Wiki source code of LSS-P - Communication Protocol

Version 22.1 by Coleman Benson on 2023/07/18 09:47

Show last authors
1 {{warningBox warningText="More information coming soon"/}}
2
3
4 (% class="wikigeneratedid" id="HTableofContents" %)
5 **Page Contents**
6
7 {{toc depth="3"/}}
8
9 = Serial Protocol =
10
11 The Lynxmotion Smart Servo (LSS) PRO serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's Smart Servo (LSS) protocol, which itself was based on the SSC-32 & SSC-32U RC servo controllers. The LSS PRO series and normal LSS share many of the same commands, but because of higher angular precision, slightly different operation and different features, the two protocols do not fully overlap.
12
13 In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol.
14
15 = Action Commands =
16
17 Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]] (described below). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
18
19 1. Start with a number sign **#** (Unicode Character: U+0023)
20 1. Servo ID number as an integer (assigning an ID described below)
21 1. Action command (one or more letters, no whitespace, capital or lowercase from the list below)
22 1. Action value in the correct units with no decimal
23 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
24
25 (((
26 Ex: #5D130000<cr>
27
28 This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (13000 in hundredths of degrees) of 130.00 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
29
30 == Modifiers ==
31
32 {{html clean="false" wiki="true" __cke_selected_macro="true"}}
33 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
34 Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div>
35
36 1. Start with a number sign **#** (Unicode Character: U+0023)
37 1. Servo ID number as an integer
38 1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
39 1. Action value in the correct units with no decimal
40 1. Modifier command (one or two letters from the list of modifiers below)
41 1. Modifier value in the correct units with no decimal
42 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)
43
44 Ex: #5D13000T1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
45
46 This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div>
47 <div class="wikimodel-emptyline"></div></div></div>
48
49 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
50 Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div>
51
52 1. Start with a number sign **#** (Unicode Character: U+0023)
53 1. Servo ID number as an integer
54 1. Query command (one to four letters, no spaces, capital or lower case)
55 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
56
57 Ex: #5QD&lt;cr&gt; Query the position in (hundredths of) degrees for servo with ID #5<div class="wikimodel-emptyline"></div>
58
59 The query will return a serial string (almost instantaneously) via the servo's Tx in the following format:
60
61 1. Start with an asterisk * (Unicode Character: U+0023)
62 1. Servo ID number as an integer
63 1. Query command (one to four letters, no spaces, capital letters)
64 1. The reported value in the units described, no decimals.
65 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
66
67 There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div>
68
69 Ex: *5QD13000&lt;cr&gt;<div class="wikimodel-emptyline"></div>
70
71 This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees).
72 <div class="wikimodel-emptyline"></div></div></div>
73
74 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
75 Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div>
76
77 These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative. This means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>
78
79 The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div>
80
81 1. Start with a number sign **#** (Unicode Character: U+0023)
82 1. Servo ID number as an integer
83 1. Configuration command (two to four letters, no spaces, capital or lower case)
84 1. Configuration value in the correct units with no decimal
85 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
86
87 Ex: #5CO-50&lt;cr&gt;<div class="wikimodel-emptyline"></div>
88
89 This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div>
90
91 **Session vs Configuration Query**<div class="wikimodel-emptyline"></div>
92
93 By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div>
94
95 Ex: #5CSR20&lt;cr&gt; immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>
96
97 After RESET, a command of #5SR4&lt;cr&gt; sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>
98
99 #5QSR&lt;cr&gt; or #5QSR0&lt;cr&gt; would return *5QSR4&lt;cr&gt; which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>
100
101 #5QSR1&lt;cr&gt; would return *5QSR20&lt;cr&gt; which represents the value in EEPROM
102 <div class="wikimodel-emptyline"></div></div></div>
103
104 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
105 The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div>
106
107 [[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div>
108
109 In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div>
110
111 #1D-300&lt;cr&gt; This causes the servo to move to -30.0 degrees (green arrow)<div class="wikimodel-emptyline"></div>
112
113 #1D2100&lt;cr&gt; This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)<div class="wikimodel-emptyline"></div>
114
115 #1D-4200&lt;cr&gt; This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div>
116
117 Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.<div class="wikimodel-emptyline"></div>
118
119 #1D4800&lt;cr&gt; This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div>
120
121 #1D3300&lt;cr&gt; would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>
122
123 If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°].
124 <div class="wikimodel-emptyline"></div></div></div>
125
126 {{/html}}
127 )))
128
129 = Command List =
130
131 **Latest firmware version currently : v0.0.780**
132
133 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]]
134 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
135 | |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Soft reset. See command for details.
136 | |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Revert to firmware default values. See command for details
137 | |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Update firmware. See command for details.
138 | |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) | | |
139 | |[[**E**nable CAN **T**erminal>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0 or 1|0: Disable  1: Enable
140 | |[[**ID** Number >>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
141 | |[[**U**SB **C**onnection State>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected
142 | |**Q**uery **F**irmware **R**elease|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | |
143
144 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]]
145 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
146 | |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) | |1/100°|
147 | |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) | |1/100°|
148 | |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) | |°/s|A.K.A. "Speed mode" or "Continuous rotation"
149 | |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM28WR29"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) | |RPM|A.K.A. "Speed mode" or "Continuous rotation"
150 | |[[**Q**uery Motion Status>>||anchor="HQueryStatus28Q29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) | |1 to 8 integer|See command description for details
151 | |[[**L**imp>>||anchor="HLimp28L29"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Removes power from stepper coils
152 | |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Stops (halts) motion profile and holds last position
153
154 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]]
155 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
156 | |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|1| |EM1: trapezoidal motion profile / EM0: no motion profile
157 | |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|5| |Affects motion only when motion profile is disabled (EM0)
158 | |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|0|1/10°|
159 | |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|1800|1/10°|
160 | |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|0|-4 to +4 integer|Suggested values are between 0 to +4
161 | |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|4|-10 to +10 integer|
162 | |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
163 | |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
164 | |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
165 | |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|No value|1/10°|Reset required after change.
166 | |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |1023|255 to 1023 integer|
167 | |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
168 | |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
169
170 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]]
171 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
172 | |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) | |1°/s|For D and MD action commands
173 | |[[**T**imed move>>||anchor="HTimedmove28T29modifier"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) | |ms|Time associated with D, MD commands
174
175 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]]
176 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
177 | |[[**Q**uery PCB **T**emperature>>||anchor="HQueryTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) | |°C|
178 | |[[**Q**uery **C**urrent>>||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) | |mA|Nominal RMS value to stepper motor driver IC.
179 | |[[**Q**uery **M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) | | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
180 | |[[**Q**uery **F**irmware Version>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) | | |
181 | |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) | | |Returns the unique serial number for the servo
182 | |**Q**uery **T**emperature **P**robe|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | | |Queries temperature probe fixed to stepper motor
183 | |**Q**uery **T**emp of **C**ontroller|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW, QTCE|(% style="text-align:center" %) | | |(((
184 QTCW: Queries the temperature status of the motor controller (pre-warning)
185
186 QTCE: Queries the temperature status of the motor controller (over-temp error)
187 )))
188 | |**Q**uery **C**urrent **S**peed |(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | | |Queries the motor controller's calculated speed
189 | |**Q**uery **I**MU Linear **X**|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2|
190 | |**Q**uery **I**MU Linear **Y**|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2|
191 | |**Q**uery **I**MU Linear **Z**|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2|
192 | |**Q**uery **I**MU Angular Accel **α** |(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha)
193 | |**Q**uery **I**MU Angular Accel **β**|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta)
194 | |**Q**uery **I**MU Angular Accel **γ**|(% style="text-align:center" %) |(% style="text-align:center" %)QIC / QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma)
195
196 |(% colspan="8" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]]
197 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
198 | |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
199 | |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB| |0 to 63 integer|Reset required after change. See command for details.
200
201 = (% style="color:inherit; font-family:inherit" %)Details(%%) =
202
203 == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
204
205 ====== __Reset__ ======
206
207 {{html wiki="true" clean="false"}}
208 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
209 Ex: #5RESET&lt;cr&gt;<div class="wikimodel-emptyline"></div>
210 This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands).
211 Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div>
212 </div></div>
213 {{/html}}
214
215 ====== __Default & confirm__ ======
216
217 {{html wiki="true" clean="false"}}
218 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
219 Ex: #5DEFAULT&lt;cr&gt;<div class="wikimodel-emptyline"></div>
220
221 This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.<div class="wikimodel-emptyline"></div>
222
223 EX: #5DEFAULT&lt;cr&gt; followed by #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
224
225 Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<div class="wikimodel-emptyline"></div>
226
227 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
228 </div></div>
229 {{/html}}
230
231 ====== __Update & confirm__ ======
232
233 {{html wiki="true" clean="false"}}
234 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
235 Ex: #5UPDATE&lt;cr&gt;<div class="wikimodel-emptyline"></div>
236
237 This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<div class="wikimodel-emptyline"></div>
238
239 EX: #5UPDATE&lt;cr&gt; followed by #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
240
241 Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div>
242
243 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
244 </div></div>
245 {{/html}}
246
247 ====== __Confirm__ ======
248
249 {{html wiki="true" clean="false"}}
250 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
251 Ex: #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
252
253 This command is used to confirm changes after a Default or Update command.<div class="wikimodel-emptyline"></div>
254
255 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
256 </div></div>
257 {{/html}}
258
259 ====== ======
260
261 ====== __Identification Number (**ID**)__ ======
262
263 {{html wiki="true" clean="false"}}
264 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
265 A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div>
266
267 Query Identification (**QID**)<div class="wikimodel-emptyline"></div>
268
269 EX: #254QID&lt;cr&gt; might return *QID5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
270
271 When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.<div class="wikimodel-emptyline"></div>
272
273 Configure ID (**CID**)<div class="wikimodel-emptyline"></div>
274
275 Ex: #4CID5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
276
277 Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div>
278 </div></div>
279 {{/html}}
280
281 ====== __Baud Rate__ ======
282
283 {{html clean="false" wiki="true"}}
284 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
285 A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div>
286
287 Query Baud Rate (**QB**)<div class="wikimodel-emptyline"></div>
288
289 Ex: #5QB&lt;cr&gt; might return *5QB115200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
290
291 Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.<div class="wikimodel-emptyline"></div>
292
293 Configure Baud Rate (**CB**)<div class="wikimodel-emptyline"></div>
294
295 **Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.<div class="wikimodel-emptyline"></div>
296
297 Ex: #5CB9600&lt;cr&gt;<div class="wikimodel-emptyline"></div>
298
299 Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div>
300 </div></div>
301 {{/html}}
302
303 ====== __Automatic Baud Rate__ ======
304
305 {{html clean="false" wiki="true"}}
306 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
307 This option allows the LSS to listen to it's serial input and select the right baudrate automatically.<div class="wikimodel-emptyline"></div>
308
309 Query Automatic Baud Rate (**QABR**)<div class="wikimodel-emptyline"></div>
310
311 Ex: #5QABR&lt;cr&gt; might return *5ABR0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
312
313 Enable Baud Rate (**ABR**)<div class="wikimodel-emptyline"></div>
314
315 Ex: #5QABR1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
316 Enable baudrate detection on first byte received after power-up.<div class="wikimodel-emptyline"></div>
317
318 Ex: #5QABR2,30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
319 Enable baudrate detection on first byte received after power-up. If no data for 30 seconds enable detection again on next byte.<div class="wikimodel-emptyline"></div>
320
321 Warning: ABR doesnt work well with LSS Config at the moment.<div class="wikimodel-emptyline"></div>
322 </div></div>
323 {{/html}}
324
325 == Motion ==
326
327 ====== __Position in Degrees (**D**)__ ======
328
329 {{html wiki="true" clean="false"}}
330 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
331 Example: #5D1456&lt;cr&gt;<div class="wikimodel-emptyline"></div>
332
333 This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. <div class="wikimodel-emptyline"></div>
334
335 Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). <div class="wikimodel-emptyline"></div>
336
337 Query Position in Degrees (**QD**)<div class="wikimodel-emptyline"></div>
338
339 Example: #5QD&lt;cr&gt; might return *5QD132&lt;cr&gt;<div class="wikimodel-emptyline"></div>
340
341 This means the servo is located at 13.2 degrees.<div class="wikimodel-emptyline"></div>
342
343 (% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %)
344 Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div>
345
346 Ex: #5QDT&lt;cr&gt; might return *5QDT6783&lt;cr&gt;<div class="wikimodel-emptyline"></div>
347
348 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
349 <div class="wikimodel-emptyline"></div></div></div>
350 {{/html}}
351
352 ====== __(Relative) Move in Degrees (**MD**)__ ======
353
354 {{html wiki="true" clean="false"}}
355 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
356 Example: #5MD123&lt;cr&gt;<div class="wikimodel-emptyline"></div>
357
358 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
359 <div class="wikimodel-emptyline"></div></div></div>
360 {{/html}}
361
362 ====== __Wheel Mode in Degrees (**WD**)__ ======
363
364 {{html wiki="true" clean="false"}}
365 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
366 Ex: #5WD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
367
368 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
369
370 Query Wheel Mode in Degrees (**QWD**)<div class="wikimodel-emptyline"></div>
371
372 Ex: #5QWD&lt;cr&gt; might return *5QWD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
373
374 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
375 <div class="wikimodel-emptyline"></div></div></div>
376 {{/html}}
377
378 ====== __Wheel Mode in RPM (**WR**)__ ======
379
380 {{html wiki="true" clean="false"}}
381 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
382 Ex: #5WR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
383
384 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
385
386 Query Wheel Mode in RPM (**QWR**)<div class="wikimodel-emptyline"></div>
387
388 Ex: #5QWR&lt;cr&gt; might return *5QWR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
389
390 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
391 <div class="wikimodel-emptyline"></div></div></div>
392 {{/html}}
393
394 ====== __Position in PWM (**P**)__ ======
395
396 {{html wiki="true" clean="false"}}
397 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
398 Example: #5P2334&lt;cr&gt;<div class="wikimodel-emptyline"></div>
399
400 The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.<div class="wikimodel-emptyline"></div>
401
402 Query Position in Pulse (**QP**)<div class="wikimodel-emptyline"></div>
403
404 Example: #5QP&lt;cr&gt; might return *5QP2334<div class="wikimodel-emptyline"></div>
405
406 This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle.
407 Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
408 <div class="wikimodel-emptyline"></div></div></div>
409 {{/html}}
410
411 ====== __(Relative) Move in PWM (**M**)__ ======
412
413 {{html wiki="true" clean="false"}}
414 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
415 Example: #5M1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
416
417 The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
418 <div class="wikimodel-emptyline"></div></div></div>
419 {{/html}}
420
421 ====== __Raw Duty-cycle Move (**RDM**)__ ======
422
423 {{html wiki="true" clean="false"}}
424 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
425 Example: #5RDM512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
426
427 The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.<div class="wikimodel-emptyline"></div>
428
429 The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).<div class="wikimodel-emptyline"></div>
430
431 Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div>
432
433 Example: #5QMD&lt;cr&gt; might return *5QMD512<div class="wikimodel-emptyline"></div>
434
435 This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle.
436 <div class="wikimodel-emptyline"></div></div></div>
437 {{/html}}
438
439 ====== __Query Status (**Q**)__ ======
440
441 {{html wiki="true" clean="false"}}
442 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
443 The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div>
444
445 Ex: #5Q&lt;cr&gt; might return *5Q6&lt;cr&gt;, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div>
446 </div></div>
447 {{/html}}
448
449 |(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description**
450 | |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
451 | |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
452 | |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command
453 | |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
454 | |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
455 | |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
456 | |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding)
457 | |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
458 | |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
459 | |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
460 | |ex: *5Q10<cr>|10: Safe Mode|(((
461 A safety limit has been exceeded (temperature, peak current or extended high current draw).
462
463 Send a Q1 command to know which limit has been reached (described below).
464 )))
465
466 {{html wiki="true" clean="false"}}
467 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
468 If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div>
469 </div></div>
470 {{/html}}
471
472 |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
473 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
474 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
475 | |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
476 | |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
477
478 ====== __Limp (**L**)__ ======
479
480 {{html wiki="true" clean="false"}}
481 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
482 Example: #5L&lt;cr&gt;<div class="wikimodel-emptyline"></div>
483
484 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L&lt;cr&gt;.
485 <div class="wikimodel-emptyline"></div></div></div>
486 {{/html}}
487
488 ====== __Halt & Hold (**H**)__ ======
489
490 {{html wiki="true" clean="false"}}
491 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
492 Example: #5H&lt;cr&gt;<div class="wikimodel-emptyline"></div>
493
494 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
495 <div class="wikimodel-emptyline"></div></div></div>
496 {{/html}}
497
498 == Motion Setup ==
499
500 ====== __Enable Motion Profile (**EM**)__ ======
501
502 {{html clean="false" wiki="true"}}
503 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
504 EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div>
505
506 Ex: #5EM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
507
508 This command enables a trapezoidal motion profile for servo #5 <div class="wikimodel-emptyline"></div>
509
510 Ex: #5EM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
511
512 This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command).
513
514 <div class="wikimodel-emptyline"></div>
515
516 Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div>
517
518 Ex: #5QEM&lt;cr&gt; might return *5QEM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
519
520 This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div>
521
522 Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div>
523
524 Ex: #5CEM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
525
526 This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
527 <div class="wikimodel-emptyline"></div></div></div>
528 {{/html}}
529
530 ====== __Filter Position Count (**FPC**)__ ======
531
532 {{html clean="false" wiki="true"}}
533 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
534 The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default.
535 <div class="wikimodel-emptyline"></div>
536 Ex: #5FPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
537 This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div>
538
539 Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div>
540
541 Ex: #5QFPC&lt;cr&gt; might return *5QFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
542
543 This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div>
544
545 Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div>
546
547 Ex: #5CFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
548
549 This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
550 <div class="wikimodel-emptyline"></div></div></div>
551 {{/html}}
552
553 ====== __Origin Offset (**O**)__ ======
554
555 {{html wiki="true" clean="false"}}
556 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
557 Example: #5O2400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
558
559 This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div>
560
561 [[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
562
563 In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div>
564
565 [[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div>
566
567 Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div>
568
569 Example: #5QO&lt;cr&gt; might return *5QO-13<div class="wikimodel-emptyline"></div>
570
571 This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div>
572
573 Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div>
574
575 Example: #5CO-24&lt;cr&gt;<div class="wikimodel-emptyline"></div>
576
577 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
578 <div class="wikimodel-emptyline"></div></div></div>
579 {{/html}}
580
581 ====== __Angular Range (**AR**)__ ======
582
583 {{html wiki="true" clean="false"}}
584 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
585 Example: #5AR1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
586
587 This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div>
588
589 [[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
590
591 Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div>
592
593 [[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div>
594
595 Finally, the angular range action command (ex. #5AR1800&lt;cr&gt;) and origin offset action command (ex. #5O-1200&lt;cr&gt;) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div>
596
597 [[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div>
598
599 Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div>
600
601 Example: #5QAR&lt;cr&gt; might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div>
602
603 Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div>
604
605 This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
606 <div class="wikimodel-emptyline"></div></div></div>
607 {{/html}}
608
609 ====== __Angular Stiffness (**AS**)__ ======
610
611 {{html wiki="true" clean="false"}}
612 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
613 The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div>
614
615 A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div>
616
617 * The more torque will be applied to try to keep the desired position against external input / changes
618 * The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div>
619
620 A lower value on the other hand:<div class="wikimodel-emptyline"></div>
621
622 * Causes a slower acceleration to the travel speed, and a slower deceleration
623 * Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div>
624
625 The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
626
627 Ex: #5AS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
628
629 This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div>
630
631 Ex: #5QAS&lt;cr&gt;<div class="wikimodel-emptyline"></div>
632
633 Queries the value being used.<div class="wikimodel-emptyline"></div>
634
635 Ex: #5CAS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
636
637 Writes the desired angular stiffness value to EEPROM.
638 <div class="wikimodel-emptyline"></div></div></div>
639 {{/html}}
640
641 ====== __Angular Holding Stiffness (**AH**)__ ======
642
643 {{html wiki="true" clean="false"}}
644 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
645 The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
646
647 Ex: #5AH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
648
649 This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div>
650
651 Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div>
652
653 Ex: #5QAH&lt;cr&gt; might return *5QAH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
654
655 This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div>
656
657 Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div>
658
659 Ex: #5CAH2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
660
661 This writes the angular holding stiffness of servo #5 to 2 to EEPROM.
662 <div class="wikimodel-emptyline"></div></div></div>
663 {{/html}}
664
665 ====== __Angular Acceleration (**AA**)__ ======
666
667 {{html wiki="true" clean="false"}}
668 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
669 The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
670
671 Ex: #5AA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
672
673 This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
674
675 Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div>
676
677 Ex: #5QAA&lt;cr&gt; might return *5QAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
678
679 This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
680
681 Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div>
682
683 Ex: #5CAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
684
685 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
686 <div class="wikimodel-emptyline"></div></div></div>
687 {{/html}}
688
689 ====== __Angular Deceleration (**AD**)__ ======
690
691 {{html wiki="true" clean="false"}}
692 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
693 The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
694
695 Ex: #5AD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
696
697 This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
698
699 Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div>
700
701 Ex: #5QAD&lt;cr&gt; might return *5QAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
702
703 This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
704
705 Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div>
706
707 Ex: #5CAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
708
709 This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
710 <div class="wikimodel-emptyline"></div></div></div>
711 {{/html}}
712
713 ====== __Gyre Direction (**G**)__ ======
714
715 {{html wiki="true" clean="false"}}
716 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
717 "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div>
718
719 Ex: #5G-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
720
721 This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div>
722
723 Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div>
724
725 Ex: #5QG&lt;cr&gt; might return *5QG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
726
727 The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div>
728
729 Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div>
730
731 Ex: #5CG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
732
733 This changes the gyre direction as described above and also writes to EEPROM.
734 <div class="wikimodel-emptyline"></div></div></div>
735 {{/html}}
736
737 ====== __First Position__ ======
738
739 {{html wiki="true" clean="false"}}
740 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
741 In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div>
742
743 Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div>
744
745 Ex: #5QFD&lt;cr&gt; might return *5QFD900&lt;cr&gt; <div class="wikimodel-emptyline"></div>
746
747 The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div>
748
749 Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div>
750
751 Ex: #5CFD900&lt;cr&gt;<div class="wikimodel-emptyline"></div>
752
753 This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD&lt;cr&gt;) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD&lt;cr&gt;
754 <div class="wikimodel-emptyline"></div></div></div>
755 {{/html}}
756
757 ====== __Maximum Motor Duty (**MMD**)__ ======
758
759 {{html wiki="true" clean="false"}}
760 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
761 This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div>
762
763 Ex: #5MMD512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
764
765 This will set the duty-cycle to 512 for servo with ID 5 for that session.<div class="wikimodel-emptyline"></div>
766
767 Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div>
768
769 Ex: #5QMMDD&lt;cr&gt; might return *5QMMD512&lt;cr&gt; <div class="wikimodel-emptyline"></div>
770
771 This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023.
772 <div class="wikimodel-emptyline"></div></div></div>
773 {{/html}}
774
775 ====== __Maximum Speed in Degrees (**SD**)__ ======
776
777 {{html wiki="true" clean="false"}}
778 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
779 Ex: #5SD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
780 This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
781
782 Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div>
783
784 Ex: #5QSD&lt;cr&gt; might return *5QSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
785
786 By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1&lt;cr&gt; is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
787
788 |**Command sent**|**Returned value (1/10 °)**
789 |ex: #5QSD&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
790 |ex: #5QSD1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
791 |ex: #5QSD2&lt;cr&gt;|Instantaneous speed (same as QWD)
792 |ex: #5QSD3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
793
794 Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div>
795
796 Ex: #5CSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
797 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
798 </div></div>
799 {{/html}}
800
801 ====== __Maximum Speed in RPM (**SR**)__ ======
802
803 {{html wiki="true" clean="false"}}
804 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
805 Ex: #5SR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
806 This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
807
808 Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div>
809
810 Ex: #5QSR&lt;cr&gt; might return *5QSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
811
812 By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1&lt;cr&gt; is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
813
814 |**Command sent**|**Returned value (1/10 °)**
815 |ex: #5QSR&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
816 |ex: #5QSR1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
817 |ex: #5QSR2&lt;cr&gt;|Instantaneous speed (same as QWD)
818 |ex: #5QSR3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
819
820 Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div>
821
822 Ex: #5CSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
823 Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
824 </div></div>
825 {{/html}}
826
827 == Modifiers ==
828
829 ====== __Speed (**S**, **SD**) modifier__ ======
830
831 {{html clean="false" wiki="true"}}
832 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
833 Example: #5P1500S750&lt;cr&gt;<div class="wikimodel-emptyline"></div>
834 Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
835 Example: #5D0SD180&lt;cr&gt;<div class="wikimodel-emptyline"></div>
836 Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.<div class="wikimodel-emptyline"></div>
837 Query Speed (**QS**)<div class="wikimodel-emptyline"></div>
838 Example: #5QS&lt;cr&gt; might return *5QS300&lt;cr&gt;<div class="wikimodel-emptyline"></div>
839 This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div>
840 </div></div>
841 {{/html}}
842
843 ====== __Timed move (**T**) modifier__ ======
844
845 {{html wiki="true" clean="false"}}
846 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
847 Example: #5P1500T2500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
848
849 Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
850 **Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div>
851 </div></div>
852 {{/html}}
853
854 ====== __Current Halt & Hold (**CH**) modifier__ ======
855
856 {{html wiki="true" clean="false"}}
857 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
858 Example: #5D1423CH400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
859
860 This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div>
861 This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
862 </div></div>
863 {{/html}}
864
865 ====== __Current Limp (**CL**) modifier__ ======
866
867 {{html wiki="true" clean="false"}}
868 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
869 Example: #5D1423CL400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
870
871 This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div>
872 This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
873 </div></div>
874 {{/html}}
875
876 == Telemetry ==
877
878 ====== __Query Voltage (**QV**)__ ======
879
880 {{html wiki="true" clean="false"}}
881 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
882 Ex: #5QV&lt;cr&gt; might return *5QV11200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
883 The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div>
884 </div></div>
885 {{/html}}
886
887 ====== __Query Temperature (**QT**)__ ======
888
889 {{html wiki="true" clean="false"}}
890 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
891 Ex: #5QT&lt;cr&gt; might return *5QT564&lt;cr&gt;<div class="wikimodel-emptyline"></div>
892 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div>
893 </div></div>
894 {{/html}}
895
896 ====== __Query Current (**QC**)__ ======
897
898 {{html wiki="true" clean="false"}}
899 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
900 Ex: #5QC&lt;cr&gt; might return *5QC140&lt;cr&gt;<div class="wikimodel-emptyline"></div>
901 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div>
902 </div></div>
903 {{/html}}
904
905 ====== __Query Model String (**QMS**)__ ======
906
907 {{html wiki="true" clean="false"}}
908 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
909 Ex: #5QMS&lt;cr&gt; might return *5QMSLSS-HS1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
910 This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div>
911 </div></div>
912 {{/html}}
913
914 ====== __Query Firmware (**QF**)__ ======
915
916 {{html wiki="true" clean="false"}}
917 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
918 Ex: #5QF&lt;cr&gt; might return *5QF368&lt;cr&gt;<div class="wikimodel-emptyline"></div>
919 The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div>
920 The command #5QF3&lt;cr&gt; can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div>
921 </div></div>
922 {{/html}}
923
924 ====== __Query Serial Number (**QN**)__ ======
925
926 {{html wiki="true" clean="false"}}
927 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
928 Ex: #5QN&lt;cr&gt; might return *5QN12345678&lt;cr&gt;<div class="wikimodel-emptyline"></div>
929 The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div>
930 </div></div>
931 {{/html}}
932
933 == RGB LED ==
934
935 ====== __LED Color (**LED**)__ ======
936
937 {{html wiki="true" clean="false"}}
938 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
939 Ex: #5LED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
940 This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div>
941 0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div>
942 Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div>
943 Ex: #5QLED&lt;cr&gt; might return *5QLED5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
944 This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div>
945 Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div>
946 Ex: #5CLED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
947 Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div>
948 </div></div>
949 {{/html}}
950
951 ====== __Configure LED Blinking (**CLB**)__ ======
952
953 {{html wiki="true" clean="false"}}
954 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
955 This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div>
956
957 (% style="width:195px" %)
958 |(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
959 |(% style="width:134px" %)No blinking|(% style="width:58px" %)0
960 |(% style="width:134px" %)Limp|(% style="width:58px" %)1
961 |(% style="width:134px" %)Holding|(% style="width:58px" %)2
962 |(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
963 |(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
964 |(% style="width:134px" %)Free|(% style="width:58px" %)16
965 |(% style="width:134px" %)Travelling|(% style="width:58px" %)32
966 |(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div>
967
968 To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div>
969 Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div>
970 Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div>
971 Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div>
972 Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div>
973 Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div>
974 Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div>
975 RESETTING the servo is needed.<div class="wikimodel-emptyline"></div>
976 </div></div>
977 {{/html}}
978
979 == RGB LED ==
980
981 The LED can be
Copyright RobotShop 2018