Wiki source code of LSS-P - Communication Protocol

Version 23.1 by Coleman Benson on 2023/07/18 09:50

Show last authors
1 {{warningBox warningText="More information coming soon"/}}
2
3
4 (% class="wikigeneratedid" id="HTableofContents" %)
5 **Page Contents**
6
7 {{toc depth="3"/}}
8
9 = Serial Protocol =
10
11 The Lynxmotion Smart Servo (LSS) PRO serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's Smart Servo (LSS) protocol, which itself was based on the SSC-32 & SSC-32U RC servo controllers. The LSS PRO series and normal LSS share many of the same commands, but because of higher angular precision, slightly different operation and different features, the two protocols do not fully overlap.
12
13 In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol.
14
15 = Action Commands =
16
17 Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]] (described below). Action commands are sent serially to the servo and must be sent in the following format:
18
19 1. Start with a number sign **#** (Unicode Character: U+0023)
20 1. Servo ID number as an integer (assigning an ID described below)
21 1. Action command (one or more letters, no whitespace, capital or lowercase from the list below)
22 1. Action value in the correct units with no decimal
23 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
24
25 (((
26 Ex: #5D130000<cr>
27
28 This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (13000 in hundredths of degrees) of 130.00 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
29
30 == Modifiers ==
31
32 {{html clean="false" wiki="true"}}
33 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
34 Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div>
35
36 1. Start with a number sign **#** (Unicode Character: U+0023)
37 1. Servo ID number as an integer
38 1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
39 1. Action value in the correct units with no decimal
40 1. Modifier command (one or two letters from the list of modifiers below)
41 1. Modifier value in the correct units with no decimal
42 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)
43
44 Ex: #5D13000T1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
45
46 This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div>
47 <div class="wikimodel-emptyline"></div></div></div>
48
49 <h2>Queries</h2>
50 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
51 Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div>
52
53 1. Start with a number sign **#** (Unicode Character: U+0023)
54 1. Servo ID number as an integer
55 1. Query command (one to four letters, no spaces, capital or lower case)
56 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
57
58 Ex: #5QD&lt;cr&gt; Query the position in (hundredths of) degrees for servo with ID #5<div class="wikimodel-emptyline"></div>
59
60 The query will return a serial string (almost instantaneously) via the servo's Tx in the following format:
61
62 1. Start with an asterisk * (Unicode Character: U+0023)
63 1. Servo ID number as an integer
64 1. Query command (one to four letters, no spaces, capital letters)
65 1. The reported value in the units described, no decimals.
66 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
67
68 There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div>
69
70 Ex: *5QD13000&lt;cr&gt;<div class="wikimodel-emptyline"></div>
71
72 This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees).
73 <div class="wikimodel-emptyline"></div></div></div>
74
75 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
76 Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div>
77
78 These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative. This means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>
79
80 The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div>
81
82 1. Start with a number sign **#** (Unicode Character: U+0023)
83 1. Servo ID number as an integer
84 1. Configuration command (two to four letters, no spaces, capital or lower case)
85 1. Configuration value in the correct units with no decimal
86 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
87
88 Ex: #5CO-50&lt;cr&gt;<div class="wikimodel-emptyline"></div>
89
90 This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div>
91
92 **Session vs Configuration Query**<div class="wikimodel-emptyline"></div>
93
94 By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div>
95
96 Ex: #5CSR20&lt;cr&gt; immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>
97
98 After RESET, a command of #5SR4&lt;cr&gt; sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>
99
100 #5QSR&lt;cr&gt; or #5QSR0&lt;cr&gt; would return *5QSR4&lt;cr&gt; which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>
101
102 #5QSR1&lt;cr&gt; would return *5QSR20&lt;cr&gt; which represents the value in EEPROM
103 <div class="wikimodel-emptyline"></div></div></div>
104
105 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
106 The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div>
107
108 [[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div>
109
110 In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div>
111
112 #1D-300&lt;cr&gt; This causes the servo to move to -30.0 degrees (green arrow)<div class="wikimodel-emptyline"></div>
113
114 #1D2100&lt;cr&gt; This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)<div class="wikimodel-emptyline"></div>
115
116 #1D-4200&lt;cr&gt; This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div>
117
118 Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.<div class="wikimodel-emptyline"></div>
119
120 #1D4800&lt;cr&gt; This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div>
121
122 #1D3300&lt;cr&gt; would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>
123
124 If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°].
125 <div class="wikimodel-emptyline"></div></div></div>
126
127 {{/html}}
128 )))
129
130 = Command List =
131
132 **Latest firmware version currently : v0.0.780**
133
134 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]]
135 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
136 | |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Soft reset. See command for details.
137 | |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Revert to firmware default values. See command for details
138 | |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Update firmware. See command for details.
139 | |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) | | |
140 | |[[**E**nable CAN **T**erminal>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0 or 1|0: Disable  1: Enable
141 | |[[**ID** Number >>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
142 | |[[**U**SB **C**onnection State>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected
143 | |**Q**uery **F**irmware **R**elease|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | |
144
145 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]]
146 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
147 | |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) | |1/100°|
148 | |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) | |1/100°|
149 | |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) | |°/s|A.K.A. "Speed mode" or "Continuous rotation"
150 | |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM28WR29"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) | |RPM|A.K.A. "Speed mode" or "Continuous rotation"
151 | |[[**Q**uery Motion Status>>||anchor="HQueryStatus28Q29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) | |1 to 8 integer|See command description for details
152 | |[[**L**imp>>||anchor="HLimp28L29"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Removes power from stepper coils
153 | |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Stops (halts) motion profile and holds last position
154
155 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]]
156 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
157 | |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|1| |EM1: trapezoidal motion profile / EM0: no motion profile
158 | |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|5| |Affects motion only when motion profile is disabled (EM0)
159 | |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|0|1/10°|
160 | |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|1800|1/10°|
161 | |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|0|-4 to +4 integer|Suggested values are between 0 to +4
162 | |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|4|-10 to +10 integer|
163 | |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
164 | |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
165 | |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
166 | |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|No value|1/10°|Reset required after change.
167 | |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |1023|255 to 1023 integer|
168 | |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
169 | |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
170
171 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]]
172 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
173 | |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) | |1°/s|For D and MD action commands
174 | |[[**T**imed move>>||anchor="HTimedmove28T29modifier"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) | |ms|Time associated with D, MD commands
175
176 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]]
177 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
178 | |[[**Q**uery PCB **T**emperature>>||anchor="HQueryTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) | |°C|
179 | |[[**Q**uery **C**urrent>>||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) | |mA|Nominal RMS value to stepper motor driver IC.
180 | |[[**Q**uery **M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) | | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
181 | |[[**Q**uery **F**irmware Version>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) | | |
182 | |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) | | |Returns the unique serial number for the servo
183 | |**Q**uery **T**emperature **P**robe|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | | |Queries temperature probe fixed to stepper motor
184 | |**Q**uery **T**emp of **C**ontroller|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW, QTCE|(% style="text-align:center" %) | | |(((
185 QTCW: Queries the temperature status of the motor controller (pre-warning)
186
187 QTCE: Queries the temperature status of the motor controller (over-temp error)
188 )))
189 | |**Q**uery **C**urrent **S**peed |(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | | |Queries the motor controller's calculated speed
190 | |**Q**uery **I**MU Linear **X**|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2|
191 | |**Q**uery **I**MU Linear **Y**|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2|
192 | |**Q**uery **I**MU Linear **Z**|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2|
193 | |**Q**uery **I**MU Angular Accel **α** |(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha)
194 | |**Q**uery **I**MU Angular Accel **β**|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta)
195 | |**Q**uery **I**MU Angular Accel **γ**|(% style="text-align:center" %) |(% style="text-align:center" %)QIC / QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma)
196
197 |(% colspan="8" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]]
198 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
199 | |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
200 | |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB| |0 to 63 integer|Reset required after change. See command for details.
201
202 = (% style="color:inherit; font-family:inherit" %)Details(%%) =
203
204 == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
205
206 ====== __Reset__ ======
207
208 {{html wiki="true" clean="false"}}
209 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
210 Ex: #5RESET&lt;cr&gt;<div class="wikimodel-emptyline"></div>
211 This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands).
212 Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div>
213 </div></div>
214 {{/html}}
215
216 ====== __Default & confirm__ ======
217
218 {{html wiki="true" clean="false"}}
219 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
220 Ex: #5DEFAULT&lt;cr&gt;<div class="wikimodel-emptyline"></div>
221
222 This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.<div class="wikimodel-emptyline"></div>
223
224 EX: #5DEFAULT&lt;cr&gt; followed by #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
225
226 Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<div class="wikimodel-emptyline"></div>
227
228 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
229 </div></div>
230 {{/html}}
231
232 ====== __Update & confirm__ ======
233
234 {{html wiki="true" clean="false"}}
235 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
236 Ex: #5UPDATE&lt;cr&gt;<div class="wikimodel-emptyline"></div>
237
238 This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<div class="wikimodel-emptyline"></div>
239
240 EX: #5UPDATE&lt;cr&gt; followed by #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
241
242 Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div>
243
244 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
245 </div></div>
246 {{/html}}
247
248 ====== __Confirm__ ======
249
250 {{html wiki="true" clean="false"}}
251 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
252 Ex: #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
253
254 This command is used to confirm changes after a Default or Update command.<div class="wikimodel-emptyline"></div>
255
256 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
257 </div></div>
258 {{/html}}
259
260 ====== ======
261
262 ====== __Identification Number (**ID**)__ ======
263
264 {{html wiki="true" clean="false"}}
265 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
266 A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div>
267
268 Query Identification (**QID**)<div class="wikimodel-emptyline"></div>
269
270 EX: #254QID&lt;cr&gt; might return *QID5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
271
272 When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.<div class="wikimodel-emptyline"></div>
273
274 Configure ID (**CID**)<div class="wikimodel-emptyline"></div>
275
276 Ex: #4CID5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
277
278 Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div>
279 </div></div>
280 {{/html}}
281
282 ====== __Baud Rate__ ======
283
284 {{html clean="false" wiki="true"}}
285 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
286 A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div>
287
288 Query Baud Rate (**QB**)<div class="wikimodel-emptyline"></div>
289
290 Ex: #5QB&lt;cr&gt; might return *5QB115200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
291
292 Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.<div class="wikimodel-emptyline"></div>
293
294 Configure Baud Rate (**CB**)<div class="wikimodel-emptyline"></div>
295
296 **Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.<div class="wikimodel-emptyline"></div>
297
298 Ex: #5CB9600&lt;cr&gt;<div class="wikimodel-emptyline"></div>
299
300 Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div>
301 </div></div>
302 {{/html}}
303
304 ====== __Automatic Baud Rate__ ======
305
306 {{html clean="false" wiki="true"}}
307 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
308 This option allows the LSS to listen to it's serial input and select the right baudrate automatically.<div class="wikimodel-emptyline"></div>
309
310 Query Automatic Baud Rate (**QABR**)<div class="wikimodel-emptyline"></div>
311
312 Ex: #5QABR&lt;cr&gt; might return *5ABR0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
313
314 Enable Baud Rate (**ABR**)<div class="wikimodel-emptyline"></div>
315
316 Ex: #5QABR1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
317 Enable baudrate detection on first byte received after power-up.<div class="wikimodel-emptyline"></div>
318
319 Ex: #5QABR2,30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
320 Enable baudrate detection on first byte received after power-up. If no data for 30 seconds enable detection again on next byte.<div class="wikimodel-emptyline"></div>
321
322 Warning: ABR doesnt work well with LSS Config at the moment.<div class="wikimodel-emptyline"></div>
323 </div></div>
324 {{/html}}
325
326 == Motion ==
327
328 ====== __Position in Degrees (**D**)__ ======
329
330 {{html wiki="true" clean="false"}}
331 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
332 Example: #5D1456&lt;cr&gt;<div class="wikimodel-emptyline"></div>
333
334 This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. <div class="wikimodel-emptyline"></div>
335
336 Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). <div class="wikimodel-emptyline"></div>
337
338 Query Position in Degrees (**QD**)<div class="wikimodel-emptyline"></div>
339
340 Example: #5QD&lt;cr&gt; might return *5QD132&lt;cr&gt;<div class="wikimodel-emptyline"></div>
341
342 This means the servo is located at 13.2 degrees.<div class="wikimodel-emptyline"></div>
343
344 (% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %)
345 Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div>
346
347 Ex: #5QDT&lt;cr&gt; might return *5QDT6783&lt;cr&gt;<div class="wikimodel-emptyline"></div>
348
349 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
350 <div class="wikimodel-emptyline"></div></div></div>
351 {{/html}}
352
353 ====== __(Relative) Move in Degrees (**MD**)__ ======
354
355 {{html wiki="true" clean="false"}}
356 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
357 Example: #5MD123&lt;cr&gt;<div class="wikimodel-emptyline"></div>
358
359 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
360 <div class="wikimodel-emptyline"></div></div></div>
361 {{/html}}
362
363 ====== __Wheel Mode in Degrees (**WD**)__ ======
364
365 {{html wiki="true" clean="false"}}
366 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
367 Ex: #5WD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
368
369 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
370
371 Query Wheel Mode in Degrees (**QWD**)<div class="wikimodel-emptyline"></div>
372
373 Ex: #5QWD&lt;cr&gt; might return *5QWD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
374
375 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
376 <div class="wikimodel-emptyline"></div></div></div>
377 {{/html}}
378
379 ====== __Wheel Mode in RPM (**WR**)__ ======
380
381 {{html wiki="true" clean="false"}}
382 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
383 Ex: #5WR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
384
385 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
386
387 Query Wheel Mode in RPM (**QWR**)<div class="wikimodel-emptyline"></div>
388
389 Ex: #5QWR&lt;cr&gt; might return *5QWR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
390
391 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
392 <div class="wikimodel-emptyline"></div></div></div>
393 {{/html}}
394
395 ====== __Position in PWM (**P**)__ ======
396
397 {{html wiki="true" clean="false"}}
398 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
399 Example: #5P2334&lt;cr&gt;<div class="wikimodel-emptyline"></div>
400
401 The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.<div class="wikimodel-emptyline"></div>
402
403 Query Position in Pulse (**QP**)<div class="wikimodel-emptyline"></div>
404
405 Example: #5QP&lt;cr&gt; might return *5QP2334<div class="wikimodel-emptyline"></div>
406
407 This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle.
408 Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
409 <div class="wikimodel-emptyline"></div></div></div>
410 {{/html}}
411
412 ====== __(Relative) Move in PWM (**M**)__ ======
413
414 {{html wiki="true" clean="false"}}
415 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
416 Example: #5M1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
417
418 The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
419 <div class="wikimodel-emptyline"></div></div></div>
420 {{/html}}
421
422 ====== __Raw Duty-cycle Move (**RDM**)__ ======
423
424 {{html wiki="true" clean="false"}}
425 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
426 Example: #5RDM512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
427
428 The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.<div class="wikimodel-emptyline"></div>
429
430 The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).<div class="wikimodel-emptyline"></div>
431
432 Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div>
433
434 Example: #5QMD&lt;cr&gt; might return *5QMD512<div class="wikimodel-emptyline"></div>
435
436 This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle.
437 <div class="wikimodel-emptyline"></div></div></div>
438 {{/html}}
439
440 ====== __Query Status (**Q**)__ ======
441
442 {{html wiki="true" clean="false"}}
443 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
444 The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div>
445
446 Ex: #5Q&lt;cr&gt; might return *5Q6&lt;cr&gt;, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div>
447 </div></div>
448 {{/html}}
449
450 |(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description**
451 | |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
452 | |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
453 | |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command
454 | |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
455 | |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
456 | |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
457 | |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding)
458 | |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
459 | |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
460 | |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
461 | |ex: *5Q10<cr>|10: Safe Mode|(((
462 A safety limit has been exceeded (temperature, peak current or extended high current draw).
463
464 Send a Q1 command to know which limit has been reached (described below).
465 )))
466
467 {{html wiki="true" clean="false"}}
468 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
469 If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div>
470 </div></div>
471 {{/html}}
472
473 |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
474 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
475 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
476 | |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
477 | |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
478
479 ====== __Limp (**L**)__ ======
480
481 {{html wiki="true" clean="false"}}
482 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
483 Example: #5L&lt;cr&gt;<div class="wikimodel-emptyline"></div>
484
485 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L&lt;cr&gt;.
486 <div class="wikimodel-emptyline"></div></div></div>
487 {{/html}}
488
489 ====== __Halt & Hold (**H**)__ ======
490
491 {{html wiki="true" clean="false"}}
492 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
493 Example: #5H&lt;cr&gt;<div class="wikimodel-emptyline"></div>
494
495 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
496 <div class="wikimodel-emptyline"></div></div></div>
497 {{/html}}
498
499 == Motion Setup ==
500
501 ====== __Enable Motion Profile (**EM**)__ ======
502
503 {{html clean="false" wiki="true"}}
504 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
505 EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div>
506
507 Ex: #5EM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
508
509 This command enables a trapezoidal motion profile for servo #5 <div class="wikimodel-emptyline"></div>
510
511 Ex: #5EM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
512
513 This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command).
514
515 <div class="wikimodel-emptyline"></div>
516
517 Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div>
518
519 Ex: #5QEM&lt;cr&gt; might return *5QEM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
520
521 This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div>
522
523 Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div>
524
525 Ex: #5CEM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
526
527 This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
528 <div class="wikimodel-emptyline"></div></div></div>
529 {{/html}}
530
531 ====== __Filter Position Count (**FPC**)__ ======
532
533 {{html clean="false" wiki="true"}}
534 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
535 The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default.
536 <div class="wikimodel-emptyline"></div>
537 Ex: #5FPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
538 This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div>
539
540 Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div>
541
542 Ex: #5QFPC&lt;cr&gt; might return *5QFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
543
544 This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div>
545
546 Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div>
547
548 Ex: #5CFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
549
550 This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
551 <div class="wikimodel-emptyline"></div></div></div>
552 {{/html}}
553
554 ====== __Origin Offset (**O**)__ ======
555
556 {{html wiki="true" clean="false"}}
557 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
558 Example: #5O2400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
559
560 This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div>
561
562 [[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
563
564 In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div>
565
566 [[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div>
567
568 Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div>
569
570 Example: #5QO&lt;cr&gt; might return *5QO-13<div class="wikimodel-emptyline"></div>
571
572 This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div>
573
574 Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div>
575
576 Example: #5CO-24&lt;cr&gt;<div class="wikimodel-emptyline"></div>
577
578 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
579 <div class="wikimodel-emptyline"></div></div></div>
580 {{/html}}
581
582 ====== __Angular Range (**AR**)__ ======
583
584 {{html wiki="true" clean="false"}}
585 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
586 Example: #5AR1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
587
588 This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div>
589
590 [[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
591
592 Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div>
593
594 [[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div>
595
596 Finally, the angular range action command (ex. #5AR1800&lt;cr&gt;) and origin offset action command (ex. #5O-1200&lt;cr&gt;) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div>
597
598 [[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div>
599
600 Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div>
601
602 Example: #5QAR&lt;cr&gt; might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div>
603
604 Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div>
605
606 This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
607 <div class="wikimodel-emptyline"></div></div></div>
608 {{/html}}
609
610 ====== __Angular Stiffness (**AS**)__ ======
611
612 {{html wiki="true" clean="false"}}
613 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
614 The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div>
615
616 A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div>
617
618 * The more torque will be applied to try to keep the desired position against external input / changes
619 * The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div>
620
621 A lower value on the other hand:<div class="wikimodel-emptyline"></div>
622
623 * Causes a slower acceleration to the travel speed, and a slower deceleration
624 * Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div>
625
626 The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
627
628 Ex: #5AS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
629
630 This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div>
631
632 Ex: #5QAS&lt;cr&gt;<div class="wikimodel-emptyline"></div>
633
634 Queries the value being used.<div class="wikimodel-emptyline"></div>
635
636 Ex: #5CAS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
637
638 Writes the desired angular stiffness value to EEPROM.
639 <div class="wikimodel-emptyline"></div></div></div>
640 {{/html}}
641
642 ====== __Angular Holding Stiffness (**AH**)__ ======
643
644 {{html wiki="true" clean="false"}}
645 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
646 The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
647
648 Ex: #5AH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
649
650 This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div>
651
652 Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div>
653
654 Ex: #5QAH&lt;cr&gt; might return *5QAH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
655
656 This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div>
657
658 Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div>
659
660 Ex: #5CAH2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
661
662 This writes the angular holding stiffness of servo #5 to 2 to EEPROM.
663 <div class="wikimodel-emptyline"></div></div></div>
664 {{/html}}
665
666 ====== __Angular Acceleration (**AA**)__ ======
667
668 {{html wiki="true" clean="false"}}
669 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
670 The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
671
672 Ex: #5AA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
673
674 This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
675
676 Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div>
677
678 Ex: #5QAA&lt;cr&gt; might return *5QAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
679
680 This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
681
682 Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div>
683
684 Ex: #5CAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
685
686 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
687 <div class="wikimodel-emptyline"></div></div></div>
688 {{/html}}
689
690 ====== __Angular Deceleration (**AD**)__ ======
691
692 {{html wiki="true" clean="false"}}
693 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
694 The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
695
696 Ex: #5AD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
697
698 This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
699
700 Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div>
701
702 Ex: #5QAD&lt;cr&gt; might return *5QAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
703
704 This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
705
706 Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div>
707
708 Ex: #5CAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
709
710 This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
711 <div class="wikimodel-emptyline"></div></div></div>
712 {{/html}}
713
714 ====== __Gyre Direction (**G**)__ ======
715
716 {{html wiki="true" clean="false"}}
717 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
718 "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div>
719
720 Ex: #5G-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
721
722 This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div>
723
724 Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div>
725
726 Ex: #5QG&lt;cr&gt; might return *5QG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
727
728 The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div>
729
730 Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div>
731
732 Ex: #5CG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
733
734 This changes the gyre direction as described above and also writes to EEPROM.
735 <div class="wikimodel-emptyline"></div></div></div>
736 {{/html}}
737
738 ====== __First Position__ ======
739
740 {{html wiki="true" clean="false"}}
741 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
742 In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div>
743
744 Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div>
745
746 Ex: #5QFD&lt;cr&gt; might return *5QFD900&lt;cr&gt; <div class="wikimodel-emptyline"></div>
747
748 The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div>
749
750 Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div>
751
752 Ex: #5CFD900&lt;cr&gt;<div class="wikimodel-emptyline"></div>
753
754 This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD&lt;cr&gt;) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD&lt;cr&gt;
755 <div class="wikimodel-emptyline"></div></div></div>
756 {{/html}}
757
758 ====== __Maximum Motor Duty (**MMD**)__ ======
759
760 {{html wiki="true" clean="false"}}
761 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
762 This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div>
763
764 Ex: #5MMD512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
765
766 This will set the duty-cycle to 512 for servo with ID 5 for that session.<div class="wikimodel-emptyline"></div>
767
768 Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div>
769
770 Ex: #5QMMDD&lt;cr&gt; might return *5QMMD512&lt;cr&gt; <div class="wikimodel-emptyline"></div>
771
772 This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023.
773 <div class="wikimodel-emptyline"></div></div></div>
774 {{/html}}
775
776 ====== __Maximum Speed in Degrees (**SD**)__ ======
777
778 {{html wiki="true" clean="false"}}
779 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
780 Ex: #5SD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
781 This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
782
783 Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div>
784
785 Ex: #5QSD&lt;cr&gt; might return *5QSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
786
787 By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1&lt;cr&gt; is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
788
789 |**Command sent**|**Returned value (1/10 °)**
790 |ex: #5QSD&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
791 |ex: #5QSD1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
792 |ex: #5QSD2&lt;cr&gt;|Instantaneous speed (same as QWD)
793 |ex: #5QSD3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
794
795 Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div>
796
797 Ex: #5CSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
798 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
799 </div></div>
800 {{/html}}
801
802 ====== __Maximum Speed in RPM (**SR**)__ ======
803
804 {{html wiki="true" clean="false"}}
805 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
806 Ex: #5SR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
807 This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
808
809 Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div>
810
811 Ex: #5QSR&lt;cr&gt; might return *5QSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
812
813 By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1&lt;cr&gt; is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
814
815 |**Command sent**|**Returned value (1/10 °)**
816 |ex: #5QSR&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
817 |ex: #5QSR1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
818 |ex: #5QSR2&lt;cr&gt;|Instantaneous speed (same as QWD)
819 |ex: #5QSR3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
820
821 Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div>
822
823 Ex: #5CSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
824 Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
825 </div></div>
826 {{/html}}
827
828 == Modifiers ==
829
830 ====== __Speed (**S**, **SD**) modifier__ ======
831
832 {{html clean="false" wiki="true"}}
833 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
834 Example: #5P1500S750&lt;cr&gt;<div class="wikimodel-emptyline"></div>
835 Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
836 Example: #5D0SD180&lt;cr&gt;<div class="wikimodel-emptyline"></div>
837 Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.<div class="wikimodel-emptyline"></div>
838 Query Speed (**QS**)<div class="wikimodel-emptyline"></div>
839 Example: #5QS&lt;cr&gt; might return *5QS300&lt;cr&gt;<div class="wikimodel-emptyline"></div>
840 This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div>
841 </div></div>
842 {{/html}}
843
844 ====== __Timed move (**T**) modifier__ ======
845
846 {{html wiki="true" clean="false"}}
847 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
848 Example: #5P1500T2500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
849
850 Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
851 **Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div>
852 </div></div>
853 {{/html}}
854
855 ====== __Current Halt & Hold (**CH**) modifier__ ======
856
857 {{html wiki="true" clean="false"}}
858 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
859 Example: #5D1423CH400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
860
861 This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div>
862 This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
863 </div></div>
864 {{/html}}
865
866 ====== __Current Limp (**CL**) modifier__ ======
867
868 {{html wiki="true" clean="false"}}
869 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
870 Example: #5D1423CL400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
871
872 This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div>
873 This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
874 </div></div>
875 {{/html}}
876
877 == Telemetry ==
878
879 ====== __Query Voltage (**QV**)__ ======
880
881 {{html wiki="true" clean="false"}}
882 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
883 Ex: #5QV&lt;cr&gt; might return *5QV11200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
884 The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div>
885 </div></div>
886 {{/html}}
887
888 ====== __Query Temperature (**QT**)__ ======
889
890 {{html wiki="true" clean="false"}}
891 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
892 Ex: #5QT&lt;cr&gt; might return *5QT564&lt;cr&gt;<div class="wikimodel-emptyline"></div>
893 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div>
894 </div></div>
895 {{/html}}
896
897 ====== __Query Current (**QC**)__ ======
898
899 {{html wiki="true" clean="false"}}
900 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
901 Ex: #5QC&lt;cr&gt; might return *5QC140&lt;cr&gt;<div class="wikimodel-emptyline"></div>
902 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div>
903 </div></div>
904 {{/html}}
905
906 ====== __Query Model String (**QMS**)__ ======
907
908 {{html wiki="true" clean="false"}}
909 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
910 Ex: #5QMS&lt;cr&gt; might return *5QMSLSS-HS1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
911 This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div>
912 </div></div>
913 {{/html}}
914
915 ====== __Query Firmware (**QF**)__ ======
916
917 {{html wiki="true" clean="false"}}
918 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
919 Ex: #5QF&lt;cr&gt; might return *5QF368&lt;cr&gt;<div class="wikimodel-emptyline"></div>
920 The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div>
921 The command #5QF3&lt;cr&gt; can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div>
922 </div></div>
923 {{/html}}
924
925 ====== __Query Serial Number (**QN**)__ ======
926
927 {{html wiki="true" clean="false"}}
928 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
929 Ex: #5QN&lt;cr&gt; might return *5QN12345678&lt;cr&gt;<div class="wikimodel-emptyline"></div>
930 The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div>
931 </div></div>
932 {{/html}}
933
934 == RGB LED ==
935
936 ====== __LED Color (**LED**)__ ======
937
938 {{html wiki="true" clean="false"}}
939 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
940 Ex: #5LED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
941 This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div>
942 0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div>
943 Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div>
944 Ex: #5QLED&lt;cr&gt; might return *5QLED5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
945 This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div>
946 Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div>
947 Ex: #5CLED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
948 Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div>
949 </div></div>
950 {{/html}}
951
952 ====== __Configure LED Blinking (**CLB**)__ ======
953
954 {{html wiki="true" clean="false"}}
955 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
956 This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div>
957
958 (% style="width:195px" %)
959 |(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
960 |(% style="width:134px" %)No blinking|(% style="width:58px" %)0
961 |(% style="width:134px" %)Limp|(% style="width:58px" %)1
962 |(% style="width:134px" %)Holding|(% style="width:58px" %)2
963 |(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
964 |(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
965 |(% style="width:134px" %)Free|(% style="width:58px" %)16
966 |(% style="width:134px" %)Travelling|(% style="width:58px" %)32
967 |(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div>
968
969 To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div>
970 Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div>
971 Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div>
972 Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div>
973 Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div>
974 Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div>
975 Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div>
976 RESETTING the servo is needed.<div class="wikimodel-emptyline"></div>
977 </div></div>
978 {{/html}}
979
980 == RGB LED ==
981
982 The LED can be
Copyright RobotShop 2018