, or ±90.0 degrees).The image below shows a standard -180.0 to +180.0 range, with no offset:533 +====== __Filter Position Count (**FPC**)__ ====== 477 477 478 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]] 535 +{{html clean="false" wiki="true"}} 536 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 537 +The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default. 538 +<div class="wikimodel-emptyline"></div> 539 +Ex: #5FPC10<cr><div class="wikimodel-emptyline"></div> 540 +This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div> 479 479 480 - Below,theangularrange isrestricted to180.0 degrees,or -90.0to+90.0.Thecenter hasremainedunchanged.542 +Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div> 481 481 482 - [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]544 +Ex: #5QFPC<cr> might return *5QFPC10<cr><div class="wikimodel-emptyline"></div> 483 483 546 +This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div> 484 484 485 - Finally, the angularrangeaction command (ex. #5AR1800<cr>)andorigin offsetactioncommand(ex. #5O-1200<cr>) are used tomoveboth thecenter andlimit the angular range:548 +Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div> 486 486 487 - [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]550 +Ex: #5CFPC10<cr><div class="wikimodel-emptyline"></div> 488 488 552 +This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 553 +<div class="wikimodel-emptyline"></div></div></div> 554 +{{/html}} 489 489 490 - QueryAngularRange (**QAR**)556 +====== __Origin Offset (**O**)__ ====== 491 491 492 -Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees. 558 +{{html wiki="true" clean="false"}} 559 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 560 +Example: #5O2400<cr><div class="wikimodel-emptyline"></div> 493 493 494 - Configure AngularRange (**CAR**)562 +This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div> 495 495 564 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div> 565 + 566 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div> 567 + 568 +[[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div> 569 + 570 +Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div> 571 + 572 +Example: #5QO<cr> might return *5QO-13<div class="wikimodel-emptyline"></div> 573 + 574 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div> 575 + 576 +Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div> 577 + 578 +Example: #5CO-24<cr><div class="wikimodel-emptyline"></div> 579 + 580 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 581 +<div class="wikimodel-emptyline"></div></div></div> 582 +{{/html}} 583 + 584 +====== __Angular Range (**AR**)__ ====== 585 + 586 +{{html wiki="true" clean="false"}} 587 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 588 +Example: #5AR1800<cr><div class="wikimodel-emptyline"></div> 589 + 590 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div> 591 + 592 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div> 593 + 594 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div> 595 + 596 +[[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div> 597 + 598 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div> 599 + 600 +[[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div> 601 + 602 +Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div> 603 + 604 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div> 605 + 606 +Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div> 607 + 496 496 This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 497 -))) 609 +<div class="wikimodel-emptyline"></div></div></div> 610 +{{/html}} 498 498 499 -|(% colspan="2" %)((( 500 -====== __Angular Acceleration__ ====== 501 -))) 502 -|(% style="width:30px" %) |((( 503 -The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 612 +====== __Angular Stiffness (**AS**)__ ====== 504 504 505 -Ex: #5AA30<cr> 614 +{{html wiki="true" clean="false"}} 615 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 616 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div> 506 506 507 - This setsthe angularaccelerationfor servo#5 to30degreesper second squared (°/s^^2^^).618 +A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div> 508 508 509 -Query Angular Acceleration (**QAA**) 620 +* The more torque will be applied to try to keep the desired position against external input / changes 621 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div> 510 510 511 - Ex: #5QAA<cr>mightreturn*5QAA30<cr>623 +A lower value on the other hand:<div class="wikimodel-emptyline"></div> 512 512 513 -This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^). 625 +* Causes a slower acceleration to the travel speed, and a slower deceleration 626 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div> 514 514 515 - ConfigureAngularAcceleration(**CAA**)628 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 516 516 517 -Ex: #5 CAA30<cr>630 +Ex: #5AS-2<cr><div class="wikimodel-emptyline"></div> 518 518 632 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div> 633 + 634 +Ex: #5QAS<cr><div class="wikimodel-emptyline"></div> 635 + 636 +Queries the value being used.<div class="wikimodel-emptyline"></div> 637 + 638 +Ex: #5CAS-2<cr><div class="wikimodel-emptyline"></div> 639 + 640 +Writes the desired angular stiffness value to EEPROM. 641 +<div class="wikimodel-emptyline"></div></div></div> 642 +{{/html}} 643 + 644 +====== __Angular Holding Stiffness (**AH**)__ ====== 645 + 646 +{{html wiki="true" clean="false"}} 647 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 648 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 649 + 650 +Ex: #5AH3<cr><div class="wikimodel-emptyline"></div> 651 + 652 +This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div> 653 + 654 +Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div> 655 + 656 +Ex: #5QAH<cr> might return *5QAH3<cr><div class="wikimodel-emptyline"></div> 657 + 658 +This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div> 659 + 660 +Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div> 661 + 662 +Ex: #5CAH2<cr><div class="wikimodel-emptyline"></div> 663 + 664 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM. 665 +<div class="wikimodel-emptyline"></div></div></div> 666 +{{/html}} 667 + 668 +====== __Angular Acceleration (**AA**)__ ====== 669 + 670 +{{html wiki="true" clean="false"}} 671 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 672 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 673 + 674 +Ex: #5AA30<cr><div class="wikimodel-emptyline"></div> 675 + 676 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 677 + 678 +Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div> 679 + 680 +Ex: #5QAA<cr> might return *5QAA30<cr><div class="wikimodel-emptyline"></div> 681 + 682 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 683 + 684 +Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div> 685 + 686 +Ex: #5CAA30<cr><div class="wikimodel-emptyline"></div> 687 + 519 519 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 520 -))) 689 +<div class="wikimodel-emptyline"></div></div></div> 690 +{{/html}} 521 521 522 -|(% colspan="2" %)((( 523 -====== __Angular Deceleration__ ====== 524 -))) 525 -|(% style="width:30px" %) |((( 526 -The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 692 +====== __Angular Deceleration (**AD**)__ ====== 527 527 528 -Ex: #5AD30<cr> 694 +{{html wiki="true" clean="false"}} 695 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 696 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 529 529 530 - Thissets the angulareceleration for servo #5 to 30degreesper second squared (°/s^^2^^).698 +Ex: #5AD30<cr><div class="wikimodel-emptyline"></div> 531 531 532 - QueryAngularDeceleration (**QAD**)700 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 533 533 534 - Ex: #5QAD<cr>mightreturn *5QAD30<cr>702 +Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div> 535 535 536 - Thisreturnsthe servo's angulardecelerationindegreesper second squared (°/s^^2^^).704 +Ex: #5QAD<cr> might return *5QAD30<cr><div class="wikimodel-emptyline"></div> 537 537 538 - ConfigureAngularDeceleration (**CAD**)706 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 539 539 540 - Ex:#5CAD30<cr>708 +Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div> 541 541 542 -This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 543 -))) 710 +Ex: #5CAD30<cr><div class="wikimodel-emptyline"></div> 544 544 545 -|(% colspan="2" %)((( 546 -====== __Gyre Direction__ ====== 547 -))) 548 -|(% style="width:30px" %) |((( 549 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1. 712 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 713 +<div class="wikimodel-emptyline"></div></div></div> 714 +{{/html}} 550 550 551 - Ex:#5G-1<cr>716 +====== __Gyre Direction (**G**)__ ====== 552 552 553 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 718 +{{html wiki="true" clean="false"}} 719 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 720 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div> 554 554 555 - QueryGyreDirection(**QG**)722 +Ex: #5G-1<cr><div class="wikimodel-emptyline"></div> 556 556 557 - Ex:#5QG<cr>might return*5QG-1<cr>724 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div> 558 558 559 - The value returnedabove means the servois in a counter-clockwisegyration.Sendinga #5WR30command will rotate theservoin a counter-clockwisegyrationat 30 RPM.726 +Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div> 560 560 561 - ConfigureGyre(**CG**)728 +Ex: #5QG<cr> might return *5QG-1<cr><div class="wikimodel-emptyline"></div> 562 562 563 - Ex:#5CG-1<cr>730 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div> 564 564 732 +Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div> 733 + 734 +Ex: #5CG-1<cr><div class="wikimodel-emptyline"></div> 735 + 565 565 This changes the gyre direction as described above and also writes to EEPROM. 566 -))) 737 +<div class="wikimodel-emptyline"></div></div></div> 738 +{{/html}} 567 567 568 -|(% colspan="2" %)((( 569 -====== __Maximum Speed in Degrees__ ====== 570 -))) 571 -|(% style="width:30px" %) |((( 572 -Maximum Speed in Degrees (**SD**) 740 +====== __First Position__ ====== 573 573 574 -Ex: #5SD1800<cr> 742 +{{html wiki="true" clean="false"}} 743 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 744 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div> 575 575 576 - This command sets the servo's maximum speed formotion commands in tenths of degreesper second forthatsession. In the example above, theservo's maximum speed forthat sessionwould be set to 180.0 degrees per second. The servo's maximum speed cannotbeset higherthan its physical limit at a given voltage. The SD action command overridesCSD(describedbelow) for that session. Upon reset or powercycle, the servo reverts to the value associatedwith CSD as described below. Note that SD andSR (described below) areeffectively the same, butallow the user to specify the speed inither unit. The last command(either SR or SD) received is what the servo uses for that session.746 +Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div> 577 577 578 -Q uerySpeedin Degrees(**QSD**)748 +Ex: #5QFD<cr> might return *5QFD900<cr> <div class="wikimodel-emptyline"></div> 579 579 580 - Ex:#5QSD<cr>might return*5QSD1800<cr>750 +The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div> 581 581 582 - By default QSD will return thecurrentsession value, which is settothe value of CSD asreset/power cycle andchangedwhenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed(CSDvalue)will be returnednstead.Youcan also query the currentspeed using"2" andthecurrenttarget travelspeed using "3". See the table below for an example:752 +Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div> 583 583 584 -|**Command sent**|**Returned value (1/10 °)** 585 -|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 586 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 587 -|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 588 -|ex: #5QSD3<cr>|Target travel speed 754 +Ex: #5CFD900<cr><div class="wikimodel-emptyline"></div> 589 589 590 -Configure Speed in Degrees (**CSD**) 756 +This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 757 +<div class="wikimodel-emptyline"></div></div></div> 758 +{{/html}} 591 591 592 - Ex:#5CSD1800<cr>760 +====== __Maximum Motor Duty (**MMD**)__ ====== 593 593 594 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 595 -))) 762 +{{html wiki="true" clean="false"}} 763 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 764 +This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div> 596 596 597 -|(% colspan="2" %)((( 598 -====== __Maximum Speed in RPM__ ====== 599 -))) 600 -|(% style="width:30px" %) |((( 601 -(% class="wikigeneratedid" %) 602 -Maximum Speed in RPM (**SR**) 766 +Ex: #5MMD512<cr><div class="wikimodel-emptyline"></div> 603 603 604 -(% class="wikigeneratedid" id="HEx:235SR453Ccr3EThiscommandsetstheservo27smaximumspeedformotioncommandsinrpmforthatsession.Intheexampleabove2Ctheservo27smaximumspeedforthatsessionwouldbesetto45rpm.Theservo27smaximumspeedcannotbesethigherthanitsphysicallimitatagivenvoltage.SRoverridesCSR28describedbelow29forthatsession.Uponresetorpowercycle2CtheservorevertstothevalueassociatedwithCSRasdescribedbelow.NotethatSD28describedabove29andSRareeffectivelythesame2Cbutallowtheusertospecifythespeedineitherunit.Thelastcommand28eitherSRorSD29receivediswhattheservousesforthatsession.QuerySpeedinRPM28QSR29Ex:235QSR3Ccr3Emightreturn2A5QSR453Ccr3EBydefaultQSRwillreturnthecurrentsessionvalue2CwhichissettothevalueofCSRasreset2FpowercycleandchangedwheneveranSD2FSRcommandisprocessed.If235QSR13Ccr3Eissent2Ctheconfiguredmaximumspeed28CSRvalue29willbereturnedinstead.Youcanalsoquerythecurrentspeedusing22222andthecurrenttargettravelspeedusing22322.Seethetablebelowforanexample:" %) 605 -Ex: #5SR45<cr> 768 +This will set the duty-cycle to 512 for servo with ID 5 for that session.<div class="wikimodel-emptyline"></div> 606 606 607 -(% class="wikigeneratedid" %) 608 -This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. 770 +Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div> 609 609 610 -(% class="wikigeneratedid" %) 611 -Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. 772 +Ex: #5QMMDD<cr> might return *5QMMD512<cr> <div class="wikimodel-emptyline"></div> 612 612 613 -(% class="wikigeneratedid" %) 614 -The last command (either SR or SD) received is what the servo uses for that session. 774 +This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023. 775 +<div class="wikimodel-emptyline"></div></div></div> 776 +{{/html}} 615 615 616 -(% class="wikigeneratedid" %) 617 -Query Speed in RPM (**QSR**) 778 +====== __Maximum Speed in Degrees (**SD**)__ ====== 618 618 619 -(% class="wikigeneratedid" %) 620 -Ex: #5QSR<cr> might return *5QSR45<cr> 780 +{{html wiki="true" clean="false"}} 781 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 782 +Ex: #5SD1800<cr><div class="wikimodel-emptyline"></div> 783 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 621 621 622 -(% class="wikigeneratedid" %) 623 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 785 +Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div> 624 624 625 -|**Command sent**|**Returned value (1/10 °)** 626 -|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 627 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 628 -|ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 629 -|ex: #5QSR3<cr>|Target travel speed 787 +Ex: #5QSD<cr> might return *5QSD1800<cr><div class="wikimodel-emptyline"></div> 630 630 631 - Configure Speed inRPM(**CSR**)789 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 632 632 633 -Ex: #5CSR45<cr> 791 +|**Command sent**|**Returned value (1/10 °)** 792 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 793 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 794 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 795 +|ex: #5QSD3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 634 634 635 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 636 -))) 797 +Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div> 637 637 638 -== Modifiers == 799 +Ex: #5CSD1800<cr><div class="wikimodel-emptyline"></div> 800 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 801 +</div></div> 802 +{{/html}} 639 639 640 -|(% colspan="2" %)((( 641 -====== __Speed __ ====== 642 -))) 643 -|(% style="width:30px" %) |((( 644 -(% class="wikigeneratedid" %) 645 -Speed in Degrees (**SD**) 804 +====== __Maximum Speed in RPM (**SR**)__ ====== 646 646 647 -(% class="wikigeneratedid" id="HExample:235D0SD1803Ccr3E" %) 648 -Example: #5D0SD180<cr> 806 +{{html wiki="true" clean="false"}} 807 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 808 +Ex: #5SR45<cr><div class="wikimodel-emptyline"></div> 809 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 649 649 650 -(% class="wikigeneratedid" %) 651 -Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second. 811 +Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div> 652 652 653 -(% class="wikigeneratedid" %) 654 -Query Speed (**QS**) 813 +Ex: #5QSR<cr> might return *5QSR45<cr><div class="wikimodel-emptyline"></div> 655 655 656 -(% class="wikigeneratedid" %) 657 -Example: #5QS<cr> might return *5QS300<cr> 815 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 658 658 659 -(% class="wikigeneratedid" %) 660 -This command queries the current speed in microseconds per second. 661 -))) 817 +|**Command sent**|**Returned value (1/10 °)** 818 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 819 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 820 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 821 +|ex: #5QSR3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 662 662 663 -|(% colspan="2" %)((( 664 -====== __Timed move__ ====== 665 -))) 666 -|(% style="width:30px" %) |((( 667 -Timed Move (**T**) 823 +Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div> 668 668 669 -Example: #5D15000T2500<cr> 825 +Ex: #5CSR45<cr><div class="wikimodel-emptyline"></div> 826 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 827 +</div></div> 828 +{{/html}} 670 670 671 - Timedmove can be used only as a modifier for a position (D,MD) actions. The units are in milliseconds, so a timed move of2500 milliseconds would cause the servo to rotate from itscurrent position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.830 +== Modifiers == 672 672 673 -**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested 674 -))) 832 +====== __Speed (**S**, **SD**) modifier__ ====== 675 675 676 -== Telemetry == 834 +{{html clean="false" wiki="true"}} 835 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 836 +Example: #5P1500S750<cr><div class="wikimodel-emptyline"></div> 837 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 838 +Example: #5D0SD180<cr><div class="wikimodel-emptyline"></div> 839 +Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.<div class="wikimodel-emptyline"></div> 840 +Query Speed (**QS**)<div class="wikimodel-emptyline"></div> 841 +Example: #5QS<cr> might return *5QS300<cr><div class="wikimodel-emptyline"></div> 842 +This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div> 843 +</div></div> 844 +{{/html}} 677 677 678 -|(% colspan="2" %)((( 679 -====== __Temperature PCB__ ====== 680 -))) 681 -|(% style="width:30px" %) |((( 682 -Query Temp PCB (**QT**) 846 +====== __Timed move (**T**) modifier__ ====== 683 683 684 -Ex: #5QT<cr> might return *5QT564<cr> 848 +{{html wiki="true" clean="false"}} 849 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 850 +Example: #5P1500T2500<cr><div class="wikimodel-emptyline"></div> 685 685 686 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 687 -))) 852 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 853 +**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div> 854 +</div></div> 855 +{{/html}} 688 688 689 -|(% colspan="2" %)((( 690 -====== __Current__ ====== 691 -))) 692 -|(% style="width:30px" %) |((( 693 -(% class="wikigeneratedid" %) 694 -Query Current (**QC**) 857 +====== __Current Halt & Hold (**CH**) modifier__ ====== 695 695 696 -(% class="wikigeneratedid" id="HEx:235QC3Ccr3Emightreturn2A5QC1403Ccr3E" %) 697 -Ex: #5QC<cr> might return *5QC140<cr> 859 +{{html wiki="true" clean="false"}} 860 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 861 +Example: #5D1423CH400<cr><div class="wikimodel-emptyline"></div> 698 698 699 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value. The query calculates the RMS value of the current sent from the motor driver to the stepper motor. 700 -))) 863 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div> 864 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 865 +</div></div> 866 +{{/html}} 701 701 702 -|(% colspan="2" %)((( 703 -====== __Model String__ ====== 704 -))) 705 -|(% style="width:30px" %) |((( 706 -(% class="wikigeneratedid" %) 707 -Query Model String (**QMS**) 868 +====== __Current Limp (**CL**) modifier__ ====== 708 708 709 -(% class="wikigeneratedid" id="HEx:235QMS3Ccr3Emightreturn2A5QMSLSS-HS13Ccr3E" %) 710 -Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr> 870 +{{html wiki="true" clean="false"}} 871 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 872 +Example: #5D1423CL400<cr><div class="wikimodel-emptyline"></div> 711 711 712 -This reply means that the servo model is LSS-HS1: a high speed servo, first revision. 713 -))) 874 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div> 875 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 876 +</div></div> 877 +{{/html}} 714 714 715 -|(% colspan="2" %)((( 716 -====== __Firmware__ ====== 717 -))) 718 -|(% style="width:30px" %) |((( 719 -Query Firmware (**QF**) 879 +== Telemetry == 720 720 721 - Ex:#5QF<cr>mightreturn*5QF368<cr>881 +====== __Query Voltage (**QV**)__ ====== 722 722 723 -The number in the reply represents the firmware version, in this example being 368.The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14 724 -))) 883 +{{html wiki="true" clean="false"}} 884 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 885 +Ex: #5QV<cr> might return *5QV11200<cr><div class="wikimodel-emptyline"></div> 886 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div> 887 +</div></div> 888 +{{/html}} 725 725 726 -|(% colspan="2" %)((( 727 -====== __Serial Number__ ====== 728 -))) 729 -|(% style="width:30px" %) |((( 730 -(% class="wikigeneratedid" %) 731 -Query Serial Number (**QN**) 890 +====== __Query Temperature (**QT**)__ ====== 732 732 733 -(% class="wikigeneratedid" id="HEx:235QN3Ccr3Emightreturn2A5QN123456783Ccr3E" %) 734 -Ex: #5QN<cr> might return *5QN12345678<cr> 892 +{{html wiki="true" clean="false"}} 893 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 894 +Ex: #5QT<cr> might return *5QT564<cr><div class="wikimodel-emptyline"></div> 895 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div> 896 +</div></div> 897 +{{/html}} 735 735 736 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user. 737 -))) 899 +====== __Query Current (**QC**)__ ====== 738 738 739 - |(%colspan="2"%)(((740 -= =====__TemperatureProbe__======741 - )))742 - |(%style="width:30px"%) |(((743 - Query Temp motor Probe (**QTP**)744 - )))901 +{{html wiki="true" clean="false"}} 902 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 903 +Ex: #5QC<cr> might return *5QC140<cr><div class="wikimodel-emptyline"></div> 904 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div> 905 +</div></div> 906 +{{/html}} 745 745 746 -|(% colspan="2" %)((( 747 -====== __Temperature MCU__ ====== 748 -))) 749 -|(% style="width:30px" %) |((( 750 -Query Temp MCU (**QTM**) 751 -))) 908 +====== __Query Model String (**QMS**)__ ====== 752 752 753 -|(% colspan="2" %)((( 754 -====== __Temp Controller Error__ ====== 755 -))) 756 -|(% style="width:30px" %) |((( 757 -(% class="wikigeneratedid" id="HEx:236QIX3Ccr3Emightreturn2A6QIX303Ccr3E" %) 758 -Query Temp Controller Error (**QTCE**) 759 -))) 910 +{{html wiki="true" clean="false"}} 911 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 912 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr><div class="wikimodel-emptyline"></div> 913 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div> 914 +</div></div> 915 +{{/html}} 760 760 761 -|(% colspan="2" %)((( 762 -====== __Temp Controller Warning__ ====== 763 -))) 764 -|(% style="width:30px" %) |((( 765 -(% class="wikigeneratedid" id="HEx:236QIX3Ccr3Emightreturn2A6QIX303Ccr3E" %) 766 -Query Temp Controller Warning (**QTCW**) 767 -))) 917 +====== __Query Firmware (**QF**)__ ====== 768 768 769 -|(% colspan="2" %)((( 770 -====== __Error Flag__ ====== 771 -))) 772 -|(% style="width:30px" %) |((( 773 -Query Error Flag (**QEF**) 774 -))) 919 +{{html wiki="true" clean="false"}} 920 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 921 +Ex: #5QF<cr> might return *5QF368<cr><div class="wikimodel-emptyline"></div> 922 +The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div> 923 +The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div> 924 +</div></div> 925 +{{/html}} 775 775 776 -|(% colspan="2" %)((( 777 -====== __IMU Linear__ ====== 778 -))) 779 -|(% style="width:30px" %) |((( 780 -(% class="wikigeneratedid" %) 781 -Query IMU Linear (**QIX QIY QIZ**) 927 +====== __Query Serial Number (**QN**)__ ====== 782 782 783 -(% class="wikigeneratedid" id="HEx:236QIX3Ccr3Emightreturn2A6QIX303Ccr3E" %) 784 -Ex: #6QIX<cr> might return *6QIX30<cr> 929 +{{html wiki="true" clean="false"}} 930 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 931 +Ex: #5QN<cr> might return *5QN12345678<cr><div class="wikimodel-emptyline"></div> 932 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div> 933 +</div></div> 934 +{{/html}} 785 785 786 -This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 30mm per second squared. 787 -))) 936 +== RGB LED == 788 788 789 -|(% colspan="2" %)((( 790 -====== __IMU Angular__ ====== 791 -))) 792 -|(% style="width:30px" %) |((( 793 -(% class="wikigeneratedid" id="HEx:236QIB3Ccr3Emightreturn2A6QIB443Ccr3E" %) 794 -Query IMU Angular (**QIA QIB QIG**) 938 +====== __LED Color (**LED**)__ ====== 795 795 796 -(% class="wikigeneratedid" %) 797 -Ex: #6QIB<cr> might return *6QIB44<cr> 940 +{{html wiki="true" clean="false"}} 941 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 942 +Ex: #5LED3<cr><div class="wikimodel-emptyline"></div> 943 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div> 944 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div> 945 +Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div> 946 +Ex: #5QLED<cr> might return *5QLED5<cr><div class="wikimodel-emptyline"></div> 947 +This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div> 948 +Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div> 949 +Ex: #5CLED3<cr><div class="wikimodel-emptyline"></div> 950 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div> 951 +</div></div> 952 +{{/html}} 798 798 799 -This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 4.4 degrees per second squared. 800 -))) 954 +====== __Configure LED Blinking (**CLB**)__ ====== 801 801 802 -== RGB LED == 956 +{{html wiki="true" clean="false"}} 957 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 958 +This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div> 803 803 804 -|(% colspan="2" %)((( 805 -====== __LED Color__ ====== 806 -))) 807 -|(% style="width:30px" %) |((( 808 -(% class="wikigeneratedid" id="HEx:236QIB3Ccr3Emightreturn2A6QIB443Ccr3E" %) 809 - 810 -))) 960 +(% style="width:195px" %) 961 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 962 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 963 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1 964 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2 965 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 966 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 967 +|(% style="width:134px" %)Free|(% style="width:58px" %)16 968 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 969 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div> 811 811 812 -|(% colspan="2" %)((( 813 -====== __LED Blinking__ ====== 814 -))) 815 -|(% style="width:30px" %) |((( 816 -(% class="wikigeneratedid" id="HEx:236QIB3Ccr3Emightreturn2A6QIB443Ccr3E" %) 817 - 818 -))) 971 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div> 972 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div> 973 +Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div> 974 +Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div> 975 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div> 976 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div> 977 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div> 978 +RESETTING the servo is needed.<div class="wikimodel-emptyline"></div> 979 +</div></div> 980 +{{/html}} 819 819 820 -|(% colspan="2" %)((( 821 -====== __LED Indicator__ ====== 822 -))) 823 -|(% style="width:30px" %) |((( 824 -(% class="wikigeneratedid" id="HEx:236QIB3Ccr3Emightreturn2A6QIB443Ccr3E" %) 825 - 826 -))) 982 +== RGB LED == 827 827 828 - 984 +The LED can be