Wiki source code of LSS-P - Communication Protocol

Version 21.1 by Coleman Benson on 2023/07/18 08:48

Show last authors
1 {{warningBox warningText="More information coming soon"/}}
2
3
4 (% class="wikigeneratedid" id="HTableofContents" %)
5 **Page Contents**
6
7 {{toc depth="3"/}}
8
9 = Serial Protocol =
10
11 The Lynxmotion Smart Servo (LSS) PRO serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's Smart Servo (LSS) protocol, which itself was based on the SSC-32 & SSC-32U RC servo controllers. The LSS PRO series and normal LSS share many of the same commands, but because of higher angular precision, slightly different operation and different features, the two protocols do not fully overlap.
12
13 In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol.
14
15 = Action Commands =
16
17 Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]] (described below). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
18
19 1. Start with a number sign **#** (Unicode Character: U+0023)
20 1. Servo ID number as an integer (assigning an ID described below)
21 1. Action command (one or more letters, no whitespace, capital or lowercase from the list below)
22 1. Action value in the correct units with no decimal
23 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
24
25 (((
26 Ex: #5D130000<cr>
27
28 This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (13000 in hundredths of degrees) of 130.00 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
29
30 == Modifiers ==
31
32 {{html clean="false" wiki="true" __cke_selected_macro="true"}}
33 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
34 Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div>
35
36 1. Start with a number sign **#** (Unicode Character: U+0023)
37 1. Servo ID number as an integer
38 1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
39 1. Action value in the correct units with no decimal
40 1. Modifier command (one or two letters from the list of modifiers below)
41 1. Modifier value in the correct units with no decimal
42 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)
43
44 Ex: #5D13000T1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
45
46 This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div>
47 <div class="wikimodel-emptyline"></div></div></div>
48
49 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
50 Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div>
51
52 1. Start with a number sign **#** (Unicode Character: U+0023)
53 1. Servo ID number as an integer
54 1. Query command (one to four letters, no spaces, capital or lower case)
55 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
56
57 Ex: #5QD&lt;cr&gt; Query the position in (hundredths of) degrees for servo with ID #5<div class="wikimodel-emptyline"></div>
58
59 The query will return a serial string (almost instantaneously) via the servo's Tx in the following format:
60
61 1. Start with an asterisk * (Unicode Character: U+0023)
62 1. Servo ID number as an integer
63 1. Query command (one to four letters, no spaces, capital letters)
64 1. The reported value in the units described, no decimals.
65 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
66
67 There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div>
68
69 Ex: *5QD13000&lt;cr&gt;<div class="wikimodel-emptyline"></div>
70
71 This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees).
72 <div class="wikimodel-emptyline"></div></div></div>
73
74 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
75 Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div>
76
77 These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative. This means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>
78
79 The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div>
80
81 1. Start with a number sign **#** (Unicode Character: U+0023)
82 1. Servo ID number as an integer
83 1. Configuration command (two to four letters, no spaces, capital or lower case)
84 1. Configuration value in the correct units with no decimal
85 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
86
87 Ex: #5CO-50&lt;cr&gt;<div class="wikimodel-emptyline"></div>
88
89 This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div>
90
91 **Session vs Configuration Query**<div class="wikimodel-emptyline"></div>
92
93 By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div>
94
95 Ex: #5CSR20&lt;cr&gt; immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>
96
97 After RESET, a command of #5SR4&lt;cr&gt; sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>
98
99 #5QSR&lt;cr&gt; or #5QSR0&lt;cr&gt; would return *5QSR4&lt;cr&gt; which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>
100
101 #5QSR1&lt;cr&gt; would return *5QSR20&lt;cr&gt; which represents the value in EEPROM
102 <div class="wikimodel-emptyline"></div></div></div>
103
104 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
105 The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div>
106
107 [[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div>
108
109 In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div>
110
111 #1D-300&lt;cr&gt; This causes the servo to move to -30.0 degrees (green arrow)<div class="wikimodel-emptyline"></div>
112
113 #1D2100&lt;cr&gt; This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)<div class="wikimodel-emptyline"></div>
114
115 #1D-4200&lt;cr&gt; This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div>
116
117 Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.<div class="wikimodel-emptyline"></div>
118
119 #1D4800&lt;cr&gt; This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div>
120
121 #1D3300&lt;cr&gt; would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>
122
123 If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°].
124 <div class="wikimodel-emptyline"></div></div></div>
125
126 {{/html}}
127 )))
128
129 = Command List =
130
131 **Latest firmware version currently : v0.0.780**
132
133 |(% colspan="10" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]]
134 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
135 | |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Soft reset. See command for details.
136 | |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Revert to firmware default values. See command for details
137 | |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Update firmware. See command for details.
138 | |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
139 | |[[**C**hange to **RC**>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CRC|(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Change to RC mode 1 (position) or 2 (wheel).
140 | |[[**ID** #>>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %) |(% style="text-align:center" %)✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
141 | |[[**B**audrate>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QB|(% style="text-align:center" %)CB|(% style="text-align:center" %) |(% style="text-align:center" %)✓|115200| |Reset required after change.
142
143 |(% colspan="10" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]]
144 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
145 | |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°|
146 | |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°|
147 | |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation"
148 | |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM28WR29"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation"
149 | |[[Position in **P**WM>>||anchor="HPositioninPWM28P29"]]|(% style="text-align:center" %)P|(% style="text-align:center" %)QP|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|Inherited from SSC-32 serial protocol
150 | |[[**M**ove in PWM (relative)>>||anchor="H28Relative29MoveinPWM28M29"]]|(% style="text-align:center" %)M|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|
151 | |[[**R**aw **D**uty-cycle **M**ove>>||anchor="HRawDuty-cycleMove28RDM29"]]|(% style="text-align:center" %)RDM|(% style="text-align:center" %)QMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW
152 | |[[**Q**uery Status>>||anchor="HQueryStatus28Q29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1 to 8 integer|See command description for details
153 | |[[**L**imp>>||anchor="HLimp28L29"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
154 | |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
155
156 |(% colspan="10" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]]
157 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
158 | |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|(% style="text-align:center" %) |(% style="text-align:center" %)✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile
159 | |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|5| |Affects motion only when motion profile is disabled (EM0)
160 | |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|1/10°|
161 | |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1800|1/10°|
162 | |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|-4 to +4 integer|Suggested values are between 0 to +4
163 | |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|4|-10 to +10 integer|
164 | |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
165 | |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
166 | |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
167 | |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|No value|1/10°|Reset required after change.
168 | |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓|1023|255 to 1023 integer|
169 | |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
170 | |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
171
172 |(% colspan="10" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]]
173 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
174 | |[[**S**peed>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)S|(% style="text-align:center" %)QS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |uS/s |For P action command
175 | |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |0.1°/s|For D and MD action commands
176 | |[[**T**imed move>>||anchor="HTimedmove28T29modifier"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |ms|Modifier only for P, D and MD. Time can change based on load
177 | |[[**C**urrent **H**old>>||anchor="HCurrentHalt26Hold28CH29modifier"]]|(% style="text-align:center" %)CH|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR
178 | |[[**C**urrent **L**imp>>||anchor="HCurrentLimp28CL29modifier"]]|(% style="text-align:center" %)CL|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR
179
180 |(% colspan="10" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]]
181 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
182 | |[[**Q**uery **V**oltage>>||anchor="HQueryVoltage28QV29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QV|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mV|
183 | |[[**Q**uery **T**emperature>>||anchor="HQueryTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°C|
184 | |[[**Q**uery **C**urrent>>||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|
185 | |[[**Q**uery **M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
186 | |[[**Q**uery **F**irmware Version>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
187 | |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the unique serial number for the servo
188
189 |(% colspan="10" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]]
190 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
191 | |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
192 | |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 63 integer|Reset required after change. See command for details.
193
194 = (% style="color:inherit; font-family:inherit" %)Details(%%) =
195
196 == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
197
198 ====== __Reset__ ======
199
200 {{html wiki="true" clean="false"}}
201 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
202 Ex: #5RESET&lt;cr&gt;<div class="wikimodel-emptyline"></div>
203 This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands).
204 Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div>
205 </div></div>
206 {{/html}}
207
208 ====== __Default & confirm__ ======
209
210 {{html wiki="true" clean="false"}}
211 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
212 Ex: #5DEFAULT&lt;cr&gt;<div class="wikimodel-emptyline"></div>
213
214 This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.<div class="wikimodel-emptyline"></div>
215
216 EX: #5DEFAULT&lt;cr&gt; followed by #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
217
218 Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<div class="wikimodel-emptyline"></div>
219
220 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
221 </div></div>
222 {{/html}}
223
224 ====== __Update & confirm__ ======
225
226 {{html wiki="true" clean="false"}}
227 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
228 Ex: #5UPDATE&lt;cr&gt;<div class="wikimodel-emptyline"></div>
229
230 This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<div class="wikimodel-emptyline"></div>
231
232 EX: #5UPDATE&lt;cr&gt; followed by #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
233
234 Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div>
235
236 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
237 </div></div>
238 {{/html}}
239
240 ====== __Confirm__ ======
241
242 {{html wiki="true" clean="false"}}
243 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
244 Ex: #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
245
246 This command is used to confirm changes after a Default or Update command.<div class="wikimodel-emptyline"></div>
247
248 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
249 </div></div>
250 {{/html}}
251
252 ====== ======
253
254 ====== __Identification Number (**ID**)__ ======
255
256 {{html wiki="true" clean="false"}}
257 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
258 A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div>
259
260 Query Identification (**QID**)<div class="wikimodel-emptyline"></div>
261
262 EX: #254QID&lt;cr&gt; might return *QID5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
263
264 When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.<div class="wikimodel-emptyline"></div>
265
266 Configure ID (**CID**)<div class="wikimodel-emptyline"></div>
267
268 Ex: #4CID5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
269
270 Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div>
271 </div></div>
272 {{/html}}
273
274 ====== __Baud Rate__ ======
275
276 {{html clean="false" wiki="true"}}
277 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
278 A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div>
279
280 Query Baud Rate (**QB**)<div class="wikimodel-emptyline"></div>
281
282 Ex: #5QB&lt;cr&gt; might return *5QB115200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
283
284 Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.<div class="wikimodel-emptyline"></div>
285
286 Configure Baud Rate (**CB**)<div class="wikimodel-emptyline"></div>
287
288 **Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.<div class="wikimodel-emptyline"></div>
289
290 Ex: #5CB9600&lt;cr&gt;<div class="wikimodel-emptyline"></div>
291
292 Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div>
293 </div></div>
294 {{/html}}
295
296 ====== __Automatic Baud Rate__ ======
297
298 {{html clean="false" wiki="true"}}
299 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
300 This option allows the LSS to listen to it's serial input and select the right baudrate automatically.<div class="wikimodel-emptyline"></div>
301
302 Query Automatic Baud Rate (**QABR**)<div class="wikimodel-emptyline"></div>
303
304 Ex: #5QABR&lt;cr&gt; might return *5ABR0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
305
306 Enable Baud Rate (**ABR**)<div class="wikimodel-emptyline"></div>
307
308 Ex: #5QABR1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
309 Enable baudrate detection on first byte received after power-up.<div class="wikimodel-emptyline"></div>
310
311 Ex: #5QABR2,30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
312 Enable baudrate detection on first byte received after power-up. If no data for 30 seconds enable detection again on next byte.<div class="wikimodel-emptyline"></div>
313
314 Warning: ABR doesnt work well with LSS Config at the moment.<div class="wikimodel-emptyline"></div>
315 </div></div>
316 {{/html}}
317
318 == Motion ==
319
320 ====== __Position in Degrees (**D**)__ ======
321
322 {{html wiki="true" clean="false"}}
323 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
324 Example: #5D1456&lt;cr&gt;<div class="wikimodel-emptyline"></div>
325
326 This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. <div class="wikimodel-emptyline"></div>
327
328 Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). <div class="wikimodel-emptyline"></div>
329
330 Query Position in Degrees (**QD**)<div class="wikimodel-emptyline"></div>
331
332 Example: #5QD&lt;cr&gt; might return *5QD132&lt;cr&gt;<div class="wikimodel-emptyline"></div>
333
334 This means the servo is located at 13.2 degrees.<div class="wikimodel-emptyline"></div>
335
336 (% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %)
337 Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div>
338
339 Ex: #5QDT&lt;cr&gt; might return *5QDT6783&lt;cr&gt;<div class="wikimodel-emptyline"></div>
340
341 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
342 <div class="wikimodel-emptyline"></div></div></div>
343 {{/html}}
344
345 ====== __(Relative) Move in Degrees (**MD**)__ ======
346
347 {{html wiki="true" clean="false"}}
348 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
349 Example: #5MD123&lt;cr&gt;<div class="wikimodel-emptyline"></div>
350
351 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
352 <div class="wikimodel-emptyline"></div></div></div>
353 {{/html}}
354
355 ====== __Wheel Mode in Degrees (**WD**)__ ======
356
357 {{html wiki="true" clean="false"}}
358 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
359 Ex: #5WD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
360
361 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
362
363 Query Wheel Mode in Degrees (**QWD**)<div class="wikimodel-emptyline"></div>
364
365 Ex: #5QWD&lt;cr&gt; might return *5QWD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
366
367 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
368 <div class="wikimodel-emptyline"></div></div></div>
369 {{/html}}
370
371 ====== __Wheel Mode in RPM (**WR**)__ ======
372
373 {{html wiki="true" clean="false"}}
374 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
375 Ex: #5WR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
376
377 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
378
379 Query Wheel Mode in RPM (**QWR**)<div class="wikimodel-emptyline"></div>
380
381 Ex: #5QWR&lt;cr&gt; might return *5QWR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
382
383 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
384 <div class="wikimodel-emptyline"></div></div></div>
385 {{/html}}
386
387 ====== __Position in PWM (**P**)__ ======
388
389 {{html wiki="true" clean="false"}}
390 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
391 Example: #5P2334&lt;cr&gt;<div class="wikimodel-emptyline"></div>
392
393 The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.<div class="wikimodel-emptyline"></div>
394
395 Query Position in Pulse (**QP**)<div class="wikimodel-emptyline"></div>
396
397 Example: #5QP&lt;cr&gt; might return *5QP2334<div class="wikimodel-emptyline"></div>
398
399 This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle.
400 Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
401 <div class="wikimodel-emptyline"></div></div></div>
402 {{/html}}
403
404 ====== __(Relative) Move in PWM (**M**)__ ======
405
406 {{html wiki="true" clean="false"}}
407 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
408 Example: #5M1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
409
410 The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
411 <div class="wikimodel-emptyline"></div></div></div>
412 {{/html}}
413
414 ====== __Raw Duty-cycle Move (**RDM**)__ ======
415
416 {{html wiki="true" clean="false"}}
417 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
418 Example: #5RDM512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
419
420 The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.<div class="wikimodel-emptyline"></div>
421
422 The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).<div class="wikimodel-emptyline"></div>
423
424 Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div>
425
426 Example: #5QMD&lt;cr&gt; might return *5QMD512<div class="wikimodel-emptyline"></div>
427
428 This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle.
429 <div class="wikimodel-emptyline"></div></div></div>
430 {{/html}}
431
432 ====== __Query Status (**Q**)__ ======
433
434 {{html wiki="true" clean="false"}}
435 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
436 The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div>
437
438 Ex: #5Q&lt;cr&gt; might return *5Q6&lt;cr&gt;, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div>
439 </div></div>
440 {{/html}}
441
442 |(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description**
443 | |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
444 | |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
445 | |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command
446 | |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
447 | |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
448 | |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
449 | |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding)
450 | |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
451 | |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
452 | |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
453 | |ex: *5Q10<cr>|10: Safe Mode|(((
454 A safety limit has been exceeded (temperature, peak current or extended high current draw).
455
456 Send a Q1 command to know which limit has been reached (described below).
457 )))
458
459 {{html wiki="true" clean="false"}}
460 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
461 If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div>
462 </div></div>
463 {{/html}}
464
465 |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
466 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
467 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
468 | |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
469 | |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
470
471 ====== __Limp (**L**)__ ======
472
473 {{html wiki="true" clean="false"}}
474 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
475 Example: #5L&lt;cr&gt;<div class="wikimodel-emptyline"></div>
476
477 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L&lt;cr&gt;.
478 <div class="wikimodel-emptyline"></div></div></div>
479 {{/html}}
480
481 ====== __Halt & Hold (**H**)__ ======
482
483 {{html wiki="true" clean="false"}}
484 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
485 Example: #5H&lt;cr&gt;<div class="wikimodel-emptyline"></div>
486
487 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
488 <div class="wikimodel-emptyline"></div></div></div>
489 {{/html}}
490
491 == Motion Setup ==
492
493 ====== __Enable Motion Profile (**EM**)__ ======
494
495 {{html clean="false" wiki="true"}}
496 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
497 EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div>
498
499 Ex: #5EM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
500
501 This command enables a trapezoidal motion profile for servo #5 <div class="wikimodel-emptyline"></div>
502
503 Ex: #5EM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
504
505 This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command).
506
507 <div class="wikimodel-emptyline"></div>
508
509 Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div>
510
511 Ex: #5QEM&lt;cr&gt; might return *5QEM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
512
513 This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div>
514
515 Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div>
516
517 Ex: #5CEM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
518
519 This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
520 <div class="wikimodel-emptyline"></div></div></div>
521 {{/html}}
522
523 ====== __Filter Position Count (**FPC**)__ ======
524
525 {{html clean="false" wiki="true"}}
526 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
527 The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default.
528 <div class="wikimodel-emptyline"></div>
529 Ex: #5FPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
530 This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div>
531
532 Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div>
533
534 Ex: #5QFPC&lt;cr&gt; might return *5QFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
535
536 This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div>
537
538 Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div>
539
540 Ex: #5CFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
541
542 This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
543 <div class="wikimodel-emptyline"></div></div></div>
544 {{/html}}
545
546 ====== __Origin Offset (**O**)__ ======
547
548 {{html wiki="true" clean="false"}}
549 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
550 Example: #5O2400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
551
552 This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div>
553
554 [[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
555
556 In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div>
557
558 [[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div>
559
560 Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div>
561
562 Example: #5QO&lt;cr&gt; might return *5QO-13<div class="wikimodel-emptyline"></div>
563
564 This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div>
565
566 Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div>
567
568 Example: #5CO-24&lt;cr&gt;<div class="wikimodel-emptyline"></div>
569
570 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
571 <div class="wikimodel-emptyline"></div></div></div>
572 {{/html}}
573
574 ====== __Angular Range (**AR**)__ ======
575
576 {{html wiki="true" clean="false"}}
577 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
578 Example: #5AR1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
579
580 This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div>
581
582 [[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
583
584 Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div>
585
586 [[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div>
587
588 Finally, the angular range action command (ex. #5AR1800&lt;cr&gt;) and origin offset action command (ex. #5O-1200&lt;cr&gt;) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div>
589
590 [[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div>
591
592 Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div>
593
594 Example: #5QAR&lt;cr&gt; might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div>
595
596 Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div>
597
598 This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
599 <div class="wikimodel-emptyline"></div></div></div>
600 {{/html}}
601
602 ====== __Angular Stiffness (**AS**)__ ======
603
604 {{html wiki="true" clean="false"}}
605 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
606 The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div>
607
608 A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div>
609
610 * The more torque will be applied to try to keep the desired position against external input / changes
611 * The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div>
612
613 A lower value on the other hand:<div class="wikimodel-emptyline"></div>
614
615 * Causes a slower acceleration to the travel speed, and a slower deceleration
616 * Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div>
617
618 The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
619
620 Ex: #5AS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
621
622 This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div>
623
624 Ex: #5QAS&lt;cr&gt;<div class="wikimodel-emptyline"></div>
625
626 Queries the value being used.<div class="wikimodel-emptyline"></div>
627
628 Ex: #5CAS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
629
630 Writes the desired angular stiffness value to EEPROM.
631 <div class="wikimodel-emptyline"></div></div></div>
632 {{/html}}
633
634 ====== __Angular Holding Stiffness (**AH**)__ ======
635
636 {{html wiki="true" clean="false"}}
637 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
638 The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
639
640 Ex: #5AH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
641
642 This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div>
643
644 Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div>
645
646 Ex: #5QAH&lt;cr&gt; might return *5QAH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
647
648 This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div>
649
650 Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div>
651
652 Ex: #5CAH2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
653
654 This writes the angular holding stiffness of servo #5 to 2 to EEPROM.
655 <div class="wikimodel-emptyline"></div></div></div>
656 {{/html}}
657
658 ====== __Angular Acceleration (**AA**)__ ======
659
660 {{html wiki="true" clean="false"}}
661 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
662 The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
663
664 Ex: #5AA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
665
666 This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
667
668 Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div>
669
670 Ex: #5QAA&lt;cr&gt; might return *5QAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
671
672 This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
673
674 Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div>
675
676 Ex: #5CAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
677
678 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
679 <div class="wikimodel-emptyline"></div></div></div>
680 {{/html}}
681
682 ====== __Angular Deceleration (**AD**)__ ======
683
684 {{html wiki="true" clean="false"}}
685 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
686 The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
687
688 Ex: #5AD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
689
690 This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
691
692 Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div>
693
694 Ex: #5QAD&lt;cr&gt; might return *5QAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
695
696 This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
697
698 Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div>
699
700 Ex: #5CAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
701
702 This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
703 <div class="wikimodel-emptyline"></div></div></div>
704 {{/html}}
705
706 ====== __Gyre Direction (**G**)__ ======
707
708 {{html wiki="true" clean="false"}}
709 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
710 "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div>
711
712 Ex: #5G-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
713
714 This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div>
715
716 Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div>
717
718 Ex: #5QG&lt;cr&gt; might return *5QG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
719
720 The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div>
721
722 Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div>
723
724 Ex: #5CG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
725
726 This changes the gyre direction as described above and also writes to EEPROM.
727 <div class="wikimodel-emptyline"></div></div></div>
728 {{/html}}
729
730 ====== __First Position__ ======
731
732 {{html wiki="true" clean="false"}}
733 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
734 In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div>
735
736 Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div>
737
738 Ex: #5QFD&lt;cr&gt; might return *5QFD900&lt;cr&gt; <div class="wikimodel-emptyline"></div>
739
740 The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div>
741
742 Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div>
743
744 Ex: #5CFD900&lt;cr&gt;<div class="wikimodel-emptyline"></div>
745
746 This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD&lt;cr&gt;) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD&lt;cr&gt;
747 <div class="wikimodel-emptyline"></div></div></div>
748 {{/html}}
749
750 ====== __Maximum Motor Duty (**MMD**)__ ======
751
752 {{html wiki="true" clean="false"}}
753 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
754 This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div>
755
756 Ex: #5MMD512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
757
758 This will set the duty-cycle to 512 for servo with ID 5 for that session.<div class="wikimodel-emptyline"></div>
759
760 Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div>
761
762 Ex: #5QMMDD&lt;cr&gt; might return *5QMMD512&lt;cr&gt; <div class="wikimodel-emptyline"></div>
763
764 This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023.
765 <div class="wikimodel-emptyline"></div></div></div>
766 {{/html}}
767
768 ====== __Maximum Speed in Degrees (**SD**)__ ======
769
770 {{html wiki="true" clean="false"}}
771 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
772 Ex: #5SD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
773 This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
774
775 Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div>
776
777 Ex: #5QSD&lt;cr&gt; might return *5QSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
778
779 By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1&lt;cr&gt; is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
780
781 |**Command sent**|**Returned value (1/10 °)**
782 |ex: #5QSD&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
783 |ex: #5QSD1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
784 |ex: #5QSD2&lt;cr&gt;|Instantaneous speed (same as QWD)
785 |ex: #5QSD3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
786
787 Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div>
788
789 Ex: #5CSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
790 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
791 </div></div>
792 {{/html}}
793
794 ====== __Maximum Speed in RPM (**SR**)__ ======
795
796 {{html wiki="true" clean="false"}}
797 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
798 Ex: #5SR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
799 This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
800
801 Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div>
802
803 Ex: #5QSR&lt;cr&gt; might return *5QSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
804
805 By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1&lt;cr&gt; is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
806
807 |**Command sent**|**Returned value (1/10 °)**
808 |ex: #5QSR&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
809 |ex: #5QSR1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
810 |ex: #5QSR2&lt;cr&gt;|Instantaneous speed (same as QWD)
811 |ex: #5QSR3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
812
813 Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div>
814
815 Ex: #5CSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
816 Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
817 </div></div>
818 {{/html}}
819
820 == Modifiers ==
821
822 ====== __Speed (**S**, **SD**) modifier__ ======
823
824 {{html clean="false" wiki="true"}}
825 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
826 Example: #5P1500S750&lt;cr&gt;<div class="wikimodel-emptyline"></div>
827 Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
828 Example: #5D0SD180&lt;cr&gt;<div class="wikimodel-emptyline"></div>
829 Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.<div class="wikimodel-emptyline"></div>
830 Query Speed (**QS**)<div class="wikimodel-emptyline"></div>
831 Example: #5QS&lt;cr&gt; might return *5QS300&lt;cr&gt;<div class="wikimodel-emptyline"></div>
832 This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div>
833 </div></div>
834 {{/html}}
835
836 ====== __Timed move (**T**) modifier__ ======
837
838 {{html wiki="true" clean="false"}}
839 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
840 Example: #5P1500T2500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
841
842 Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
843 **Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div>
844 </div></div>
845 {{/html}}
846
847 ====== __Current Halt & Hold (**CH**) modifier__ ======
848
849 {{html wiki="true" clean="false"}}
850 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
851 Example: #5D1423CH400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
852
853 This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div>
854 This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
855 </div></div>
856 {{/html}}
857
858 ====== __Current Limp (**CL**) modifier__ ======
859
860 {{html wiki="true" clean="false"}}
861 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
862 Example: #5D1423CL400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
863
864 This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div>
865 This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
866 </div></div>
867 {{/html}}
868
869 == Telemetry ==
870
871 ====== __Query Voltage (**QV**)__ ======
872
873 {{html wiki="true" clean="false"}}
874 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
875 Ex: #5QV&lt;cr&gt; might return *5QV11200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
876 The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div>
877 </div></div>
878 {{/html}}
879
880 ====== __Query Temperature (**QT**)__ ======
881
882 {{html wiki="true" clean="false"}}
883 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
884 Ex: #5QT&lt;cr&gt; might return *5QT564&lt;cr&gt;<div class="wikimodel-emptyline"></div>
885 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div>
886 </div></div>
887 {{/html}}
888
889 ====== __Query Current (**QC**)__ ======
890
891 {{html wiki="true" clean="false"}}
892 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
893 Ex: #5QC&lt;cr&gt; might return *5QC140&lt;cr&gt;<div class="wikimodel-emptyline"></div>
894 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div>
895 </div></div>
896 {{/html}}
897
898 ====== __Query Model String (**QMS**)__ ======
899
900 {{html wiki="true" clean="false"}}
901 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
902 Ex: #5QMS&lt;cr&gt; might return *5QMSLSS-HS1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
903 This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div>
904 </div></div>
905 {{/html}}
906
907 ====== __Query Firmware (**QF**)__ ======
908
909 {{html wiki="true" clean="false"}}
910 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
911 Ex: #5QF&lt;cr&gt; might return *5QF368&lt;cr&gt;<div class="wikimodel-emptyline"></div>
912 The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div>
913 The command #5QF3&lt;cr&gt; can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div>
914 </div></div>
915 {{/html}}
916
917 ====== __Query Serial Number (**QN**)__ ======
918
919 {{html wiki="true" clean="false"}}
920 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
921 Ex: #5QN&lt;cr&gt; might return *5QN12345678&lt;cr&gt;<div class="wikimodel-emptyline"></div>
922 The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div>
923 </div></div>
924 {{/html}}
925
926 == RGB LED ==
927
928 ====== __LED Color (**LED**)__ ======
929
930 {{html wiki="true" clean="false"}}
931 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
932 Ex: #5LED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
933 This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div>
934 0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div>
935 Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div>
936 Ex: #5QLED&lt;cr&gt; might return *5QLED5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
937 This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div>
938 Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div>
939 Ex: #5CLED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
940 Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div>
941 </div></div>
942 {{/html}}
943
944 ====== __Configure LED Blinking (**CLB**)__ ======
945
946 {{html wiki="true" clean="false"}}
947 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
948 This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div>
949
950 (% style="width:195px" %)
951 |(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
952 |(% style="width:134px" %)No blinking|(% style="width:58px" %)0
953 |(% style="width:134px" %)Limp|(% style="width:58px" %)1
954 |(% style="width:134px" %)Holding|(% style="width:58px" %)2
955 |(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
956 |(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
957 |(% style="width:134px" %)Free|(% style="width:58px" %)16
958 |(% style="width:134px" %)Travelling|(% style="width:58px" %)32
959 |(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div>
960
961 To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div>
962 Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div>
963 Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div>
964 Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div>
965 Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div>
966 Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div>
967 Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div>
968 RESETTING the servo is needed.<div class="wikimodel-emptyline"></div>
969 </div></div>
970 {{/html}}
971
972 == RGB LED ==
973
974 The LED can be
Copyright RobotShop 2018