Wiki source code of LSS-PRO Communication Protocol

Version 78.15 by Eric Nantel on 2024/07/22 14:34

Show last authors
1 (% class="wikigeneratedid" id="HTableofContents" %)
2 **Page Contents**
3
4 {{toc depth="3"/}}
5
6 = Serial Protocol =
7
8 The Lynxmotion Smart Servo (LSS) PRO serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's Smart Servo (LSS) protocol, which itself was based on the SSC-32 & SSC-32U RC servo controllers. The LSS PRO series and normal LSS share many of the same commands, but because of higher angular precision, slightly different operation and different features, the two protocols do not fully overlap.
9
10 In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol.
11
12 = Action Commands =
13
14 Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]] (described below). Action commands are sent serially to the servo and must be sent in the following format:
15
16 1. Start with a number sign **#** (Unicode Character: U+0023)
17 1. Servo ID number as an integer (assigning an ID described below)
18 1. Action command (one or more letters, no whitespace, capital or lowercase from the list below)
19 1. Action value in the correct units with no decimal
20 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
21
22 (((
23 Ex: #5D130000<cr>
24
25 This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (13000 in hundredths of degrees) of 130.00 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
26
27 == Modifiers ==
28
29 Modifiers can only be used with certain **action commands**. The format to include a modifier is:
30
31 1. Start with a number sign **#** (Unicode Character: U+0023)
32 1. Servo ID number as an integer
33 1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
34 1. Action value in the correct units with no decimal
35 1. Modifier command (one or two letters from the list of modifiers below)
36 1. Modifier value in the correct units with no decimal
37 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
38
39 Ex: #5D13000T1500<cr>This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).
40
41 == Queries ==
42
43 Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:
44
45 1. Start with a number sign **#** (Unicode Character: U+0023)
46 1. Servo ID number as an integer
47 1. Query command (one to four letters, no spaces, capital or lower case)
48 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
49
50 Ex: #5QD<cr> Query the position in (hundredths of) degrees for servo with ID #5The query will return a serial string (almost instantaneously) via the servo's Tx in the following format:
51
52 1. Start with an asterisk * (Unicode Character: U+0023)
53 1. Servo ID number as an integer
54 1. Query command (one to four letters, no spaces, capital letters)
55 1. The reported value in the units described, no decimals.
56 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
57
58 There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:
59
60 Ex: *5QD13000<cr>
61
62 This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees).
63
64 == Configurations ==
65
66 Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.
67
68 The format to send a configuration command is identical to that of an action command:
69
70 1. Start with a number sign **#** (Unicode Character: U+0023)
71 1. Servo ID number as an integer
72 1. Configuration command (two to four letters, no spaces, capital or lower case)
73 1. Configuration value in the correct units with no decimal
74 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
75
76 Ex: #5CO-500<cr>
77
78 This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).
79
80 **Session vs Configuration Query**
81
82 By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
83
84 Ex: #5CSR10<cr> immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.
85
86 After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
87
88 #5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas
89
90 #5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM
91
92 The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).
93
94 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]
95
96 In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
97
98 #1D-3000<cr> This causes the servo to move to -30.00 degrees (green arrow)
99
100 #1D21000<cr> This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)
101
102 #1D-42000<cr> This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.
103
104 Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees.
105
106 #1D48000<cr> This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
107
108 #1D33000<cr> would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).
109
110 If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.00 degrees before power is cycled, upon power up the servo's position will be read as +120.00 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.00°, 180.00°].
111 )))
112
113 = Command List =
114
115 **Latest firmware version currently : v0.0.780**
116
117 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]]
118 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
119 | |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Soft reset
120 | |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Revert to firmware default values
121 | |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Update firmware
122 | |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Confirm the action for some commands
123 | |[[**ID** Number >>||anchor="HIDNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %)0|(% style="text-align:center" %) |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
124 | |[[**E**nable CAN **T**erminal>>doc:||anchor="HEnableCANTerminalResistor28ET29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET|(% style="text-align:center" %)1|(% style="text-align:center" %)0 or 1|0: Disable  1: Enable
125 | |[[**U**SB **C**onnection Status>>||anchor="HUSBConnectionStatus28UC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)0 or 1|0: Not connected 1: Connected
126
127 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]]
128 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
129 | |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD|(% style="text-align:center" %) | |0.01°|
130 | |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) | |0.01°|
131 | |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD|(% style="text-align:center" %) | |0.01°/s|A.K.A. "Speed mode" or "Continuous rotation"
132 | |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM28WR29"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) | |RPM|A.K.A. "Speed mode" or "Continuous rotation"
133 | |[[**Q**uery Motion Status>>||anchor="HQueryStatus28Q29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) | |1 to 8 integer|See command description for details
134 | |[[**Q**uery **M**otion **T**ime>>doc:||anchor="HMotionTime"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMT|(% style="text-align:center" %) | |0.01s|
135 | |[[**Q**uery **C**urrent **S**peed>>doc:||anchor="HCurrentSpeed"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | |0.01°/s|
136 | |[[**L**imp>>||anchor="HLimp28L29"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Removes power from stepper coils
137 | |[[**H**alt & Hold>>doc:||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Stops (halts) motion and holds last position
138
139 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]]
140 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
141 | |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)0|(% style="text-align:center" %)0.01°|
142 | |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)36000|(% style="text-align:center" %)0.01°|
143 | |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s^2|
144 | |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s^2|
145 | |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)1|(% style="text-align:center" %)1 or -1|Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
146 | |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°|Reset required after change.
147 | |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s|SD / CSD overwrites SR / CSR
148 | |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %) |(% style="text-align:center" %)RPM|SR / CSR overwrites SD / CSD
149
150 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]]
151 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
152 | |[[**S**peed in **D**egrees>>doc:||anchor="HSpeed28SD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) | |0.01°/s|For D and MD action commands
153 | |[[**T**imed move>>||anchor="HTimedmove28T29modifier"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) | |ms|Time associated with D, MD commands
154
155 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]]
156 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
157 | |[[**Q**uery PCB **T**emperature>>doc:||anchor="HQueryPCBTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) | |0.1°C|
158 | |[[**Q**uery **C**urrent>>doc:||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) | |mA|Nominal RMS value to stepper motor driver IC.
159 | |[[**Q**uery **M**odel **S**tring>>doc:||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) | | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
160 | |[[**Q**uery **F**irmware Version>>doc:||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) | | |
161 | |[[**Q**uery Serial **N**umber>>doc:||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) | | |Returns the unique serial number for the servo
162 | |[[**Q**uery **T**emperature **P**robe>>doc:||anchor="HQueryTemperatureProbe28QTP29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | |0.1°C|Queries temperature probe fixed to the stepper motor
163 | |[[**Q**uery **T**emp of **M**CU>>doc:||anchor="HQueryTemperatureMCU28QTM29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTM|(% style="text-align:center" %) | |0.1°C|
164 | |[[**Q**uery **T**emp of **C**ontroller **E**rror>>doc:||anchor="HQueryTempControllerError28QTCE29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTCE|(% style="text-align:center" %) | | |(((
165 Temperature error status of the motor controller (over-temp error)
166 )))
167 | |[[**Q**uery **T**emp of **C**ontroller **W**arning>>doc:||anchor="HQueryTempControllerWarning28QTCW29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW|(% style="text-align:center" %) | | |Temperature error status of the motor controller (pre-warning)
168 | |[[**Q**uery **E**rror **F**lag>>doc:||anchor="HQueryErrorFlag28QEF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QEF|(% style="text-align:center" %) | | |
169 | |[[**Q**uery **I**MU Linear **X**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2|
170 | |[[**Q**uery **I**MU Linear **Y**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2|
171 | |[[**Q**uery **I**MU Linear **Z**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2|
172 | |[[**Q**uery **I**MU Angular Accel **α** >>doc:||anchor="HQueryIMUAngular28QIAQIBQIG29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha)
173 | |[[**Q**uery **I**MU Angular Accel **β**>>doc:||anchor="HQueryIMUAngular28QIAQIBQIG29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta)
174 | |[[**Q**uery **I**MU Angular Accel **γ**>>doc:||anchor="HQueryIMUAngular28QIAQIBQIG29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma)
175
176 |(% colspan="8" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]]
177 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
178 | |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
179
180 = (% style="color:inherit; font-family:inherit" %)Details(%%) =
181
182 == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
183
184 |(% colspan="2" %)(((
185 ====== __Reset__ ======
186 )))
187 | |(((
188 Ex: #5RESET<cr>
189
190 This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See Session, note #2 for more details.
191 )))
192
193 |(% colspan="2" %)(((
194 ====== (% style="color:inherit; font-family:inherit" %)__Default & confirm__(%%) ======
195 )))
196 |(% style="width:30px" %) |(((
197 (% style="color:inherit; font-family:inherit" %)Ex: #5DEFAULT<cr>
198
199 (% style="color:inherit; font-family:inherit" %)This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
200
201 (% style="color:inherit; font-family:inherit" %)EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
202
203 (% style="color:inherit; font-family:inherit" %)Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
204
205 (% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
206 )))
207
208 |(% colspan="2" %)(((
209 ====== (% style="color:inherit; font-family:inherit" %)__Update & confirm__(%%) ======
210 )))
211 |(% style="width:30px" %) |(((
212 (% style="color:inherit; font-family:inherit" %)Ex: #5UPDATE<cr>
213
214 (% style="color:inherit; font-family:inherit" %)This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
215
216 (% style="color:inherit; font-family:inherit" %)EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
217
218 (% style="color:inherit; font-family:inherit" %)Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
219
220 (% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
221 )))
222
223 |(% colspan="2" %)(((
224 ====== (% style="color:inherit; font-family:inherit" %)__Confirm__(%%) ======
225 )))
226 |(% style="width:30px" %) |(((
227 (% style="color:inherit; font-family:inherit" %)Ex: #5CONFIRM<cr>
228
229 (% style="color:inherit; font-family:inherit" %)This command is used to confirm changes after a Default or Update command.
230 Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
231 )))
232
233 |(% colspan="2" %)(((
234 ====== (% style="color:inherit; font-family:inherit" %)__ID Number__(%%) ======
235 )))
236 |(% style="width:30px" %) |(((
237 This assigns ID #5 to the servo previously assigned to ID 0
238
239 (% style="color:inherit; font-family:inherit" %)Configure ID Number (**CID**)
240
241 (% style="color:inherit; font-family:inherit" %)Ex: #0CID5<cr>
242
243 The default ID is 0, so this sets the servo to ID 5.
244
245 Query ID Number (**QID**)
246
247 Ex: #254QID<cr> might return *254QID5<cr>
248
249 In this case, the broadcast ID is used to ensure the servo connected will reply with the ID. This can be used in case the ID assigned to a servo is forgotten.
250 )))
251
252 |(% colspan="2" %)(((
253 ====== (% style="color:inherit; font-family:inherit" %)__Enable CAN Terminal Resistor__(%%) ======
254 )))
255 |(% style="width:30px" %) |(((
256 Query Enable CAN Terminal Resistor (**QET**)
257
258 Ex: #5QET<cr> might return *QET0<cr>
259
260 This means that servo with ID 5 is NOT configured as the last servo in the CAN bus.
261
262 Configure Enable CAN Terminal Resistor (**CET**)
263
264 (% style="color:inherit; font-family:inherit" %)Ex: #5CET1<cr>
265
266 (% style="color:inherit; font-family:inherit" %)This commands sets servo with ID 5 as being the last in the CAN Bus. The last servo in a CAN bus must be configured this way.
267 )))
268
269 |(% colspan="2" %)(((
270 ====== __USB Connection Status__ ======
271 )))
272 |(% style="width:30px" %) |(((
273 Query USB Connection Status (**QUC**)
274
275 Ex: #5QUC<cr> might return *5QUC1<cr> meaning the servo is connected via USB
276 )))
277
278 |(% colspan="2" %)(((
279 ====== __Firmware Release__ ======
280 )))
281 |(% style="width:30px" %) |(((
282 Query Firmware Release (**QFR**)
283
284 Ex: #5QFR<cr> might return *QFR11<cr> meaning it has a (random) firmware release version number 11.
285
286 This is used to verify if the firmware on the servos is up to date, or which version is running on the microcontroller.
287 )))
288
289 == Motion ==
290
291 |(% colspan="2" %)(((
292 ====== __Position in Degrees__ ======
293 )))
294 |(% style="width:30px" %) |(((
295 Position in Degrees (**D**)
296
297 Example: #5D1456<cr>
298
299 This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction.
300
301 Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above).
302
303 Query Position in Degrees (**QD**)
304
305 Example: #5QD<cr> might return *5QD132<cr>
306
307 This means the servo is located at 13.2 degrees.
308
309 Query Target Position in Degrees (**QDT**)
310
311 Ex: #5QDT<cr> might return *5QDT6783<cr>
312
313 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
314 )))
315
316 |(% colspan="2" %)(((
317 ====== __(Relative) Move in Degrees__ ======
318 )))
319 |(% style="width:30px" %) |(((
320 Move in Degrees (**MD**)
321
322 Example: #5MD123<cr>
323
324 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
325 )))
326
327 |(% colspan="2" %)(((
328 ====== __Wheel Mode in Degrees__ ======
329 )))
330 |(% style="width:30px" %) |(((
331 Wheel mode in Degrees (**WD**)
332
333 Ex: #5WD90<cr>
334
335 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
336
337 Query Wheel Mode in Degrees (**QWD**)
338
339 Ex: #5QWD<cr> might return *5QWD90<cr>
340
341 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
342 )))
343
344 |(% colspan="2" %)(((
345 ====== __Wheel Mode in RPM__ ======
346 )))
347 |(% style="width:30px" %) |(((
348 Wheel moed in RPM (**WR**)
349
350 Ex: #5WR40<cr>
351
352 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
353
354 Query Wheel Mode in RPM (**QWR**)
355
356 Ex: #5QWR<cr> might return *5QWR40<cr>
357
358 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
359 )))
360
361 |(% colspan="2" %)(((
362 ====== __Relative **M**ove in **D**egrees (**MD**)__ ======
363 )))
364 |(% style="width:30px" %) |(((
365 (% class="wikigeneratedid" %)
366 Example: #5M1500<cr>
367
368 (% class="wikigeneratedid" id="HTherelativemoveinPWMcommandcausestheservotoreaditscurrentpositionandmovebythespecifiednumberofPWMsignal.ForexampleiftheservoissettorotateCW28default29andanMcommandof1500issenttotheservo2Citwillcausetheservotorotateclockwiseby90degrees.NegativePWMvaluewouldcausetheservotorotateintheoppositeconfigureddirection." %)
369 The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
370 )))
371
372 |(% colspan="2" %)(((
373 ====== __**Q**uery Status (**Q**)__ ======
374 )))
375 |(% style="width:30px" %) |(((
376 The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.
377
378 Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
379
380 |(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description**
381 | |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
382 | |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
383 | |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command
384 | |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
385 | |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
386 | |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
387 | |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will normally be holding)
388 | |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
389 | |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
390 | |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
391 | |ex: *5Q10<cr>|10: Safe Mode|(((
392 A safety limit has been exceeded (temperature, peak current or extended high current draw).
393
394 Send a Q1 command to know which limit has been reached (described below).
395 )))
396
397 If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
398
399 |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
400 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
401 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
402 | |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
403 | |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
404 )))
405
406 |(% colspan="2" %)(((
407 ====== __**Q**uery** M**otion **T**ime (**QMT**)__ ======
408 )))
409 |(% style="width:30px" %) |(((
410
411 )))
412
413 |(% colspan="2" %)(((
414 ====== __**Q**uery** C**urrent **S**peed (**QCS**)__ ======
415 )))
416 |(% style="width:30px" %) |(((
417
418 )))
419
420 |(% colspan="2" %)(((
421 ====== __**L**imp (**L**)__ ======
422 )))
423 |(% style="width:30px" %) |(((
424 Example: #5L<cr>
425
426 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
427 )))
428
429 |(% colspan="2" %)(((
430 ====== __**H**alt & Hold (**H**)__ ======
431 )))
432 |(% style="width:30px" %) |(((
433 Example: #5H<cr>
434
435 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
436 )))
437
438 == Motion Setup ==
439
440 |(% colspan="2" %)(((
441 ====== __Origin Offset (**O**)__ ======
442 )))
443 |(% style="width:30px" %) |(((
444 Example: #5O2400<cr>This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
445
446 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
447
448
449 In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
450
451 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]
452
453
454 Origin Offset Query (**QO**)
455
456 Example: #5QO<cr> might return *5QO-13
457
458 This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
459
460 Configure Origin Offset (**CO**)
461
462 Example: #5CO-24<cr>
463
464 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
465 )))
466
467 |(% colspan="2" %)(((
468 ====== __Angular Range (**AR**)__ ======
469 )))
470 |(% style="width:30px" %) |(((
471 Example: #5AR1800<cr>
472
473 This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
474
475 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
476
477 Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
478
479 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]
480
481
482 Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
483
484 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]
485
486
487 Query Angular Range (**QAR**)
488
489 Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
490
491 Configure Angular Range (**CAR**)
492
493 This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
494 )))
495
496 |(% colspan="2" %)(((
497 ====== __Angular Acceleration (**AA**)__ ======
498 )))
499 |(% style="width:30px" %) |(((
500 The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
501
502 Ex: #5AA30<cr>
503
504 This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
505
506 Query Angular Acceleration (**QAA**)
507
508 Ex: #5QAA<cr> might return *5QAA30<cr>
509
510 This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).
511
512 Configure Angular Acceleration (**CAA**)
513
514 Ex: #5CAA30<cr>
515
516 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
517 )))
518
519 |(% colspan="2" %)(((
520 ====== __Angular Deceleration (**AD**)__ ======
521 )))
522 |(% style="width:30px" %) |(((
523 The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
524
525 Ex: #5AD30<cr>
526
527 This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
528
529 Query Angular Deceleration (**QAD**)
530
531 Ex: #5QAD<cr> might return *5QAD30<cr>
532
533 This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).
534
535 Configure Angular Deceleration (**CAD**)
536
537 Ex: #5CAD30<cr>
538
539 This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
540 )))
541
542 |(% colspan="2" %)(((
543 ====== __Gyre Direction (**G**)__ ======
544 )))
545 |(% style="width:30px" %) |(((
546 "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.
547
548 Ex: #5G-1<cr>
549
550 This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
551
552 Query Gyre Direction (**QG**)
553
554 Ex: #5QG<cr> might return *5QG-1<cr>
555
556 The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.
557
558 Configure Gyre (**CG**)
559
560 Ex: #5CG-1<cr>
561
562 This changes the gyre direction as described above and also writes to EEPROM.
563 )))
564
565 |(% colspan="2" %)(((
566 ====== __First Position__ ======
567 )))
568 |(% style="width:30px" %) |(((
569 In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.Query First Position in Degrees (**QFD**)Ex: #5QFD<cr> might return *5QFD900<cr>The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.Configure First Position in Degrees (**CFD**)Ex: #5CFD900<cr>This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
570 )))
571
572 |(% colspan="2" %)(((
573 ====== __Maximum Speed in Degrees (**SD**)__ ======
574 )))
575 |(% style="width:30px" %) |(((
576 Ex: #5SD1800<cr>This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in Degrees (**QSD**)Ex: #5QSD<cr> might return *5QSD1800<cr>By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
577
578 |**Command sent**|**Returned value (1/10 °)**
579 |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
580 |ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
581 |ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
582 |ex: #5QSD3<cr>|Target travel speed
583
584 Configure Speed in Degrees (**CSD**)Ex: #5CSD1800<cr>Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
585 )))
586
587 |(% colspan="2" %)(((
588 ====== __Maximum Speed in RPM (**SR**)__ ======
589 )))
590 |(% style="width:30px" %) |(((
591 ====== Ex: #5SR45<cr>This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in RPM (**QSR**)Ex: #5QSR<cr> might return *5QSR45<cr>By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: ======
592
593 |**Command sent**|**Returned value (1/10 °)**
594 |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
595 |ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
596 |ex: #5QSR2<cr>|Instantaneous speed (same as QWD)
597 |ex: #5QSR3<cr>|Target travel speed
598
599 Configure Speed in RPM (**CSR**)Ex: #5CSR45<cr>Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
600 )))
601
602 == Modifiers ==
603
604 |(% colspan="2" %)(((
605 ====== __Speed (**SD**) modifier__ ======
606 )))
607 |(% style="width:30px" %) |(((
608 ====== Example: #5D0SD180<cr> ======
609
610 (% class="wikigeneratedid" %)
611 Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.
612
613 (% class="wikigeneratedid" %)
614 Query Speed (**QS**)
615
616 (% class="wikigeneratedid" %)
617 Example: #5QS<cr> might return *5QS300<cr>
618
619 (% class="wikigeneratedid" %)
620 This command queries the current speed in microseconds per second.
621 )))
622
623 |(% colspan="2" %)(((
624 ====== __Timed move (**T**) modifier__ ======
625 )))
626 |(% style="width:30px" %) |(((
627 Example: #5D15000T2500<cr>
628
629 Timed move can be used only as a modifier for a position (D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
630
631 **Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested
632 )))
633
634 == Telemetry ==
635
636 |(% colspan="2" %)(((
637 ====== __**Q**uery PCB **T**emperature (**QT**)__ ======
638 )))
639 |(% style="width:30px" %) |(((
640 Ex: #5QT<cr> might return *5QT564<cr>
641
642 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
643 )))
644
645 |(% colspan="2" %)(((
646 ====== __**Q**uery **C**urrent (**QC**)__ ======
647 )))
648 |(% style="width:30px" %) |(((
649 ====== Ex: #5QC<cr> might return *5QC140<cr> ======
650
651 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value. The query calculates the RMS value of the current sent from the motor driver to the stepper motor.
652 )))
653
654 |(% colspan="2" %)(((
655 ====== __**Q**uery **M**odel **S**tring (**QMS**)__ ======
656 )))
657 |(% style="width:30px" %) |(((
658 ====== Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr> ======
659
660 This reply means that the servo model is LSS-HS1: a high speed servo, first revision.
661 )))
662
663 |(% colspan="2" %)(((
664 ====== __**Q**uery **F**irmware (**QF**)__ ======
665 )))
666 |(% style="width:30px" %) |(((
667 Ex: #5QF<cr> might return *5QF368<cr>
668
669 The number in the reply represents the firmware version, in this example being 368.The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14
670 )))
671
672 |(% colspan="2" %)(((
673 ====== __**Q**uery Serial **N**umber (**QN**)__ ======
674 )))
675 |(% style="width:30px" %) |(((
676 ====== Ex: #5QN<cr> might return *5QN12345678<cr> ======
677
678 The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
679 )))
680
681 |(% colspan="2" %)(((
682 ====== __**Q**uery **T**emperature **P**robe (**QTP**)__ ======
683 )))
684 |(% style="width:30px" %) |(((
685
686 )))
687
688 |(% colspan="2" %)(((
689 ====== __**Q**uery **T**emperature **M**CU (**QTM**)__ ======
690 )))
691 |(% style="width:30px" %) |(((
692
693 )))
694
695 |(% colspan="2" %)(((
696 ====== __**Q**uery **T**emp **C**ontroller **E**rror (**QTCE**)__ ======
697 )))
698 |(% style="width:30px" %) |(((
699 ====== ======
700 )))
701
702 |(% colspan="2" %)(((
703 ====== **Q**uery **T**emp **C**ontroller **W**arning (**QTCW**) ======
704 )))
705 |(% style="width:30px" %) |(((
706 ====== ======
707 )))
708
709 |(% colspan="2" %)(((
710 ====== __Query Error Flag (**QEF**)__ ======
711 )))
712 |(% style="width:30px" %) |(((
713
714 )))
715
716 |(% colspan="2" %)(((
717 ====== __**Q**uery **I**MU Linear (**QIX QIY QIZ**)__ ======
718 )))
719 |(% style="width:30px" %) |(((
720 ====== Ex: #6QIX<cr> might return *6QIX30<cr> ======
721
722 This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 30mm per second squared.
723 )))
724
725 |(% colspan="2" %)(((
726 ====== __**Q**uery **I**MU Angular (**QIA QIB QIG**)__ ======
727 )))
728 |(% style="width:30px" %) |(((
729 ====== Ex: #6QIB<cr> might return *6QIB44<cr> ======
730
731 This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 4.4 degrees per second squared.
732 )))
Copyright RobotShop 2018