Wiki source code of LSS-P - Communication Protocol

Version 26.1 by Coleman Benson on 2023/07/18 10:17

Show last authors
1 {{warningBox warningText="More information coming soon"/}}
2
3
4 (% class="wikigeneratedid" id="HTableofContents" %)
5 **Page Contents**
6
7 {{toc depth="3"/}}
8
9 = Serial Protocol =
10
11 The Lynxmotion Smart Servo (LSS) PRO serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's Smart Servo (LSS) protocol, which itself was based on the SSC-32 & SSC-32U RC servo controllers. The LSS PRO series and normal LSS share many of the same commands, but because of higher angular precision, slightly different operation and different features, the two protocols do not fully overlap.
12
13 In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol.
14
15 = Action Commands =
16
17 Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]] (described below). Action commands are sent serially to the servo and must be sent in the following format:
18
19 1. Start with a number sign **#** (Unicode Character: U+0023)
20 1. Servo ID number as an integer (assigning an ID described below)
21 1. Action command (one or more letters, no whitespace, capital or lowercase from the list below)
22 1. Action value in the correct units with no decimal
23 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
24
25 (((
26 Ex: #5D130000<cr>
27
28 This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (13000 in hundredths of degrees) of 130.00 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
29
30 == Modifiers ==
31
32 {{html clean="false" wiki="true"}}
33 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
34 Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div>
35
36 1. Start with a number sign **#** (Unicode Character: U+0023)
37 1. Servo ID number as an integer
38 1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
39 1. Action value in the correct units with no decimal
40 1. Modifier command (one or two letters from the list of modifiers below)
41 1. Modifier value in the correct units with no decimal
42 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)
43
44 Ex: #5D13000T1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
45
46 This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div>
47 <div class="wikimodel-emptyline"></div></div></div>
48
49 <h2>Queries</h2>
50 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
51 Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div>
52
53 1. Start with a number sign **#** (Unicode Character: U+0023)
54 1. Servo ID number as an integer
55 1. Query command (one to four letters, no spaces, capital or lower case)
56 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
57
58 Ex: #5QD&lt;cr&gt; Query the position in (hundredths of) degrees for servo with ID #5<div class="wikimodel-emptyline"></div>
59
60 The query will return a serial string (almost instantaneously) via the servo's Tx in the following format:
61
62 1. Start with an asterisk * (Unicode Character: U+0023)
63 1. Servo ID number as an integer
64 1. Query command (one to four letters, no spaces, capital letters)
65 1. The reported value in the units described, no decimals.
66 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
67
68 There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div>
69
70 Ex: *5QD13000&lt;cr&gt;<div class="wikimodel-emptyline"></div>
71
72 This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees).
73 <div class="wikimodel-emptyline"></div></div></div>
74
75 <h2>Configurations</h2>
76
77 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
78 Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div>
79
80 These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>
81
82 The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div>
83
84 1. Start with a number sign **#** (Unicode Character: U+0023)
85 1. Servo ID number as an integer
86 1. Configuration command (two to four letters, no spaces, capital or lower case)
87 1. Configuration value in the correct units with no decimal
88 1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
89
90 Ex: #5CO-500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
91
92 This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div>
93
94 **Session vs Configuration Query**<div class="wikimodel-emptyline"></div>
95
96 By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div>
97
98 Ex: #5CSR10&lt;cr&gt; immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>
99
100 After RESET, a command of #5SR4&lt;cr&gt; sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>
101
102 #5QSR&lt;cr&gt; or #5QSR0&lt;cr&gt; would return *5QSR4&lt;cr&gt; which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>
103
104 #5QSR1&lt;cr&gt; would return *5QSR10&lt;cr&gt; which represents the value in EEPROM
105 <div class="wikimodel-emptyline"></div></div></div>
106
107 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
108 The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div>
109
110 [[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div>
111
112 In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div>
113
114 #1D-3000&lt;cr&gt; This causes the servo to move to -30.00 degrees (green arrow)<div class="wikimodel-emptyline"></div>
115
116 #1D21000&lt;cr&gt; This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)<div class="wikimodel-emptyline"></div>
117
118 #1D-42000&lt;cr&gt; This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div>
119
120 Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees.<div class="wikimodel-emptyline"></div>
121
122 #1D48000&lt;cr&gt; This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div>
123
124 #1D33000&lt;cr&gt; would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>
125
126 If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.00 degrees before power is cycled, upon power up the servo's position will be read as +120.00 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.00°, 180.00°].
127 <div class="wikimodel-emptyline"></div></div></div>
128
129 {{/html}}
130 )))
131
132 = Command List =
133
134 **Latest firmware version currently : v0.0.780**
135
136 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]]
137 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
138 | |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Soft reset. See command for details.
139 | |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Revert to firmware default values. See command for details
140 | |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Update firmware. See command for details.
141 | |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) | | |
142 | |[[**E**nable CAN **T**erminal>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0 or 1|0: Disable  1: Enable
143 | |[[**ID** Number >>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
144 | |[[**U**SB **C**onnection State>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected
145 | |**Q**uery **F**irmware **R**elease|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | |
146
147 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]]
148 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
149 | |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) | |1/100°|
150 | |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) | |1/100°|
151 | |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) | |°/s|A.K.A. "Speed mode" or "Continuous rotation"
152 | |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM28WR29"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) | |RPM|A.K.A. "Speed mode" or "Continuous rotation"
153 | |[[**Q**uery Motion Status>>||anchor="HQueryStatus28Q29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) | |1 to 8 integer|See command description for details
154 | |[[**L**imp>>||anchor="HLimp28L29"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Removes power from stepper coils
155 | |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Stops (halts) motion profile and holds last position
156
157 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]]
158 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
159 | |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|1| |EM1: trapezoidal motion profile / EM0: no motion profile
160 | |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|5| |Affects motion only when motion profile is disabled (EM0)
161 | |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|0|1/10°|
162 | |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|1800|1/10°|
163 | |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|0|-4 to +4 integer|Suggested values are between 0 to +4
164 | |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|4|-10 to +10 integer|
165 | |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
166 | |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
167 | |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
168 | |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|No value|1/10°|Reset required after change.
169 | |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |1023|255 to 1023 integer|
170 | |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
171 | |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
172
173 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]]
174 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
175 | |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) | |1°/s|For D and MD action commands
176 | |[[**T**imed move>>||anchor="HTimedmove28T29modifier"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) | |ms|Time associated with D, MD commands
177
178 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]]
179 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
180 | |[[**Q**uery PCB **T**emperature>>||anchor="HQueryTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) | |°C|
181 | |[[**Q**uery **C**urrent>>||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) | |mA|Nominal RMS value to stepper motor driver IC.
182 | |[[**Q**uery **M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) | | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
183 | |[[**Q**uery **F**irmware Version>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) | | |
184 | |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) | | |Returns the unique serial number for the servo
185 | |**Q**uery **T**emperature **P**robe|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | | |Queries temperature probe fixed to stepper motor
186 | |**Q**uery **T**emp of **C**ontroller|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW, QTCE|(% style="text-align:center" %) | | |(((
187 QTCW: Queries the temperature status of the motor controller (pre-warning)
188
189 QTCE: Queries the temperature status of the motor controller (over-temp error)
190 )))
191 | |**Q**uery **C**urrent **S**peed |(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | | |Queries the motor controller's calculated speed
192 | |**Q**uery **I**MU Linear **X**|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2|
193 | |**Q**uery **I**MU Linear **Y**|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2|
194 | |**Q**uery **I**MU Linear **Z**|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2|
195 | |**Q**uery **I**MU Angular Accel **α** |(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha)
196 | |**Q**uery **I**MU Angular Accel **β**|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta)
197 | |**Q**uery **I**MU Angular Accel **γ**|(% style="text-align:center" %) |(% style="text-align:center" %)QIC / QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma)
198
199 |(% colspan="8" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]]
200 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
201 | |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
202 | |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB| |0 to 63 integer|Reset required after change. See command for details.
203
204 = (% style="color:inherit; font-family:inherit" %)Details(%%) =
205
206 == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
207
208 ====== __Reset__ ======
209
210 {{html wiki="true" clean="false"}}
211 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
212 Ex: #5RESET&lt;cr&gt;<div class="wikimodel-emptyline"></div>
213 This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands).
214 Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div>
215 </div></div>
216 {{/html}}
217
218 ====== __Default & confirm__ ======
219
220 {{html wiki="true" clean="false"}}
221 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
222 Ex: #5DEFAULT&lt;cr&gt;<div class="wikimodel-emptyline"></div>
223
224 This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.<div class="wikimodel-emptyline"></div>
225
226 EX: #5DEFAULT&lt;cr&gt; followed by #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
227
228 Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<div class="wikimodel-emptyline"></div>
229
230 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
231 </div></div>
232 {{/html}}
233
234 ====== __Update & confirm__ ======
235
236 {{html wiki="true" clean="false"}}
237 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
238 Ex: #5UPDATE&lt;cr&gt;<div class="wikimodel-emptyline"></div>
239
240 This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<div class="wikimodel-emptyline"></div>
241
242 EX: #5UPDATE&lt;cr&gt; followed by #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
243
244 Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div>
245
246 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
247 </div></div>
248 {{/html}}
249
250 ====== __Enable CAN Terminal__ ======
251
252 {{html clean="false" wiki="true"}}
253 <div class="cmdcnt">
254 <div class="cmdpad"></div>
255 <div class="cmdtxt">Ex: #5CET1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
256
257 This sets servo with ID #5 to be the final servo in the bus.
258
259 <div class="cmdtxt">Ex: #5QET&lt;cr&gt;<div class="wikimodel-emptyline"></div>
260
261 The reply to this query should be *5QET1 to indicate it is the last in the servo bus.
262
263 <div class="wikimodel-emptyline"></div>
264 </div></div>
265 {{/html}}
266
267 == Motion ==
268
269 ====== __Position in Degrees (**D**)__ ======
270
271 {{html wiki="true" clean="false"}}
272 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
273 Example: #5D1456&lt;cr&gt;<div class="wikimodel-emptyline"></div>
274
275 This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. <div class="wikimodel-emptyline"></div>
276
277 Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). <div class="wikimodel-emptyline"></div>
278
279 Query Position in Degrees (**QD**)<div class="wikimodel-emptyline"></div>
280
281 Example: #5QD&lt;cr&gt; might return *5QD132&lt;cr&gt;<div class="wikimodel-emptyline"></div>
282
283 This means the servo is located at 13.2 degrees.<div class="wikimodel-emptyline"></div>
284
285 (% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %)
286 Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div>
287
288 Ex: #5QDT&lt;cr&gt; might return *5QDT6783&lt;cr&gt;<div class="wikimodel-emptyline"></div>
289
290 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
291 <div class="wikimodel-emptyline"></div></div></div>
292 {{/html}}
293
294 ====== __(Relative) Move in Degrees (**MD**)__ ======
295
296 {{html wiki="true" clean="false"}}
297 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
298 Example: #5MD123&lt;cr&gt;<div class="wikimodel-emptyline"></div>
299
300 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
301 <div class="wikimodel-emptyline"></div></div></div>
302 {{/html}}
303
304 ====== __Wheel Mode in Degrees (**WD**)__ ======
305
306 {{html wiki="true" clean="false"}}
307 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
308 Ex: #5WD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
309
310 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
311
312 Query Wheel Mode in Degrees (**QWD**)<div class="wikimodel-emptyline"></div>
313
314 Ex: #5QWD&lt;cr&gt; might return *5QWD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
315
316 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
317 <div class="wikimodel-emptyline"></div></div></div>
318 {{/html}}
319
320 ====== __Wheel Mode in RPM (**WR**)__ ======
321
322 {{html wiki="true" clean="false"}}
323 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
324 Ex: #5WR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
325
326 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
327
328 Query Wheel Mode in RPM (**QWR**)<div class="wikimodel-emptyline"></div>
329
330 Ex: #5QWR&lt;cr&gt; might return *5QWR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
331
332 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
333 <div class="wikimodel-emptyline"></div></div></div>
334 {{/html}}
335
336 ====== __Position in PWM (**P**)__ ======
337
338 {{html wiki="true" clean="false"}}
339 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
340 Example: #5P2334&lt;cr&gt;<div class="wikimodel-emptyline"></div>
341
342 The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.<div class="wikimodel-emptyline"></div>
343
344 Query Position in Pulse (**QP**)<div class="wikimodel-emptyline"></div>
345
346 Example: #5QP&lt;cr&gt; might return *5QP2334<div class="wikimodel-emptyline"></div>
347
348 This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle.
349 Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
350 <div class="wikimodel-emptyline"></div></div></div>
351 {{/html}}
352
353 ====== __(Relative) Move in PWM (**M**)__ ======
354
355 {{html wiki="true" clean="false"}}
356 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
357 Example: #5M1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
358
359 The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
360 <div class="wikimodel-emptyline"></div></div></div>
361 {{/html}}
362
363 ====== __Raw Duty-cycle Move (**RDM**)__ ======
364
365 {{html wiki="true" clean="false"}}
366 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
367 Example: #5RDM512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
368
369 The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.<div class="wikimodel-emptyline"></div>
370
371 The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).<div class="wikimodel-emptyline"></div>
372
373 Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div>
374
375 Example: #5QMD&lt;cr&gt; might return *5QMD512<div class="wikimodel-emptyline"></div>
376
377 This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle.
378 <div class="wikimodel-emptyline"></div></div></div>
379 {{/html}}
380
381 ====== __Query Status (**Q**)__ ======
382
383 {{html wiki="true" clean="false"}}
384 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
385 The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div>
386
387 Ex: #5Q&lt;cr&gt; might return *5Q6&lt;cr&gt;, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div>
388 </div></div>
389 {{/html}}
390
391 |(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description**
392 | |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
393 | |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
394 | |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command
395 | |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
396 | |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
397 | |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
398 | |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding)
399 | |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
400 | |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
401 | |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
402 | |ex: *5Q10<cr>|10: Safe Mode|(((
403 A safety limit has been exceeded (temperature, peak current or extended high current draw).
404
405 Send a Q1 command to know which limit has been reached (described below).
406 )))
407
408 {{html wiki="true" clean="false"}}
409 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
410 If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div>
411 </div></div>
412 {{/html}}
413
414 |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
415 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
416 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
417 | |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
418 | |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
419
420 ====== __Limp (**L**)__ ======
421
422 {{html wiki="true" clean="false"}}
423 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
424 Example: #5L&lt;cr&gt;<div class="wikimodel-emptyline"></div>
425
426 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L&lt;cr&gt;.
427 <div class="wikimodel-emptyline"></div></div></div>
428 {{/html}}
429
430 ====== __Halt & Hold (**H**)__ ======
431
432 {{html wiki="true" clean="false"}}
433 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
434 Example: #5H&lt;cr&gt;<div class="wikimodel-emptyline"></div>
435
436 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
437 <div class="wikimodel-emptyline"></div></div></div>
438 {{/html}}
439
440 == Motion Setup ==
441
442 ====== __Enable Motion Profile (**EM**)__ ======
443
444 {{html clean="false" wiki="true"}}
445 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
446 EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div>
447
448 Ex: #5EM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
449
450 This command enables a trapezoidal motion profile for servo #5 <div class="wikimodel-emptyline"></div>
451
452 Ex: #5EM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
453
454 This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command).
455
456 <div class="wikimodel-emptyline"></div>
457
458 Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div>
459
460 Ex: #5QEM&lt;cr&gt; might return *5QEM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
461
462 This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div>
463
464 Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div>
465
466 Ex: #5CEM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
467
468 This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
469 <div class="wikimodel-emptyline"></div></div></div>
470 {{/html}}
471
472 ====== __Filter Position Count (**FPC**)__ ======
473
474 {{html clean="false" wiki="true"}}
475 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
476 The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default.
477 <div class="wikimodel-emptyline"></div>
478 Ex: #5FPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
479 This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div>
480
481 Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div>
482
483 Ex: #5QFPC&lt;cr&gt; might return *5QFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
484
485 This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div>
486
487 Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div>
488
489 Ex: #5CFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
490
491 This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
492 <div class="wikimodel-emptyline"></div></div></div>
493 {{/html}}
494
495 ====== __Origin Offset (**O**)__ ======
496
497 {{html wiki="true" clean="false"}}
498 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
499 Example: #5O2400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
500
501 This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div>
502
503 [[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
504
505 In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div>
506
507 [[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div>
508
509 Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div>
510
511 Example: #5QO&lt;cr&gt; might return *5QO-13<div class="wikimodel-emptyline"></div>
512
513 This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div>
514
515 Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div>
516
517 Example: #5CO-24&lt;cr&gt;<div class="wikimodel-emptyline"></div>
518
519 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
520 <div class="wikimodel-emptyline"></div></div></div>
521 {{/html}}
522
523 ====== __Angular Range (**AR**)__ ======
524
525 {{html wiki="true" clean="false"}}
526 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
527 Example: #5AR1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
528
529 This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div>
530
531 [[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
532
533 Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div>
534
535 [[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div>
536
537 Finally, the angular range action command (ex. #5AR1800&lt;cr&gt;) and origin offset action command (ex. #5O-1200&lt;cr&gt;) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div>
538
539 [[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div>
540
541 Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div>
542
543 Example: #5QAR&lt;cr&gt; might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div>
544
545 Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div>
546
547 This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
548 <div class="wikimodel-emptyline"></div></div></div>
549 {{/html}}
550
551 ====== __Angular Stiffness (**AS**)__ ======
552
553 {{html wiki="true" clean="false"}}
554 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
555 The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div>
556
557 A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div>
558
559 * The more torque will be applied to try to keep the desired position against external input / changes
560 * The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div>
561
562 A lower value on the other hand:<div class="wikimodel-emptyline"></div>
563
564 * Causes a slower acceleration to the travel speed, and a slower deceleration
565 * Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div>
566
567 The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
568
569 Ex: #5AS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
570
571 This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div>
572
573 Ex: #5QAS&lt;cr&gt;<div class="wikimodel-emptyline"></div>
574
575 Queries the value being used.<div class="wikimodel-emptyline"></div>
576
577 Ex: #5CAS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
578
579 Writes the desired angular stiffness value to EEPROM.
580 <div class="wikimodel-emptyline"></div></div></div>
581 {{/html}}
582
583 ====== __Angular Holding Stiffness (**AH**)__ ======
584
585 {{html wiki="true" clean="false"}}
586 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
587 The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
588
589 Ex: #5AH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
590
591 This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div>
592
593 Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div>
594
595 Ex: #5QAH&lt;cr&gt; might return *5QAH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
596
597 This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div>
598
599 Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div>
600
601 Ex: #5CAH2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
602
603 This writes the angular holding stiffness of servo #5 to 2 to EEPROM.
604 <div class="wikimodel-emptyline"></div></div></div>
605 {{/html}}
606
607 ====== __Angular Acceleration (**AA**)__ ======
608
609 {{html wiki="true" clean="false"}}
610 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
611 The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
612
613 Ex: #5AA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
614
615 This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
616
617 Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div>
618
619 Ex: #5QAA&lt;cr&gt; might return *5QAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
620
621 This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
622
623 Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div>
624
625 Ex: #5CAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
626
627 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
628 <div class="wikimodel-emptyline"></div></div></div>
629 {{/html}}
630
631 ====== __Angular Deceleration (**AD**)__ ======
632
633 {{html wiki="true" clean="false"}}
634 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
635 The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
636
637 Ex: #5AD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
638
639 This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
640
641 Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div>
642
643 Ex: #5QAD&lt;cr&gt; might return *5QAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
644
645 This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
646
647 Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div>
648
649 Ex: #5CAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
650
651 This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
652 <div class="wikimodel-emptyline"></div></div></div>
653 {{/html}}
654
655 ====== __Gyre Direction (**G**)__ ======
656
657 {{html wiki="true" clean="false"}}
658 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
659 "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div>
660
661 Ex: #5G-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
662
663 This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div>
664
665 Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div>
666
667 Ex: #5QG&lt;cr&gt; might return *5QG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
668
669 The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div>
670
671 Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div>
672
673 Ex: #5CG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
674
675 This changes the gyre direction as described above and also writes to EEPROM.
676 <div class="wikimodel-emptyline"></div></div></div>
677 {{/html}}
678
679 ====== __First Position__ ======
680
681 {{html wiki="true" clean="false"}}
682 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
683 In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div>
684
685 Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div>
686
687 Ex: #5QFD&lt;cr&gt; might return *5QFD900&lt;cr&gt; <div class="wikimodel-emptyline"></div>
688
689 The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div>
690
691 Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div>
692
693 Ex: #5CFD900&lt;cr&gt;<div class="wikimodel-emptyline"></div>
694
695 This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD&lt;cr&gt;) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD&lt;cr&gt;
696 <div class="wikimodel-emptyline"></div></div></div>
697 {{/html}}
698
699 ====== __Maximum Motor Duty (**MMD**)__ ======
700
701 {{html wiki="true" clean="false"}}
702 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
703 This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div>
704
705 Ex: #5MMD512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
706
707 This will set the duty-cycle to 512 for servo with ID 5 for that session.<div class="wikimodel-emptyline"></div>
708
709 Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div>
710
711 Ex: #5QMMDD&lt;cr&gt; might return *5QMMD512&lt;cr&gt; <div class="wikimodel-emptyline"></div>
712
713 This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023.
714 <div class="wikimodel-emptyline"></div></div></div>
715 {{/html}}
716
717 ====== __Maximum Speed in Degrees (**SD**)__ ======
718
719 {{html wiki="true" clean="false"}}
720 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
721 Ex: #5SD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
722 This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
723
724 Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div>
725
726 Ex: #5QSD&lt;cr&gt; might return *5QSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
727
728 By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1&lt;cr&gt; is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
729
730 |**Command sent**|**Returned value (1/10 °)**
731 |ex: #5QSD&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
732 |ex: #5QSD1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
733 |ex: #5QSD2&lt;cr&gt;|Instantaneous speed (same as QWD)
734 |ex: #5QSD3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
735
736 Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div>
737
738 Ex: #5CSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
739 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
740 </div></div>
741 {{/html}}
742
743 ====== __Maximum Speed in RPM (**SR**)__ ======
744
745 {{html wiki="true" clean="false"}}
746 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
747 Ex: #5SR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
748 This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
749
750 Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div>
751
752 Ex: #5QSR&lt;cr&gt; might return *5QSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
753
754 By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1&lt;cr&gt; is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
755
756 |**Command sent**|**Returned value (1/10 °)**
757 |ex: #5QSR&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
758 |ex: #5QSR1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
759 |ex: #5QSR2&lt;cr&gt;|Instantaneous speed (same as QWD)
760 |ex: #5QSR3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
761
762 Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div>
763
764 Ex: #5CSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
765 Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
766 </div></div>
767 {{/html}}
768
769 == Modifiers ==
770
771 ====== __Speed (**S**, **SD**) modifier__ ======
772
773 {{html clean="false" wiki="true"}}
774 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
775 Example: #5P1500S750&lt;cr&gt;<div class="wikimodel-emptyline"></div>
776 Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
777 Example: #5D0SD180&lt;cr&gt;<div class="wikimodel-emptyline"></div>
778 Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.<div class="wikimodel-emptyline"></div>
779 Query Speed (**QS**)<div class="wikimodel-emptyline"></div>
780 Example: #5QS&lt;cr&gt; might return *5QS300&lt;cr&gt;<div class="wikimodel-emptyline"></div>
781 This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div>
782 </div></div>
783 {{/html}}
784
785 ====== __Timed move (**T**) modifier__ ======
786
787 {{html wiki="true" clean="false"}}
788 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
789 Example: #5P1500T2500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
790
791 Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
792 **Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div>
793 </div></div>
794 {{/html}}
795
796 ====== __Current Halt & Hold (**CH**) modifier__ ======
797
798 {{html wiki="true" clean="false"}}
799 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
800 Example: #5D1423CH400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
801
802 This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div>
803 This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
804 </div></div>
805 {{/html}}
806
807 ====== __Current Limp (**CL**) modifier__ ======
808
809 {{html wiki="true" clean="false"}}
810 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
811 Example: #5D1423CL400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
812
813 This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div>
814 This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
815 </div></div>
816 {{/html}}
817
818 == Telemetry ==
819
820 ====== __Query Voltage (**QV**)__ ======
821
822 {{html wiki="true" clean="false"}}
823 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
824 Ex: #5QV&lt;cr&gt; might return *5QV11200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
825 The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div>
826 </div></div>
827 {{/html}}
828
829 ====== __Query Temperature (**QT**)__ ======
830
831 {{html wiki="true" clean="false"}}
832 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
833 Ex: #5QT&lt;cr&gt; might return *5QT564&lt;cr&gt;<div class="wikimodel-emptyline"></div>
834 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div>
835 </div></div>
836 {{/html}}
837
838 ====== __Query Current (**QC**)__ ======
839
840 {{html wiki="true" clean="false"}}
841 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
842 Ex: #5QC&lt;cr&gt; might return *5QC140&lt;cr&gt;<div class="wikimodel-emptyline"></div>
843 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div>
844 </div></div>
845 {{/html}}
846
847 ====== __Query Model String (**QMS**)__ ======
848
849 {{html wiki="true" clean="false"}}
850 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
851 Ex: #5QMS&lt;cr&gt; might return *5QMSLSS-HS1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
852 This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div>
853 </div></div>
854 {{/html}}
855
856 ====== __Query Firmware (**QF**)__ ======
857
858 {{html wiki="true" clean="false"}}
859 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
860 Ex: #5QF&lt;cr&gt; might return *5QF368&lt;cr&gt;<div class="wikimodel-emptyline"></div>
861 The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div>
862 The command #5QF3&lt;cr&gt; can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div>
863 </div></div>
864 {{/html}}
865
866 ====== __Query Serial Number (**QN**)__ ======
867
868 {{html wiki="true" clean="false"}}
869 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
870 Ex: #5QN&lt;cr&gt; might return *5QN12345678&lt;cr&gt;<div class="wikimodel-emptyline"></div>
871 The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div>
872 </div></div>
873 {{/html}}
874
875 == RGB LED ==
876
877 ====== __LED Color (**LED**)__ ======
878
879 {{html wiki="true" clean="false"}}
880 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
881 Ex: #5LED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
882 This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div>
883 0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div>
884 Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div>
885 Ex: #5QLED&lt;cr&gt; might return *5QLED5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
886 This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div>
887 Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div>
888 Ex: #5CLED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
889 Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div>
890 </div></div>
891 {{/html}}
892
893 ====== __Configure LED Blinking (**CLB**)__ ======
894
895 {{html wiki="true" clean="false"}}
896 <div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
897 This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div>
898
899 (% style="width:195px" %)
900 |(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
901 |(% style="width:134px" %)No blinking|(% style="width:58px" %)0
902 |(% style="width:134px" %)Limp|(% style="width:58px" %)1
903 |(% style="width:134px" %)Holding|(% style="width:58px" %)2
904 |(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
905 |(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
906 |(% style="width:134px" %)Free|(% style="width:58px" %)16
907 |(% style="width:134px" %)Travelling|(% style="width:58px" %)32
908 |(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div>
909
910 To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div>
911 Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div>
912 Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div>
913 Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div>
914 Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div>
915 Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div>
916 Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div>
917 RESETTING the servo is needed.<div class="wikimodel-emptyline"></div>
918 </div></div>
919 {{/html}}
920
921 == RGB LED ==
922
923 The LED can be
Copyright RobotShop 2018