Wiki source code of LSS-P - Communication Protocol

Version 24.1 by Coleman Benson on 2023/07/18 09:58

Show last authors
1 {{warningBox warningText="More information coming soon"/}}
2
3
4 (% class="wikigeneratedid" id="HTableofContents" %)
5 **Page Contents**
6
7 {{toc depth="3"/}}
8
9 = Serial Protocol =
10
11 The Lynxmotion Smart Servo (LSS) PRO serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's Smart Servo (LSS) protocol, which itself was based on the SSC-32 & SSC-32U RC servo controllers. The LSS PRO series and normal LSS share many of the same commands, but because of higher angular precision, slightly different operation and different features, the two protocols do not fully overlap.
12
13 In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol.
14
15 = Action Commands =
16
17 Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]] (described below). Action commands are sent serially to the servo and must be sent in the following format:
18
19 1. Start with a number sign **#** (Unicode Character: U+0023)
20 1. Servo ID number as an integer (assigning an ID described below)
21 1. Action command (one or more letters, no whitespace, capital or lowercase from the list below)
22 1. Action value in the correct units with no decimal
23 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
24
25 (((
26 Ex: #5D130000<cr>
27
28 This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (13000 in hundredths of degrees) of 130.00 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
29
30 == Modifiers ==
31
32 {{html clean="false" wiki="true"}}
33 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
34 Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div>
35
36 1. Start with a number sign **#** (Unicode Character: U+0023)
37 1. Servo ID number as an integer
38 1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
39 1. Action value in the correct units with no decimal
40 1. Modifier command (one or two letters from the list of modifiers below)
41 1. Modifier value in the correct units with no decimal
42 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)
43
44 Ex: #5D13000T1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
45
46 This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div>
47 <div class="wikimodel-emptyline"></div></div></div>
48
49 <h2>Queries</h2>
50 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
51 Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div>
52
53 1. Start with a number sign **#** (Unicode Character: U+0023)
54 1. Servo ID number as an integer
55 1. Query command (one to four letters, no spaces, capital or lower case)
56 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
57
58 Ex: #5QD&lt;cr&gt; Query the position in (hundredths of) degrees for servo with ID #5<div class="wikimodel-emptyline"></div>
59
60 The query will return a serial string (almost instantaneously) via the servo's Tx in the following format:
61
62 1. Start with an asterisk * (Unicode Character: U+0023)
63 1. Servo ID number as an integer
64 1. Query command (one to four letters, no spaces, capital letters)
65 1. The reported value in the units described, no decimals.
66 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
67
68 There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div>
69
70 Ex: *5QD13000&lt;cr&gt;<div class="wikimodel-emptyline"></div>
71
72 This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees).
73 <div class="wikimodel-emptyline"></div></div></div>
74
75 <h2>Configurations</h2>
76
77 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
78 Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div>
79
80 These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>
81
82 The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div>
83
84 1. Start with a number sign **#** (Unicode Character: U+0023)
85 1. Servo ID number as an integer
86 1. Configuration command (two to four letters, no spaces, capital or lower case)
87 1. Configuration value in the correct units with no decimal
88 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
89
90 Ex: #5CO-500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
91
92 This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div>
93
94 **Session vs Configuration Query**<div class="wikimodel-emptyline"></div>
95
96 By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div>
97
98 Ex: #5CSR20&lt;cr&gt; immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>
99
100 After RESET, a command of #5SR4&lt;cr&gt; sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>
101
102 #5QSR&lt;cr&gt; or #5QSR0&lt;cr&gt; would return *5QSR4&lt;cr&gt; which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>
103
104 #5QSR1&lt;cr&gt; would return *5QSR20&lt;cr&gt; which represents the value in EEPROM
105 <div class="wikimodel-emptyline"></div></div></div>
106
107 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
108 The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div>
109
110 [[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div>
111
112 In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div>
113
114 #1D-300&lt;cr&gt; This causes the servo to move to -30.0 degrees (green arrow)<div class="wikimodel-emptyline"></div>
115
116 #1D2100&lt;cr&gt; This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)<div class="wikimodel-emptyline"></div>
117
118 #1D-4200&lt;cr&gt; This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div>
119
120 Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.<div class="wikimodel-emptyline"></div>
121
122 #1D4800&lt;cr&gt; This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div>
123
124 #1D3300&lt;cr&gt; would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>
125
126 If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°].
127 <div class="wikimodel-emptyline"></div></div></div>
128
129 {{/html}}
130 )))
131
132 = Command List =
133
134 **Latest firmware version currently : v0.0.780**
135
136 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]]
137 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
138 | |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Soft reset. See command for details.
139 | |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Revert to firmware default values. See command for details
140 | |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Update firmware. See command for details.
141 | |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) | | |
142 | |[[**E**nable CAN **T**erminal>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0 or 1|0: Disable  1: Enable
143 | |[[**ID** Number >>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
144 | |[[**U**SB **C**onnection State>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected
145 | |**Q**uery **F**irmware **R**elease|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | |
146
147 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]]
148 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
149 | |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) | |1/100°|
150 | |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) | |1/100°|
151 | |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) | |°/s|A.K.A. "Speed mode" or "Continuous rotation"
152 | |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM28WR29"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) | |RPM|A.K.A. "Speed mode" or "Continuous rotation"
153 | |[[**Q**uery Motion Status>>||anchor="HQueryStatus28Q29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) | |1 to 8 integer|See command description for details
154 | |[[**L**imp>>||anchor="HLimp28L29"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Removes power from stepper coils
155 | |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Stops (halts) motion profile and holds last position
156
157 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]]
158 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
159 | |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|1| |EM1: trapezoidal motion profile / EM0: no motion profile
160 | |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|5| |Affects motion only when motion profile is disabled (EM0)
161 | |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|0|1/10°|
162 | |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|1800|1/10°|
163 | |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|0|-4 to +4 integer|Suggested values are between 0 to +4
164 | |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|4|-10 to +10 integer|
165 | |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
166 | |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
167 | |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
168 | |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|No value|1/10°|Reset required after change.
169 | |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |1023|255 to 1023 integer|
170 | |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
171 | |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
172
173 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]]
174 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
175 | |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) | |1°/s|For D and MD action commands
176 | |[[**T**imed move>>||anchor="HTimedmove28T29modifier"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) | |ms|Time associated with D, MD commands
177
178 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]]
179 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
180 | |[[**Q**uery PCB **T**emperature>>||anchor="HQueryTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) | |°C|
181 | |[[**Q**uery **C**urrent>>||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) | |mA|Nominal RMS value to stepper motor driver IC.
182 | |[[**Q**uery **M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) | | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
183 | |[[**Q**uery **F**irmware Version>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) | | |
184 | |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) | | |Returns the unique serial number for the servo
185 | |**Q**uery **T**emperature **P**robe|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | | |Queries temperature probe fixed to stepper motor
186 | |**Q**uery **T**emp of **C**ontroller|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW, QTCE|(% style="text-align:center" %) | | |(((
187 QTCW: Queries the temperature status of the motor controller (pre-warning)
188
189 QTCE: Queries the temperature status of the motor controller (over-temp error)
190 )))
191 | |**Q**uery **C**urrent **S**peed |(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | | |Queries the motor controller's calculated speed
192 | |**Q**uery **I**MU Linear **X**|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2|
193 | |**Q**uery **I**MU Linear **Y**|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2|
194 | |**Q**uery **I**MU Linear **Z**|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2|
195 | |**Q**uery **I**MU Angular Accel **α** |(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha)
196 | |**Q**uery **I**MU Angular Accel **β**|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta)
197 | |**Q**uery **I**MU Angular Accel **γ**|(% style="text-align:center" %) |(% style="text-align:center" %)QIC / QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma)
198
199 |(% colspan="8" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]]
200 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
201 | |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
202 | |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB| |0 to 63 integer|Reset required after change. See command for details.
203
204 = (% style="color:inherit; font-family:inherit" %)Details(%%) =
205
206 == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
207
208 ====== __Reset__ ======
209
210 {{html wiki="true" clean="false"}}
211 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
212 Ex: #5RESET&lt;cr&gt;<div class="wikimodel-emptyline"></div>
213 This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands).
214 Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div>
215 </div></div>
216 {{/html}}
217
218 ====== __Default & confirm__ ======
219
220 {{html wiki="true" clean="false"}}
221 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
222 Ex: #5DEFAULT&lt;cr&gt;<div class="wikimodel-emptyline"></div>
223
224 This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.<div class="wikimodel-emptyline"></div>
225
226 EX: #5DEFAULT&lt;cr&gt; followed by #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
227
228 Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<div class="wikimodel-emptyline"></div>
229
230 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
231 </div></div>
232 {{/html}}
233
234 ====== __Update & confirm__ ======
235
236 {{html wiki="true" clean="false"}}
237 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
238 Ex: #5UPDATE&lt;cr&gt;<div class="wikimodel-emptyline"></div>
239
240 This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<div class="wikimodel-emptyline"></div>
241
242 EX: #5UPDATE&lt;cr&gt; followed by #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
243
244 Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div>
245
246 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
247 </div></div>
248 {{/html}}
249
250 ====== __Confirm__ ======
251
252 {{html wiki="true" clean="false"}}
253 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
254 Ex: #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
255
256 This command is used to confirm changes after a Default or Update command.<div class="wikimodel-emptyline"></div>
257
258 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
259 </div></div>
260 {{/html}}
261
262 ====== ======
263
264 ====== __Identification Number (**ID**)__ ======
265
266 {{html wiki="true" clean="false"}}
267 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
268 A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div>
269
270 Query Identification (**QID**)<div class="wikimodel-emptyline"></div>
271
272 EX: #254QID&lt;cr&gt; might return *QID5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
273
274 When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.<div class="wikimodel-emptyline"></div>
275
276 Configure ID (**CID**)<div class="wikimodel-emptyline"></div>
277
278 Ex: #4CID5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
279
280 Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div>
281 </div></div>
282 {{/html}}
283
284 ====== __Baud Rate__ ======
285
286 {{html clean="false" wiki="true"}}
287 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
288 A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div>
289
290 Query Baud Rate (**QB**)<div class="wikimodel-emptyline"></div>
291
292 Ex: #5QB&lt;cr&gt; might return *5QB115200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
293
294 Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.<div class="wikimodel-emptyline"></div>
295
296 Configure Baud Rate (**CB**)<div class="wikimodel-emptyline"></div>
297
298 **Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.<div class="wikimodel-emptyline"></div>
299
300 Ex: #5CB9600&lt;cr&gt;<div class="wikimodel-emptyline"></div>
301
302 Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div>
303 </div></div>
304 {{/html}}
305
306 ====== __Automatic Baud Rate__ ======
307
308 {{html clean="false" wiki="true"}}
309 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
310 This option allows the LSS to listen to it's serial input and select the right baudrate automatically.<div class="wikimodel-emptyline"></div>
311
312 Query Automatic Baud Rate (**QABR**)<div class="wikimodel-emptyline"></div>
313
314 Ex: #5QABR&lt;cr&gt; might return *5ABR0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
315
316 Enable Baud Rate (**ABR**)<div class="wikimodel-emptyline"></div>
317
318 Ex: #5QABR1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
319 Enable baudrate detection on first byte received after power-up.<div class="wikimodel-emptyline"></div>
320
321 Ex: #5QABR2,30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
322 Enable baudrate detection on first byte received after power-up. If no data for 30 seconds enable detection again on next byte.<div class="wikimodel-emptyline"></div>
323
324 Warning: ABR doesnt work well with LSS Config at the moment.<div class="wikimodel-emptyline"></div>
325 </div></div>
326 {{/html}}
327
328 == Motion ==
329
330 ====== __Position in Degrees (**D**)__ ======
331
332 {{html wiki="true" clean="false"}}
333 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
334 Example: #5D1456&lt;cr&gt;<div class="wikimodel-emptyline"></div>
335
336 This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. <div class="wikimodel-emptyline"></div>
337
338 Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). <div class="wikimodel-emptyline"></div>
339
340 Query Position in Degrees (**QD**)<div class="wikimodel-emptyline"></div>
341
342 Example: #5QD&lt;cr&gt; might return *5QD132&lt;cr&gt;<div class="wikimodel-emptyline"></div>
343
344 This means the servo is located at 13.2 degrees.<div class="wikimodel-emptyline"></div>
345
346 (% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %)
347 Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div>
348
349 Ex: #5QDT&lt;cr&gt; might return *5QDT6783&lt;cr&gt;<div class="wikimodel-emptyline"></div>
350
351 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
352 <div class="wikimodel-emptyline"></div></div></div>
353 {{/html}}
354
355 ====== __(Relative) Move in Degrees (**MD**)__ ======
356
357 {{html wiki="true" clean="false"}}
358 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
359 Example: #5MD123&lt;cr&gt;<div class="wikimodel-emptyline"></div>
360
361 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
362 <div class="wikimodel-emptyline"></div></div></div>
363 {{/html}}
364
365 ====== __Wheel Mode in Degrees (**WD**)__ ======
366
367 {{html wiki="true" clean="false"}}
368 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
369 Ex: #5WD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
370
371 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
372
373 Query Wheel Mode in Degrees (**QWD**)<div class="wikimodel-emptyline"></div>
374
375 Ex: #5QWD&lt;cr&gt; might return *5QWD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
376
377 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
378 <div class="wikimodel-emptyline"></div></div></div>
379 {{/html}}
380
381 ====== __Wheel Mode in RPM (**WR**)__ ======
382
383 {{html wiki="true" clean="false"}}
384 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
385 Ex: #5WR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
386
387 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
388
389 Query Wheel Mode in RPM (**QWR**)<div class="wikimodel-emptyline"></div>
390
391 Ex: #5QWR&lt;cr&gt; might return *5QWR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
392
393 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
394 <div class="wikimodel-emptyline"></div></div></div>
395 {{/html}}
396
397 ====== __Position in PWM (**P**)__ ======
398
399 {{html wiki="true" clean="false"}}
400 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
401 Example: #5P2334&lt;cr&gt;<div class="wikimodel-emptyline"></div>
402
403 The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.<div class="wikimodel-emptyline"></div>
404
405 Query Position in Pulse (**QP**)<div class="wikimodel-emptyline"></div>
406
407 Example: #5QP&lt;cr&gt; might return *5QP2334<div class="wikimodel-emptyline"></div>
408
409 This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle.
410 Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
411 <div class="wikimodel-emptyline"></div></div></div>
412 {{/html}}
413
414 ====== __(Relative) Move in PWM (**M**)__ ======
415
416 {{html wiki="true" clean="false"}}
417 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
418 Example: #5M1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
419
420 The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
421 <div class="wikimodel-emptyline"></div></div></div>
422 {{/html}}
423
424 ====== __Raw Duty-cycle Move (**RDM**)__ ======
425
426 {{html wiki="true" clean="false"}}
427 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
428 Example: #5RDM512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
429
430 The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.<div class="wikimodel-emptyline"></div>
431
432 The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).<div class="wikimodel-emptyline"></div>
433
434 Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div>
435
436 Example: #5QMD&lt;cr&gt; might return *5QMD512<div class="wikimodel-emptyline"></div>
437
438 This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle.
439 <div class="wikimodel-emptyline"></div></div></div>
440 {{/html}}
441
442 ====== __Query Status (**Q**)__ ======
443
444 {{html wiki="true" clean="false"}}
445 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
446 The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div>
447
448 Ex: #5Q&lt;cr&gt; might return *5Q6&lt;cr&gt;, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div>
449 </div></div>
450 {{/html}}
451
452 |(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description**
453 | |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
454 | |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
455 | |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command
456 | |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
457 | |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
458 | |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
459 | |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding)
460 | |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
461 | |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
462 | |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
463 | |ex: *5Q10<cr>|10: Safe Mode|(((
464 A safety limit has been exceeded (temperature, peak current or extended high current draw).
465
466 Send a Q1 command to know which limit has been reached (described below).
467 )))
468
469 {{html wiki="true" clean="false"}}
470 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
471 If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div>
472 </div></div>
473 {{/html}}
474
475 |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
476 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
477 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
478 | |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
479 | |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
480
481 ====== __Limp (**L**)__ ======
482
483 {{html wiki="true" clean="false"}}
484 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
485 Example: #5L&lt;cr&gt;<div class="wikimodel-emptyline"></div>
486
487 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L&lt;cr&gt;.
488 <div class="wikimodel-emptyline"></div></div></div>
489 {{/html}}
490
491 ====== __Halt & Hold (**H**)__ ======
492
493 {{html wiki="true" clean="false"}}
494 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
495 Example: #5H&lt;cr&gt;<div class="wikimodel-emptyline"></div>
496
497 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
498 <div class="wikimodel-emptyline"></div></div></div>
499 {{/html}}
500
501 == Motion Setup ==
502
503 ====== __Enable Motion Profile (**EM**)__ ======
504
505 {{html clean="false" wiki="true"}}
506 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
507 EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div>
508
509 Ex: #5EM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
510
511 This command enables a trapezoidal motion profile for servo #5 <div class="wikimodel-emptyline"></div>
512
513 Ex: #5EM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
514
515 This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command).
516
517 <div class="wikimodel-emptyline"></div>
518
519 Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div>
520
521 Ex: #5QEM&lt;cr&gt; might return *5QEM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
522
523 This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div>
524
525 Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div>
526
527 Ex: #5CEM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
528
529 This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
530 <div class="wikimodel-emptyline"></div></div></div>
531 {{/html}}
532
533 ====== __Filter Position Count (**FPC**)__ ======
534
535 {{html clean="false" wiki="true"}}
536 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
537 The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default.
538 <div class="wikimodel-emptyline"></div>
539 Ex: #5FPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
540 This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div>
541
542 Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div>
543
544 Ex: #5QFPC&lt;cr&gt; might return *5QFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
545
546 This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div>
547
548 Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div>
549
550 Ex: #5CFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
551
552 This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
553 <div class="wikimodel-emptyline"></div></div></div>
554 {{/html}}
555
556 ====== __Origin Offset (**O**)__ ======
557
558 {{html wiki="true" clean="false"}}
559 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
560 Example: #5O2400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
561
562 This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div>
563
564 [[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
565
566 In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div>
567
568 [[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div>
569
570 Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div>
571
572 Example: #5QO&lt;cr&gt; might return *5QO-13<div class="wikimodel-emptyline"></div>
573
574 This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div>
575
576 Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div>
577
578 Example: #5CO-24&lt;cr&gt;<div class="wikimodel-emptyline"></div>
579
580 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
581 <div class="wikimodel-emptyline"></div></div></div>
582 {{/html}}
583
584 ====== __Angular Range (**AR**)__ ======
585
586 {{html wiki="true" clean="false"}}
587 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
588 Example: #5AR1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
589
590 This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div>
591
592 [[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
593
594 Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div>
595
596 [[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div>
597
598 Finally, the angular range action command (ex. #5AR1800&lt;cr&gt;) and origin offset action command (ex. #5O-1200&lt;cr&gt;) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div>
599
600 [[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div>
601
602 Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div>
603
604 Example: #5QAR&lt;cr&gt; might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div>
605
606 Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div>
607
608 This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
609 <div class="wikimodel-emptyline"></div></div></div>
610 {{/html}}
611
612 ====== __Angular Stiffness (**AS**)__ ======
613
614 {{html wiki="true" clean="false"}}
615 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
616 The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div>
617
618 A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div>
619
620 * The more torque will be applied to try to keep the desired position against external input / changes
621 * The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div>
622
623 A lower value on the other hand:<div class="wikimodel-emptyline"></div>
624
625 * Causes a slower acceleration to the travel speed, and a slower deceleration
626 * Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div>
627
628 The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
629
630 Ex: #5AS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
631
632 This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div>
633
634 Ex: #5QAS&lt;cr&gt;<div class="wikimodel-emptyline"></div>
635
636 Queries the value being used.<div class="wikimodel-emptyline"></div>
637
638 Ex: #5CAS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
639
640 Writes the desired angular stiffness value to EEPROM.
641 <div class="wikimodel-emptyline"></div></div></div>
642 {{/html}}
643
644 ====== __Angular Holding Stiffness (**AH**)__ ======
645
646 {{html wiki="true" clean="false"}}
647 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
648 The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
649
650 Ex: #5AH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
651
652 This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div>
653
654 Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div>
655
656 Ex: #5QAH&lt;cr&gt; might return *5QAH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
657
658 This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div>
659
660 Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div>
661
662 Ex: #5CAH2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
663
664 This writes the angular holding stiffness of servo #5 to 2 to EEPROM.
665 <div class="wikimodel-emptyline"></div></div></div>
666 {{/html}}
667
668 ====== __Angular Acceleration (**AA**)__ ======
669
670 {{html wiki="true" clean="false"}}
671 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
672 The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
673
674 Ex: #5AA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
675
676 This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
677
678 Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div>
679
680 Ex: #5QAA&lt;cr&gt; might return *5QAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
681
682 This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
683
684 Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div>
685
686 Ex: #5CAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
687
688 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
689 <div class="wikimodel-emptyline"></div></div></div>
690 {{/html}}
691
692 ====== __Angular Deceleration (**AD**)__ ======
693
694 {{html wiki="true" clean="false"}}
695 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
696 The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
697
698 Ex: #5AD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
699
700 This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
701
702 Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div>
703
704 Ex: #5QAD&lt;cr&gt; might return *5QAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
705
706 This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
707
708 Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div>
709
710 Ex: #5CAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
711
712 This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
713 <div class="wikimodel-emptyline"></div></div></div>
714 {{/html}}
715
716 ====== __Gyre Direction (**G**)__ ======
717
718 {{html wiki="true" clean="false"}}
719 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
720 "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div>
721
722 Ex: #5G-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
723
724 This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div>
725
726 Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div>
727
728 Ex: #5QG&lt;cr&gt; might return *5QG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
729
730 The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div>
731
732 Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div>
733
734 Ex: #5CG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
735
736 This changes the gyre direction as described above and also writes to EEPROM.
737 <div class="wikimodel-emptyline"></div></div></div>
738 {{/html}}
739
740 ====== __First Position__ ======
741
742 {{html wiki="true" clean="false"}}
743 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
744 In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div>
745
746 Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div>
747
748 Ex: #5QFD&lt;cr&gt; might return *5QFD900&lt;cr&gt; <div class="wikimodel-emptyline"></div>
749
750 The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div>
751
752 Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div>
753
754 Ex: #5CFD900&lt;cr&gt;<div class="wikimodel-emptyline"></div>
755
756 This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD&lt;cr&gt;) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD&lt;cr&gt;
757 <div class="wikimodel-emptyline"></div></div></div>
758 {{/html}}
759
760 ====== __Maximum Motor Duty (**MMD**)__ ======
761
762 {{html wiki="true" clean="false"}}
763 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
764 This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div>
765
766 Ex: #5MMD512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
767
768 This will set the duty-cycle to 512 for servo with ID 5 for that session.<div class="wikimodel-emptyline"></div>
769
770 Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div>
771
772 Ex: #5QMMDD&lt;cr&gt; might return *5QMMD512&lt;cr&gt; <div class="wikimodel-emptyline"></div>
773
774 This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023.
775 <div class="wikimodel-emptyline"></div></div></div>
776 {{/html}}
777
778 ====== __Maximum Speed in Degrees (**SD**)__ ======
779
780 {{html wiki="true" clean="false"}}
781 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
782 Ex: #5SD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
783 This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
784
785 Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div>
786
787 Ex: #5QSD&lt;cr&gt; might return *5QSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
788
789 By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1&lt;cr&gt; is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
790
791 |**Command sent**|**Returned value (1/10 °)**
792 |ex: #5QSD&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
793 |ex: #5QSD1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
794 |ex: #5QSD2&lt;cr&gt;|Instantaneous speed (same as QWD)
795 |ex: #5QSD3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
796
797 Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div>
798
799 Ex: #5CSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
800 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
801 </div></div>
802 {{/html}}
803
804 ====== __Maximum Speed in RPM (**SR**)__ ======
805
806 {{html wiki="true" clean="false"}}
807 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
808 Ex: #5SR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
809 This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
810
811 Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div>
812
813 Ex: #5QSR&lt;cr&gt; might return *5QSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
814
815 By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1&lt;cr&gt; is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
816
817 |**Command sent**|**Returned value (1/10 °)**
818 |ex: #5QSR&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
819 |ex: #5QSR1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
820 |ex: #5QSR2&lt;cr&gt;|Instantaneous speed (same as QWD)
821 |ex: #5QSR3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
822
823 Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div>
824
825 Ex: #5CSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
826 Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
827 </div></div>
828 {{/html}}
829
830 == Modifiers ==
831
832 ====== __Speed (**S**, **SD**) modifier__ ======
833
834 {{html clean="false" wiki="true"}}
835 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
836 Example: #5P1500S750&lt;cr&gt;<div class="wikimodel-emptyline"></div>
837 Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
838 Example: #5D0SD180&lt;cr&gt;<div class="wikimodel-emptyline"></div>
839 Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.<div class="wikimodel-emptyline"></div>
840 Query Speed (**QS**)<div class="wikimodel-emptyline"></div>
841 Example: #5QS&lt;cr&gt; might return *5QS300&lt;cr&gt;<div class="wikimodel-emptyline"></div>
842 This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div>
843 </div></div>
844 {{/html}}
845
846 ====== __Timed move (**T**) modifier__ ======
847
848 {{html wiki="true" clean="false"}}
849 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
850 Example: #5P1500T2500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
851
852 Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
853 **Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div>
854 </div></div>
855 {{/html}}
856
857 ====== __Current Halt & Hold (**CH**) modifier__ ======
858
859 {{html wiki="true" clean="false"}}
860 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
861 Example: #5D1423CH400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
862
863 This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div>
864 This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
865 </div></div>
866 {{/html}}
867
868 ====== __Current Limp (**CL**) modifier__ ======
869
870 {{html wiki="true" clean="false"}}
871 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
872 Example: #5D1423CL400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
873
874 This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div>
875 This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
876 </div></div>
877 {{/html}}
878
879 == Telemetry ==
880
881 ====== __Query Voltage (**QV**)__ ======
882
883 {{html wiki="true" clean="false"}}
884 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
885 Ex: #5QV&lt;cr&gt; might return *5QV11200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
886 The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div>
887 </div></div>
888 {{/html}}
889
890 ====== __Query Temperature (**QT**)__ ======
891
892 {{html wiki="true" clean="false"}}
893 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
894 Ex: #5QT&lt;cr&gt; might return *5QT564&lt;cr&gt;<div class="wikimodel-emptyline"></div>
895 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div>
896 </div></div>
897 {{/html}}
898
899 ====== __Query Current (**QC**)__ ======
900
901 {{html wiki="true" clean="false"}}
902 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
903 Ex: #5QC&lt;cr&gt; might return *5QC140&lt;cr&gt;<div class="wikimodel-emptyline"></div>
904 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div>
905 </div></div>
906 {{/html}}
907
908 ====== __Query Model String (**QMS**)__ ======
909
910 {{html wiki="true" clean="false"}}
911 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
912 Ex: #5QMS&lt;cr&gt; might return *5QMSLSS-HS1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
913 This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div>
914 </div></div>
915 {{/html}}
916
917 ====== __Query Firmware (**QF**)__ ======
918
919 {{html wiki="true" clean="false"}}
920 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
921 Ex: #5QF&lt;cr&gt; might return *5QF368&lt;cr&gt;<div class="wikimodel-emptyline"></div>
922 The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div>
923 The command #5QF3&lt;cr&gt; can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div>
924 </div></div>
925 {{/html}}
926
927 ====== __Query Serial Number (**QN**)__ ======
928
929 {{html wiki="true" clean="false"}}
930 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
931 Ex: #5QN&lt;cr&gt; might return *5QN12345678&lt;cr&gt;<div class="wikimodel-emptyline"></div>
932 The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div>
933 </div></div>
934 {{/html}}
935
936 == RGB LED ==
937
938 ====== __LED Color (**LED**)__ ======
939
940 {{html wiki="true" clean="false"}}
941 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
942 Ex: #5LED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
943 This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div>
944 0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div>
945 Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div>
946 Ex: #5QLED&lt;cr&gt; might return *5QLED5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
947 This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div>
948 Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div>
949 Ex: #5CLED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
950 Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div>
951 </div></div>
952 {{/html}}
953
954 ====== __Configure LED Blinking (**CLB**)__ ======
955
956 {{html wiki="true" clean="false"}}
957 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
958 This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div>
959
960 (% style="width:195px" %)
961 |(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
962 |(% style="width:134px" %)No blinking|(% style="width:58px" %)0
963 |(% style="width:134px" %)Limp|(% style="width:58px" %)1
964 |(% style="width:134px" %)Holding|(% style="width:58px" %)2
965 |(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
966 |(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
967 |(% style="width:134px" %)Free|(% style="width:58px" %)16
968 |(% style="width:134px" %)Travelling|(% style="width:58px" %)32
969 |(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div>
970
971 To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div>
972 Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div>
973 Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div>
974 Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div>
975 Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div>
976 Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div>
977 Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div>
978 RESETTING the servo is needed.<div class="wikimodel-emptyline"></div>
979 </div></div>
980 {{/html}}
981
982 == RGB LED ==
983
984 The LED can be
Copyright RobotShop 2018