Wiki source code of LSS-P - Communication Protocol

Version 20.1 by Coleman Benson on 2023/06/27 14:23

Show last authors
1 {{warningBox warningText="More information coming soon"/}}
2
3
4 (% class="wikigeneratedid" id="HTableofContents" %)
5 **Page Contents**
6
7 {{toc depth="3"/}}
8
9 = Serial Protocol =
10
11 The Lynxmotion Smart Servo (LSS) PRO serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's Smart Servo (LSS) protocol, which itself was based on the SSC-32 & SSC-32U RC servo controllers. The LSS PRO series and normal LSS share many of the same commands, but because of higher angular precision, slightly different operation and different features, the two protocols do not fully overlap.
12
13 In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol.
14
15 = Action Commands =
16
17 Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]] (described below). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
18
19 1. Start with a number sign **#** (Unicode Character: U+0023)
20 1. Servo ID number as an integer (assigning an ID described below)
21 1. Action command (one or more letters, no whitespace, capital or lowercase from the list below)
22 1. Action value in the correct units with no decimal
23 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
24
25 (((
26 Ex: #5D130000<cr>
27
28 This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (13000 in hundredths of degrees) of 130.00 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
29
30 == Modifiers ==
31
32 {{html clean="false" wiki="true" __cke_selected_macro="true"}}
33 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
34 Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div>
35
36 1. Start with a number sign **#** (Unicode Character: U+0023)
37 1. Servo ID number as an integer
38 1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
39 1. Action value in the correct units with no decimal
40 1. Modifier command (one or two letters from the list of modifiers below)
41 1. Modifier value in the correct units with no decimal
42 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)
43
44 Ex: #5D13000T1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
45
46 This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div>
47 <div class="wikimodel-emptyline"></div></div></div>
48
49 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
50 Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div>
51
52 1. Start with a number sign **#** (Unicode Character: U+0023)
53 1. Servo ID number as an integer
54 1. Query command (one to four letters, no spaces, capital or lower case)
55 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
56
57 Ex: #5QD&lt;cr&gt; Query the position in (hundredths of) degrees for servo with ID #5<div class="wikimodel-emptyline"></div>
58
59 The query will return a serial string (almost instantaneously) via the servo's Tx in the following format:
60
61 1. Start with an asterisk * (Unicode Character: U+0023)
62 1. Servo ID number as an integer
63 1. Query command (one to four letters, no spaces, capital letters)
64 1. The reported value in the units described, no decimals.
65 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
66
67 There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div>
68
69 Ex: *5QD13000&lt;cr&gt;<div class="wikimodel-emptyline"></div>
70
71 This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees).
72 <div class="wikimodel-emptyline"></div></div></div>
73
74 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
75 Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div>
76
77 These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative. This means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>
78
79 The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div>
80
81 1. Start with a number sign **#** (Unicode Character: U+0023)
82 1. Servo ID number as an integer
83 1. Configuration command (two to four letters, no spaces, capital or lower case)
84 1. Configuration value in the correct units with no decimal
85 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
86
87 Ex: #5CO-50&lt;cr&gt;<div class="wikimodel-emptyline"></div>
88
89 This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div>
90
91 **Session vs Configuration Query**<div class="wikimodel-emptyline"></div>
92
93 By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div>
94
95 Ex: #5CSR20&lt;cr&gt; immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>
96
97 After RESET, a command of #5SR4&lt;cr&gt; sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>
98
99 #5QSR&lt;cr&gt; or #5QSR0&lt;cr&gt; would return *5QSR4&lt;cr&gt; which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>
100
101 #5QSR1&lt;cr&gt; would return *5QSR20&lt;cr&gt; which represents the value in EEPROM
102 <div class="wikimodel-emptyline"></div></div></div>
103
104 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
105 The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div>
106
107 [[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div>
108
109 In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div>
110
111 #1D-300&lt;cr&gt; This causes the servo to move to -30.0 degrees (green arrow)<div class="wikimodel-emptyline"></div>
112
113 #1D2100&lt;cr&gt; This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)<div class="wikimodel-emptyline"></div>
114
115 #1D-4200&lt;cr&gt; This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div>
116
117 Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.<div class="wikimodel-emptyline"></div>
118
119 #1D4800&lt;cr&gt; This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div>
120
121 #1D3300&lt;cr&gt; would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>
122
123 If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°].
124 <div class="wikimodel-emptyline"></div></div></div>
125
126 {{/html}}
127 )))
128
129 = Command List =
130
131 **Latest firmware version currently : v0.0.780**
132
133 |(% colspan="10" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]]
134 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
135 | |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Soft reset. See command for details.
136 | |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Revert to firmware default values. See command for details
137 | |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Update firmware. See command for details.
138 | |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
139 | |[[**C**hange to **RC**>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CRC|(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Change to RC mode 1 (position) or 2 (wheel).
140 | |[[**ID** #>>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %) |(% style="text-align:center" %)✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
141 | |[[**B**audrate>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QB|(% style="text-align:center" %)CB|(% style="text-align:center" %) |(% style="text-align:center" %)✓|115200| |Reset required after change.
142
143 |(% colspan="10" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]]
144 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
145 | |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°|
146 | |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°|
147 | |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation"
148 | |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM28WR29"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation"
149 | |[[Position in **P**WM>>||anchor="HPositioninPWM28P29"]]|(% style="text-align:center" %)P|(% style="text-align:center" %)QP|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|Inherited from SSC-32 serial protocol
150 | |[[**M**ove in PWM (relative)>>||anchor="H28Relative29MoveinPWM28M29"]]|(% style="text-align:center" %)M|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|
151 | |[[**R**aw **D**uty-cycle **M**ove>>||anchor="HRawDuty-cycleMove28RDM29"]]|(% style="text-align:center" %)RDM|(% style="text-align:center" %)QMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW
152 | |[[**Q**uery Status>>||anchor="HQueryStatus28Q29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1 to 8 integer|See command description for details
153 | |[[**L**imp>>||anchor="HLimp28L29"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
154 | |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
155
156 |(% colspan="10" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]]
157 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
158 | |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|(% style="text-align:center" %) |(% style="text-align:center" %)✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile
159 | |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|5| |Affects motion only when motion profile is disabled (EM0)
160 | |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|1/10°|
161 | |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1800|1/10°|
162 | |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|-4 to +4 integer|Suggested values are between 0 to +4
163 | |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|4|-10 to +10 integer|
164 | |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
165 | |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
166 | |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
167 | |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|No value|1/10°|Reset required after change.
168 | |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓|1023|255 to 1023 integer|
169 | |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
170 | |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
171
172 |(% colspan="10" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]]
173 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
174 | |[[**S**peed>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)S|(% style="text-align:center" %)QS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |uS/s |For P action command
175 | |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |0.1°/s|For D and MD action commands
176 | |[[**T**imed move>>||anchor="HTimedmove28T29modifier"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |ms|Modifier only for P, D and MD. Time can change based on load
177 | |[[**C**urrent **H**old>>||anchor="HCurrentHalt26Hold28CH29modifier"]]|(% style="text-align:center" %)CH|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR
178 | |[[**C**urrent **L**imp>>||anchor="HCurrentLimp28CL29modifier"]]|(% style="text-align:center" %)CL|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR
179
180 |(% colspan="10" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]]
181 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
182 | |[[**Q**uery **V**oltage>>||anchor="HQueryVoltage28QV29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QV|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mV|
183 | |[[**Q**uery **T**emperature>>||anchor="HQueryTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°C|
184 | |[[**Q**uery **C**urrent>>||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|
185 | |[[**Q**uery **M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
186 | |[[**Q**uery **F**irmware Version>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
187 | |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the unique serial number for the servo
188
189 |(% colspan="10" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]]
190 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
191 | |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
192 | |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 63 integer|Reset required after change. See command for details.
193
194 = (% style="color:inherit; font-family:inherit" %)Details(%%) =
195
196 == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
197
198 ====== __Reset__ ======
199
200 {{html wiki="true" clean="false"}}
201 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
202 Ex: #5RESET&lt;cr&gt;<div class="wikimodel-emptyline"></div>
203 This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands).
204 Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div>
205 </div></div>
206 {{/html}}
207
208 ====== __Default & confirm__ ======
209
210 {{html wiki="true" clean="false"}}
211 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
212 Ex: #5DEFAULT&lt;cr&gt;<div class="wikimodel-emptyline"></div>
213
214 This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.<div class="wikimodel-emptyline"></div>
215
216 EX: #5DEFAULT&lt;cr&gt; followed by #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
217
218 Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<div class="wikimodel-emptyline"></div>
219
220 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
221 </div></div>
222 {{/html}}
223
224 ====== __Update & confirm__ ======
225
226 {{html wiki="true" clean="false"}}
227 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
228 Ex: #5UPDATE&lt;cr&gt;<div class="wikimodel-emptyline"></div>
229
230 This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<div class="wikimodel-emptyline"></div>
231
232 EX: #5UPDATE&lt;cr&gt; followed by #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
233
234 Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div>
235
236 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
237 </div></div>
238 {{/html}}
239
240 ====== __Confirm__ ======
241
242 {{html wiki="true" clean="false"}}
243 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
244 Ex: #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
245
246 This command is used to confirm changes after a Default or Update command.<div class="wikimodel-emptyline"></div>
247
248 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
249 </div></div>
250 {{/html}}
251
252 ====== __Configure RC Mode (**CRC**)__ ======
253
254 {{html wiki="true" clean="false"}}
255 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
256 This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.<div class="wikimodel-emptyline"></div>
257
258 |**Command sent**|**Note**
259 |ex: #5CRC1&lt;cr&gt;|Change to RC position mode.
260 |ex: #5CRC2&lt;cr&gt;|Change to RC continuous rotation (wheel) mode.
261 |ex: #5CRC*&lt;cr&gt;|Where * is any value other than 1 or 2 (or no value): stay in smart mode.<div class="wikimodel-emptyline"></div>
262
263 EX: #5CRC2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
264
265 This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC&lt;cr&gt; or #5CRC3&lt;cr&gt; which requests that the servo remain in serial mode still requires a RESET command.<div class="wikimodel-emptyline"></div>
266
267 **Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.<div class="wikimodel-emptyline"></div>
268 </div></div>
269 {{/html}}
270
271 ====== __Identification Number (**ID**)__ ======
272
273 {{html wiki="true" clean="false"}}
274 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
275 A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div>
276
277 Query Identification (**QID**)<div class="wikimodel-emptyline"></div>
278
279 EX: #254QID&lt;cr&gt; might return *QID5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
280
281 When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.<div class="wikimodel-emptyline"></div>
282
283 Configure ID (**CID**)<div class="wikimodel-emptyline"></div>
284
285 Ex: #4CID5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
286
287 Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div>
288 </div></div>
289 {{/html}}
290
291 ====== __Baud Rate__ ======
292
293 {{html clean="false" wiki="true"}}
294 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
295 A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div>
296
297 Query Baud Rate (**QB**)<div class="wikimodel-emptyline"></div>
298
299 Ex: #5QB&lt;cr&gt; might return *5QB115200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
300
301 Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.<div class="wikimodel-emptyline"></div>
302
303 Configure Baud Rate (**CB**)<div class="wikimodel-emptyline"></div>
304
305 **Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.<div class="wikimodel-emptyline"></div>
306
307 Ex: #5CB9600&lt;cr&gt;<div class="wikimodel-emptyline"></div>
308
309 Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div>
310 </div></div>
311 {{/html}}
312
313 ====== __Automatic Baud Rate__ ======
314
315 {{html clean="false" wiki="true"}}
316 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
317 This option allows the LSS to listen to it's serial input and select the right baudrate automatically.<div class="wikimodel-emptyline"></div>
318
319 Query Automatic Baud Rate (**QABR**)<div class="wikimodel-emptyline"></div>
320
321 Ex: #5QABR&lt;cr&gt; might return *5ABR0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
322
323 Enable Baud Rate (**ABR**)<div class="wikimodel-emptyline"></div>
324
325 Ex: #5QABR1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
326 Enable baudrate detection on first byte received after power-up.<div class="wikimodel-emptyline"></div>
327
328 Ex: #5QABR2,30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
329 Enable baudrate detection on first byte received after power-up. If no data for 30 seconds enable detection again on next byte.<div class="wikimodel-emptyline"></div>
330
331 Warning: ABR doesnt work well with LSS Config at the moment.<div class="wikimodel-emptyline"></div>
332 </div></div>
333 {{/html}}
334
335 == Motion ==
336
337 ====== __Position in Degrees (**D**)__ ======
338
339 {{html wiki="true" clean="false"}}
340 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
341 Example: #5D1456&lt;cr&gt;<div class="wikimodel-emptyline"></div>
342
343 This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. <div class="wikimodel-emptyline"></div>
344
345 Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). <div class="wikimodel-emptyline"></div>
346
347 Query Position in Degrees (**QD**)<div class="wikimodel-emptyline"></div>
348
349 Example: #5QD&lt;cr&gt; might return *5QD132&lt;cr&gt;<div class="wikimodel-emptyline"></div>
350
351 This means the servo is located at 13.2 degrees.<div class="wikimodel-emptyline"></div>
352
353 (% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %)
354 Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div>
355
356 Ex: #5QDT&lt;cr&gt; might return *5QDT6783&lt;cr&gt;<div class="wikimodel-emptyline"></div>
357
358 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
359 <div class="wikimodel-emptyline"></div></div></div>
360 {{/html}}
361
362 ====== __(Relative) Move in Degrees (**MD**)__ ======
363
364 {{html wiki="true" clean="false"}}
365 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
366 Example: #5MD123&lt;cr&gt;<div class="wikimodel-emptyline"></div>
367
368 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
369 <div class="wikimodel-emptyline"></div></div></div>
370 {{/html}}
371
372 ====== __Wheel Mode in Degrees (**WD**)__ ======
373
374 {{html wiki="true" clean="false"}}
375 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
376 Ex: #5WD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
377
378 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
379
380 Query Wheel Mode in Degrees (**QWD**)<div class="wikimodel-emptyline"></div>
381
382 Ex: #5QWD&lt;cr&gt; might return *5QWD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
383
384 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
385 <div class="wikimodel-emptyline"></div></div></div>
386 {{/html}}
387
388 ====== __Wheel Mode in RPM (**WR**)__ ======
389
390 {{html wiki="true" clean="false"}}
391 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
392 Ex: #5WR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
393
394 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
395
396 Query Wheel Mode in RPM (**QWR**)<div class="wikimodel-emptyline"></div>
397
398 Ex: #5QWR&lt;cr&gt; might return *5QWR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
399
400 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
401 <div class="wikimodel-emptyline"></div></div></div>
402 {{/html}}
403
404 ====== __Position in PWM (**P**)__ ======
405
406 {{html wiki="true" clean="false"}}
407 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
408 Example: #5P2334&lt;cr&gt;<div class="wikimodel-emptyline"></div>
409
410 The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.<div class="wikimodel-emptyline"></div>
411
412 Query Position in Pulse (**QP**)<div class="wikimodel-emptyline"></div>
413
414 Example: #5QP&lt;cr&gt; might return *5QP2334<div class="wikimodel-emptyline"></div>
415
416 This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle.
417 Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
418 <div class="wikimodel-emptyline"></div></div></div>
419 {{/html}}
420
421 ====== __(Relative) Move in PWM (**M**)__ ======
422
423 {{html wiki="true" clean="false"}}
424 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
425 Example: #5M1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
426
427 The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
428 <div class="wikimodel-emptyline"></div></div></div>
429 {{/html}}
430
431 ====== __Raw Duty-cycle Move (**RDM**)__ ======
432
433 {{html wiki="true" clean="false"}}
434 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
435 Example: #5RDM512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
436
437 The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.<div class="wikimodel-emptyline"></div>
438
439 The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).<div class="wikimodel-emptyline"></div>
440
441 Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div>
442
443 Example: #5QMD&lt;cr&gt; might return *5QMD512<div class="wikimodel-emptyline"></div>
444
445 This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle.
446 <div class="wikimodel-emptyline"></div></div></div>
447 {{/html}}
448
449 ====== __Query Status (**Q**)__ ======
450
451 {{html wiki="true" clean="false"}}
452 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
453 The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div>
454
455 Ex: #5Q&lt;cr&gt; might return *5Q6&lt;cr&gt;, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div>
456 </div></div>
457 {{/html}}
458
459 |(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description**
460 | |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
461 | |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
462 | |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command
463 | |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
464 | |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
465 | |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
466 | |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding)
467 | |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
468 | |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
469 | |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
470 | |ex: *5Q10<cr>|10: Safe Mode|(((
471 A safety limit has been exceeded (temperature, peak current or extended high current draw).
472
473 Send a Q1 command to know which limit has been reached (described below).
474 )))
475
476 {{html wiki="true" clean="false"}}
477 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
478 If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div>
479 </div></div>
480 {{/html}}
481
482 |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
483 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
484 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
485 | |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
486 | |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
487
488 ====== __Limp (**L**)__ ======
489
490 {{html wiki="true" clean="false"}}
491 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
492 Example: #5L&lt;cr&gt;<div class="wikimodel-emptyline"></div>
493
494 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L&lt;cr&gt;.
495 <div class="wikimodel-emptyline"></div></div></div>
496 {{/html}}
497
498 ====== __Halt & Hold (**H**)__ ======
499
500 {{html wiki="true" clean="false"}}
501 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
502 Example: #5H&lt;cr&gt;<div class="wikimodel-emptyline"></div>
503
504 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
505 <div class="wikimodel-emptyline"></div></div></div>
506 {{/html}}
507
508 == Motion Setup ==
509
510 ====== __Enable Motion Profile (**EM**)__ ======
511
512 {{html clean="false" wiki="true"}}
513 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
514 EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div>
515
516 Ex: #5EM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
517
518 This command enables a trapezoidal motion profile for servo #5 <div class="wikimodel-emptyline"></div>
519
520 Ex: #5EM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
521
522 This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command).
523
524 <div class="wikimodel-emptyline"></div>
525
526 Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div>
527
528 Ex: #5QEM&lt;cr&gt; might return *5QEM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
529
530 This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div>
531
532 Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div>
533
534 Ex: #5CEM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
535
536 This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
537 <div class="wikimodel-emptyline"></div></div></div>
538 {{/html}}
539
540 ====== __Filter Position Count (**FPC**)__ ======
541
542 {{html clean="false" wiki="true"}}
543 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
544 The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default.
545 <div class="wikimodel-emptyline"></div>
546 Ex: #5FPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
547 This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div>
548
549 Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div>
550
551 Ex: #5QFPC&lt;cr&gt; might return *5QFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
552
553 This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div>
554
555 Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div>
556
557 Ex: #5CFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
558
559 This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
560 <div class="wikimodel-emptyline"></div></div></div>
561 {{/html}}
562
563 ====== __Origin Offset (**O**)__ ======
564
565 {{html wiki="true" clean="false"}}
566 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
567 Example: #5O2400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
568
569 This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div>
570
571 [[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
572
573 In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div>
574
575 [[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div>
576
577 Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div>
578
579 Example: #5QO&lt;cr&gt; might return *5QO-13<div class="wikimodel-emptyline"></div>
580
581 This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div>
582
583 Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div>
584
585 Example: #5CO-24&lt;cr&gt;<div class="wikimodel-emptyline"></div>
586
587 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
588 <div class="wikimodel-emptyline"></div></div></div>
589 {{/html}}
590
591 ====== __Angular Range (**AR**)__ ======
592
593 {{html wiki="true" clean="false"}}
594 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
595 Example: #5AR1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
596
597 This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div>
598
599 [[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
600
601 Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div>
602
603 [[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div>
604
605 Finally, the angular range action command (ex. #5AR1800&lt;cr&gt;) and origin offset action command (ex. #5O-1200&lt;cr&gt;) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div>
606
607 [[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div>
608
609 Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div>
610
611 Example: #5QAR&lt;cr&gt; might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div>
612
613 Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div>
614
615 This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
616 <div class="wikimodel-emptyline"></div></div></div>
617 {{/html}}
618
619 ====== __Angular Stiffness (**AS**)__ ======
620
621 {{html wiki="true" clean="false"}}
622 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
623 The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div>
624
625 A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div>
626
627 * The more torque will be applied to try to keep the desired position against external input / changes
628 * The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div>
629
630 A lower value on the other hand:<div class="wikimodel-emptyline"></div>
631
632 * Causes a slower acceleration to the travel speed, and a slower deceleration
633 * Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div>
634
635 The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
636
637 Ex: #5AS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
638
639 This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div>
640
641 Ex: #5QAS&lt;cr&gt;<div class="wikimodel-emptyline"></div>
642
643 Queries the value being used.<div class="wikimodel-emptyline"></div>
644
645 Ex: #5CAS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
646
647 Writes the desired angular stiffness value to EEPROM.
648 <div class="wikimodel-emptyline"></div></div></div>
649 {{/html}}
650
651 ====== __Angular Holding Stiffness (**AH**)__ ======
652
653 {{html wiki="true" clean="false"}}
654 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
655 The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
656
657 Ex: #5AH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
658
659 This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div>
660
661 Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div>
662
663 Ex: #5QAH&lt;cr&gt; might return *5QAH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
664
665 This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div>
666
667 Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div>
668
669 Ex: #5CAH2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
670
671 This writes the angular holding stiffness of servo #5 to 2 to EEPROM.
672 <div class="wikimodel-emptyline"></div></div></div>
673 {{/html}}
674
675 ====== __Angular Acceleration (**AA**)__ ======
676
677 {{html wiki="true" clean="false"}}
678 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
679 The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
680
681 Ex: #5AA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
682
683 This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
684
685 Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div>
686
687 Ex: #5QAA&lt;cr&gt; might return *5QAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
688
689 This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
690
691 Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div>
692
693 Ex: #5CAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
694
695 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
696 <div class="wikimodel-emptyline"></div></div></div>
697 {{/html}}
698
699 ====== __Angular Deceleration (**AD**)__ ======
700
701 {{html wiki="true" clean="false"}}
702 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
703 The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
704
705 Ex: #5AD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
706
707 This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
708
709 Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div>
710
711 Ex: #5QAD&lt;cr&gt; might return *5QAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
712
713 This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
714
715 Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div>
716
717 Ex: #5CAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
718
719 This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
720 <div class="wikimodel-emptyline"></div></div></div>
721 {{/html}}
722
723 ====== __Gyre Direction (**G**)__ ======
724
725 {{html wiki="true" clean="false"}}
726 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
727 "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div>
728
729 Ex: #5G-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
730
731 This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div>
732
733 Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div>
734
735 Ex: #5QG&lt;cr&gt; might return *5QG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
736
737 The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div>
738
739 Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div>
740
741 Ex: #5CG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
742
743 This changes the gyre direction as described above and also writes to EEPROM.
744 <div class="wikimodel-emptyline"></div></div></div>
745 {{/html}}
746
747 ====== __First Position__ ======
748
749 {{html wiki="true" clean="false"}}
750 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
751 In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div>
752
753 Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div>
754
755 Ex: #5QFD&lt;cr&gt; might return *5QFD900&lt;cr&gt; <div class="wikimodel-emptyline"></div>
756
757 The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div>
758
759 Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div>
760
761 Ex: #5CFD900&lt;cr&gt;<div class="wikimodel-emptyline"></div>
762
763 This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD&lt;cr&gt;) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD&lt;cr&gt;
764 <div class="wikimodel-emptyline"></div></div></div>
765 {{/html}}
766
767 ====== __Maximum Motor Duty (**MMD**)__ ======
768
769 {{html wiki="true" clean="false"}}
770 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
771 This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div>
772
773 Ex: #5MMD512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
774
775 This will set the duty-cycle to 512 for servo with ID 5 for that session.<div class="wikimodel-emptyline"></div>
776
777 Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div>
778
779 Ex: #5QMMDD&lt;cr&gt; might return *5QMMD512&lt;cr&gt; <div class="wikimodel-emptyline"></div>
780
781 This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023.
782 <div class="wikimodel-emptyline"></div></div></div>
783 {{/html}}
784
785 ====== __Maximum Speed in Degrees (**SD**)__ ======
786
787 {{html wiki="true" clean="false"}}
788 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
789 Ex: #5SD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
790 This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
791
792 Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div>
793
794 Ex: #5QSD&lt;cr&gt; might return *5QSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
795
796 By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1&lt;cr&gt; is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
797
798 |**Command sent**|**Returned value (1/10 °)**
799 |ex: #5QSD&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
800 |ex: #5QSD1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
801 |ex: #5QSD2&lt;cr&gt;|Instantaneous speed (same as QWD)
802 |ex: #5QSD3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
803
804 Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div>
805
806 Ex: #5CSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
807 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
808 </div></div>
809 {{/html}}
810
811 ====== __Maximum Speed in RPM (**SR**)__ ======
812
813 {{html wiki="true" clean="false"}}
814 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
815 Ex: #5SR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
816 This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
817
818 Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div>
819
820 Ex: #5QSR&lt;cr&gt; might return *5QSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
821
822 By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1&lt;cr&gt; is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
823
824 |**Command sent**|**Returned value (1/10 °)**
825 |ex: #5QSR&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
826 |ex: #5QSR1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
827 |ex: #5QSR2&lt;cr&gt;|Instantaneous speed (same as QWD)
828 |ex: #5QSR3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
829
830 Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div>
831
832 Ex: #5CSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
833 Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
834 </div></div>
835 {{/html}}
836
837 == Modifiers ==
838
839 ====== __Speed (**S**, **SD**) modifier__ ======
840
841 {{html clean="false" wiki="true"}}
842 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
843 Example: #5P1500S750&lt;cr&gt;<div class="wikimodel-emptyline"></div>
844 Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
845 Example: #5D0SD180&lt;cr&gt;<div class="wikimodel-emptyline"></div>
846 Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.<div class="wikimodel-emptyline"></div>
847 Query Speed (**QS**)<div class="wikimodel-emptyline"></div>
848 Example: #5QS&lt;cr&gt; might return *5QS300&lt;cr&gt;<div class="wikimodel-emptyline"></div>
849 This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div>
850 </div></div>
851 {{/html}}
852
853 ====== __Timed move (**T**) modifier__ ======
854
855 {{html wiki="true" clean="false"}}
856 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
857 Example: #5P1500T2500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
858
859 Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
860 **Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div>
861 </div></div>
862 {{/html}}
863
864 ====== __Current Halt & Hold (**CH**) modifier__ ======
865
866 {{html wiki="true" clean="false"}}
867 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
868 Example: #5D1423CH400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
869
870 This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div>
871 This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
872 </div></div>
873 {{/html}}
874
875 ====== __Current Limp (**CL**) modifier__ ======
876
877 {{html wiki="true" clean="false"}}
878 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
879 Example: #5D1423CL400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
880
881 This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div>
882 This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
883 </div></div>
884 {{/html}}
885
886 == Telemetry ==
887
888 ====== __Query Voltage (**QV**)__ ======
889
890 {{html wiki="true" clean="false"}}
891 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
892 Ex: #5QV&lt;cr&gt; might return *5QV11200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
893 The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div>
894 </div></div>
895 {{/html}}
896
897 ====== __Query Temperature (**QT**)__ ======
898
899 {{html wiki="true" clean="false"}}
900 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
901 Ex: #5QT&lt;cr&gt; might return *5QT564&lt;cr&gt;<div class="wikimodel-emptyline"></div>
902 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div>
903 </div></div>
904 {{/html}}
905
906 ====== __Query Current (**QC**)__ ======
907
908 {{html wiki="true" clean="false"}}
909 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
910 Ex: #5QC&lt;cr&gt; might return *5QC140&lt;cr&gt;<div class="wikimodel-emptyline"></div>
911 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div>
912 </div></div>
913 {{/html}}
914
915 ====== __Query Model String (**QMS**)__ ======
916
917 {{html wiki="true" clean="false"}}
918 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
919 Ex: #5QMS&lt;cr&gt; might return *5QMSLSS-HS1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
920 This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div>
921 </div></div>
922 {{/html}}
923
924 ====== __Query Firmware (**QF**)__ ======
925
926 {{html wiki="true" clean="false"}}
927 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
928 Ex: #5QF&lt;cr&gt; might return *5QF368&lt;cr&gt;<div class="wikimodel-emptyline"></div>
929 The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div>
930 The command #5QF3&lt;cr&gt; can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div>
931 </div></div>
932 {{/html}}
933
934 ====== __Query Serial Number (**QN**)__ ======
935
936 {{html wiki="true" clean="false"}}
937 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
938 Ex: #5QN&lt;cr&gt; might return *5QN12345678&lt;cr&gt;<div class="wikimodel-emptyline"></div>
939 The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div>
940 </div></div>
941 {{/html}}
942
943 == RGB LED ==
944
945 ====== __LED Color (**LED**)__ ======
946
947 {{html wiki="true" clean="false"}}
948 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
949 Ex: #5LED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
950 This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div>
951 0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div>
952 Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div>
953 Ex: #5QLED&lt;cr&gt; might return *5QLED5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
954 This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div>
955 Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div>
956 Ex: #5CLED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
957 Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div>
958 </div></div>
959 {{/html}}
960
961 ====== __Configure LED Blinking (**CLB**)__ ======
962
963 {{html wiki="true" clean="false"}}
964 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
965 This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div>
966
967 (% style="width:195px" %)
968 |(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
969 |(% style="width:134px" %)No blinking|(% style="width:58px" %)0
970 |(% style="width:134px" %)Limp|(% style="width:58px" %)1
971 |(% style="width:134px" %)Holding|(% style="width:58px" %)2
972 |(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
973 |(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
974 |(% style="width:134px" %)Free|(% style="width:58px" %)16
975 |(% style="width:134px" %)Travelling|(% style="width:58px" %)32
976 |(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div>
977
978 To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div>
979 Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div>
980 Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div>
981 Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div>
982 Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div>
983 Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div>
984 Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div>
985 RESETTING the servo is needed.<div class="wikimodel-emptyline"></div>
986 </div></div>
987 {{/html}}
988
989 == RGB LED ==
990
991 The LED can be
Copyright RobotShop 2018