Wiki source code of LSS-PRO Communication Protocol

Version 79.2 by Eric Nantel on 2024/07/22 14:59

Show last authors
1 (% class="wikigeneratedid" id="HTableofContents" %)
2 **Page Contents**
3
4 {{toc depth="3"/}}
5
6 = Serial Protocol =
7
8 The Lynxmotion Smart Servo (LSS) PRO serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's Smart Servo (LSS) protocol, which itself was based on the SSC-32 & SSC-32U RC servo controllers. The LSS PRO series and normal LSS share many of the same commands, but because of higher angular precision, slightly different operation and different features, the two protocols do not fully overlap.
9
10 In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol.
11
12 = Action Commands =
13
14 Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]] (described below). Action commands are sent serially to the servo and must be sent in the following format:
15
16 1. Start with a number sign **#** (Unicode Character: U+0023)
17 1. Servo ID number as an integer (assigning an ID described below)
18 1. Action command (one or more letters, no whitespace, capital or lowercase from the list below)
19 1. Action value in the correct units with no decimal
20 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
21
22 (((
23 Ex: #5D130000<cr>
24
25 This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (13000 in hundredths of degrees) of 130.00 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
26
27 == Modifiers ==
28
29 Modifiers can only be used with certain **action commands**. The format to include a modifier is:
30
31 1. Start with a number sign **#** (Unicode Character: U+0023)
32 1. Servo ID number as an integer
33 1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
34 1. Action value in the correct units with no decimal
35 1. Modifier command (one or two letters from the list of modifiers below)
36 1. Modifier value in the correct units with no decimal
37 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
38
39 Ex: #5D13000T1500<cr>This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).
40
41 == Queries ==
42
43 Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:
44
45 1. Start with a number sign **#** (Unicode Character: U+0023)
46 1. Servo ID number as an integer
47 1. Query command (one to four letters, no spaces, capital or lower case)
48 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
49
50 Ex: #5QD<cr> Query the position in (hundredths of) degrees for servo with ID #5The query will return a serial string (almost instantaneously) via the servo's Tx in the following format:
51
52 1. Start with an asterisk * (Unicode Character: U+0023)
53 1. Servo ID number as an integer
54 1. Query command (one to four letters, no spaces, capital letters)
55 1. The reported value in the units described, no decimals.
56 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
57
58 There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:
59
60 Ex: *5QD13000<cr>
61
62 This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees).
63
64 == Configurations ==
65
66 Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.
67
68 The format to send a configuration command is identical to that of an action command:
69
70 1. Start with a number sign **#** (Unicode Character: U+0023)
71 1. Servo ID number as an integer
72 1. Configuration command (two to four letters, no spaces, capital or lower case)
73 1. Configuration value in the correct units with no decimal
74 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
75
76 Ex: #5CO-500<cr>
77
78 This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).
79
80 **Session vs Configuration Query**
81
82 By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
83
84 Ex: #5CSR10<cr> immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.
85
86 After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
87
88 #5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas
89
90 #5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM
91
92 The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).
93
94 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]
95
96 In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
97
98 #1D-3000<cr> This causes the servo to move to -30.00 degrees (green arrow)
99
100 #1D21000<cr> This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)
101
102 #1D-42000<cr> This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.
103
104 Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees.
105
106 #1D48000<cr> This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
107
108 #1D33000<cr> would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).
109
110 If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.00 degrees before power is cycled, upon power up the servo's position will be read as +120.00 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.00°, 180.00°].
111 )))
112
113 = Command List =
114
115 **Latest firmware version currently : v0.0.780**
116
117 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]]
118 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
119 | |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Soft reset
120 | |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Revert to firmware default values
121 | |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Update firmware
122 | |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Confirm the action for some commands
123 | |[[**ID** Number >>||anchor="HIDNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %)0|(% style="text-align:center" %) |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
124 | |[[**E**nable CAN **T**erminal>>doc:||anchor="HEnableCANTerminalResistor28ET29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET|(% style="text-align:center" %)1|(% style="text-align:center" %)0 or 1|0: Disable  1: Enable
125 | |[[**U**SB **C**onnection Status>>||anchor="HUSBConnectionStatus28UC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)0 or 1|0: Not connected 1: Connected
126
127 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]]
128 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
129 | |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD|(% style="text-align:center" %) | |0.01°|
130 | |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) | |0.01°|
131 | |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD|(% style="text-align:center" %) | |0.01°/s|A.K.A. "Speed mode" or "Continuous rotation"
132 | |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM28WR29"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) | |RPM|A.K.A. "Speed mode" or "Continuous rotation"
133 | |[[**Q**uery Motion Status>>||anchor="HQueryStatus28Q29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) | |1 to 8 integer|See command description for details
134 | |[[**Q**uery **M**otion **T**ime>>doc:||anchor="HMotionTime"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMT|(% style="text-align:center" %) | |0.01s|
135 | |[[**Q**uery **C**urrent **S**peed>>doc:||anchor="HCurrentSpeed"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | |0.01°/s|
136 | |[[**L**imp>>||anchor="HLimp28L29"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Removes power from stepper coils
137 | |[[**H**alt & Hold>>doc:||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Stops (halts) motion and holds last position
138
139 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]]
140 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
141 | |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)0|(% style="text-align:center" %)0.01°|
142 | |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)36000|(% style="text-align:center" %)0.01°|
143 | |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s^2|
144 | |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s^2|
145 | |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)1|(% style="text-align:center" %)1 or -1|Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
146 | |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°|Reset required after change.
147 | |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s|SD / CSD overwrites SR / CSR
148 | |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %) |(% style="text-align:center" %)RPM|SR / CSR overwrites SD / CSD
149
150 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]]
151 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
152 | |[[**S**peed in **D**egrees>>doc:||anchor="HSpeed28SD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) | |0.01°/s|For D and MD action commands
153 | |[[**T**imed move>>||anchor="HTimedmove28T29modifier"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) | |ms|Time associated with D, MD commands
154
155 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]]
156 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
157 | |[[**Q**uery PCB **T**emperature>>doc:||anchor="HQueryPCBTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) | |0.1°C|
158 | |[[**Q**uery **C**urrent>>doc:||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) | |mA|Nominal RMS value to stepper motor driver IC.
159 | |[[**Q**uery **M**odel **S**tring>>doc:||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) | | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
160 | |[[**Q**uery **F**irmware Version>>doc:||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) | | |
161 | |[[**Q**uery Serial **N**umber>>doc:||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) | | |Returns the unique serial number for the servo
162 | |[[**Q**uery **T**emperature **P**robe>>doc:||anchor="HQueryTemperatureProbe28QTP29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | |0.1°C|Queries temperature probe fixed to the stepper motor
163 | |[[**Q**uery **T**emp of **M**CU>>doc:||anchor="HQueryTemperatureMCU28QTM29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTM|(% style="text-align:center" %) | |0.1°C|
164 | |[[**Q**uery **T**emp of **C**ontroller **E**rror>>doc:||anchor="HQueryTempControllerError28QTCE29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTCE|(% style="text-align:center" %) | | |(((
165 Temperature error status of the motor controller (over-temp error)
166 )))
167 | |[[**Q**uery **T**emp of **C**ontroller **W**arning>>doc:||anchor="HQueryTempControllerWarning28QTCW29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW|(% style="text-align:center" %) | | |Temperature error status of the motor controller (pre-warning)
168 | |[[**Q**uery **E**rror **F**lag>>doc:||anchor="HQueryErrorFlag28QEF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QEF|(% style="text-align:center" %) | | |
169 | |[[**Q**uery **I**MU Linear **X**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2|
170 | |[[**Q**uery **I**MU Linear **Y**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2|
171 | |[[**Q**uery **I**MU Linear **Z**>>doc:||anchor="HQueryIMULinear28QIXQIYQIZ29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2|
172 | |[[**Q**uery **I**MU Angular Accel **α** >>doc:||anchor="HQueryIMUAngular28QIAQIBQIG29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha)
173 | |[[**Q**uery **I**MU Angular Accel **β**>>doc:||anchor="HQueryIMUAngular28QIAQIBQIG29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta)
174 | |[[**Q**uery **I**MU Angular Accel **γ**>>doc:||anchor="HQueryIMUAngular28QIAQIBQIG29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma)
175
176 |(% colspan="8" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]]
177 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
178 | |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
179
180 = (% style="color:inherit; font-family:inherit" %)Details(%%) =
181
182 == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
183
184 |(% colspan="2" %)(((
185 ====== __Reset__ ======
186 )))
187 | |(((
188 Reset (**RESET**)
189
190 Ex: #5RESET<cr>
191
192 This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See Session, note #2 for more details.
193 )))
194
195 |(% colspan="2" %)(((
196 ====== (% style="color:inherit; font-family:inherit" %)__Default__(%%) ======
197 )))
198 |(% style="width:30px" %) |(((
199 (% style="color:inherit; font-family:inherit" %)Default (**DEFAULT**)
200
201 (% style="color:inherit; font-family:inherit" %)Ex: #5DEFAULT<cr>
202
203 (% style="color:inherit; font-family:inherit" %)This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
204
205 (% style="color:inherit; font-family:inherit" %)EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
206
207 (% style="color:inherit; font-family:inherit" %)Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
208
209 (% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
210 )))
211
212 |(% colspan="2" %)(((
213 ====== (% style="color:inherit; font-family:inherit" %)__Update__(%%) ======
214 )))
215 |(% style="width:30px" %) |(((
216 (% style="color:inherit; font-family:inherit" %)Update (**UPDATE**)
217
218 (% style="color:inherit; font-family:inherit" %)Ex: #5UPDATE<cr>
219
220 (% style="color:inherit; font-family:inherit" %)This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
221
222 (% style="color:inherit; font-family:inherit" %)EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
223
224 (% style="color:inherit; font-family:inherit" %)Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
225
226 (% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
227 )))
228
229 |(% colspan="2" %)(((
230 ====== (% style="color:inherit; font-family:inherit" %)__Confirm__(%%) ======
231 )))
232 |(% style="width:30px" %) |(((
233 (% style="color:inherit; font-family:inherit" %)Confirm (**CONFIRM**)
234
235 (% style="color:inherit; font-family:inherit" %)Ex: #5CONFIRM<cr>
236
237 (% style="color:inherit; font-family:inherit" %)This command is used to confirm changes after a Default or Update command.
238 Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
239 )))
240
241 |(% colspan="2" %)(((
242 ====== (% style="color:inherit; font-family:inherit" %)__ID Number__(%%) ======
243 )))
244 |(% style="width:30px" %) |(((
245 This assigns ID #5 to the servo previously assigned to ID 0
246
247 (% style="color:inherit; font-family:inherit" %)Configure ID Number (**CID**)
248
249 (% style="color:inherit; font-family:inherit" %)Ex: #0CID5<cr>
250
251 The default ID is 0, so this sets the servo to ID 5.
252
253 Query ID Number (**QID**)
254
255 Ex: #254QID<cr> might return *254QID5<cr>
256
257 In this case, the broadcast ID is used to ensure the servo connected will reply with the ID. This can be used in case the ID assigned to a servo is forgotten.
258 )))
259
260 |(% colspan="2" %)(((
261 ====== (% style="color:inherit; font-family:inherit" %)__Enable CAN Terminal Resistor__(%%) ======
262 )))
263 |(% style="width:30px" %) |(((
264 Query Enable CAN Terminal Resistor (**QET**)
265
266 Ex: #5QET<cr> might return *QET0<cr>
267
268 This means that servo with ID 5 is NOT configured as the last servo in the CAN bus.
269
270 Configure Enable CAN Terminal Resistor (**CET**)
271
272 (% style="color:inherit; font-family:inherit" %)Ex: #5CET1<cr>
273
274 (% style="color:inherit; font-family:inherit" %)This commands sets servo with ID 5 as being the last in the CAN Bus. The last servo in a CAN bus must be configured this way.
275 )))
276
277 |(% colspan="2" %)(((
278 ====== __USB Connection Status__ ======
279 )))
280 |(% style="width:30px" %) |(((
281 Query USB Connection Status (**QUC**)
282
283 Ex: #5QUC<cr> might return *5QUC1<cr> meaning the servo is connected via USB
284 )))
285
286 == Motion ==
287
288 |(% colspan="2" %)(((
289 ====== __Position in Degrees__ ======
290 )))
291 |(% style="width:30px" %) |(((
292 Position in Degrees (**D**)
293
294 Example: #5D1456<cr>
295
296 This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction.
297
298 Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above).
299
300 Query Position in Degrees (**QD**)
301
302 Example: #5QD<cr> might return *5QD132<cr>
303
304 This means the servo is located at 13.2 degrees.
305
306 Query Target Position in Degrees (**QDT**)
307
308 Ex: #5QDT<cr> might return *5QDT6783<cr>
309
310 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
311 )))
312
313 |(% colspan="2" %)(((
314 ====== __Relative Move in Degrees__ ======
315 )))
316 |(% style="width:30px" %) |(((
317 (% class="wikigeneratedid" %)
318 Move in Degrees (**MD**)
319
320 (% class="wikigeneratedid" %)
321 Example: #5M1500<cr>
322
323 (% class="wikigeneratedid" id="HTherelativemoveinPWMcommandcausestheservotoreaditscurrentpositionandmovebythespecifiednumberofPWMsignal.ForexampleiftheservoissettorotateCW28default29andanMcommandof1500issenttotheservo2Citwillcausetheservotorotateclockwiseby90degrees.NegativePWMvaluewouldcausetheservotorotateintheoppositeconfigureddirection." %)
324 The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
325 )))
326
327 |(% colspan="2" %)(((
328 ====== __Wheel Mode in Degrees__ ======
329 )))
330 |(% style="width:30px" %) |(((
331 Wheel mode in Degrees (**WD**)
332
333 Ex: #5WD90<cr>
334
335 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
336
337 Query Wheel Mode in Degrees (**QWD**)
338
339 Ex: #5QWD<cr> might return *5QWD90<cr>
340
341 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
342 )))
343
344 |(% colspan="2" %)(((
345 ====== __Wheel Mode in RPM__ ======
346 )))
347 |(% style="width:30px" %) |(((
348 Wheel moed in RPM (**WR**)
349
350 Ex: #5WR40<cr>
351
352 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
353
354 Query Wheel Mode in RPM (**QWR**)
355
356 Ex: #5QWR<cr> might return *5QWR40<cr>
357
358 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
359 )))
360
361 |(% colspan="2" %)(((
362 ====== __Status__ ======
363 )))
364 |(% style="width:30px" %) |(((
365 Query Status (**Q**)
366
367 The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.
368
369 Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
370
371 |(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description**
372 | |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
373 | |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
374 | |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command
375 | |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
376 | |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
377 | |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
378 | |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will normally be holding)
379 | |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
380 | |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
381 | |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
382 | |ex: *5Q10<cr>|10: Safe Mode|(((
383 A safety limit has been exceeded (temperature, peak current or extended high current draw).
384
385 Send a Q1 command to know which limit has been reached (described below).
386 )))
387
388 If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
389
390 |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
391 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
392 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
393 | |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
394 | |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
395 )))
396
397 |(% colspan="2" %)(((
398 ====== __Motion Time__ ======
399 )))
400 |(% style="width:30px" %) |(((
401 Query Motion Time (**QMT**)
402 )))
403
404 |(% colspan="2" %)(((
405 ====== __Current Speed__ ======
406 )))
407 |(% style="width:30px" %) |(((
408 Query Current Speed (**QCS**)
409 )))
410
411 |(% colspan="2" %)(((
412 ====== __Limp__ ======
413 )))
414 |(% style="width:30px" %) |(((
415 Example: #5L<cr>
416
417 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
418 )))
419
420 |(% colspan="2" %)(((
421 ====== __Halt & Hold__ ======
422 )))
423 |(% style="width:30px" %) |(((
424 Example: #5H<cr>
425
426 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
427 )))
428
429 == Motion Setup ==
430
431 |(% colspan="2" %)(((
432 ====== __Origin Offset__ ======
433 )))
434 |(% style="width:30px" %) |(((
435 Example: #5O2400<cr>This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
436
437 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
438
439
440 In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
441
442 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]
443
444
445 Origin Offset Query (**QO**)
446
447 Example: #5QO<cr> might return *5QO-13
448
449 This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
450
451 Configure Origin Offset (**CO**)
452
453 Example: #5CO-24<cr>
454
455 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
456 )))
457
458 |(% colspan="2" %)(((
459 ====== __Angular Range__ ======
460 )))
461 |(% style="width:30px" %) |(((
462 Example: #5AR1800<cr>
463
464 This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
465
466 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
467
468 Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
469
470 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]
471
472
473 Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
474
475 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]
476
477
478 Query Angular Range (**QAR**)
479
480 Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
481
482 Configure Angular Range (**CAR**)
483
484 This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
485 )))
486
487 |(% colspan="2" %)(((
488 ====== __Angular Acceleration__ ======
489 )))
490 |(% style="width:30px" %) |(((
491 The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
492
493 Ex: #5AA30<cr>
494
495 This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
496
497 Query Angular Acceleration (**QAA**)
498
499 Ex: #5QAA<cr> might return *5QAA30<cr>
500
501 This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).
502
503 Configure Angular Acceleration (**CAA**)
504
505 Ex: #5CAA30<cr>
506
507 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
508 )))
509
510 |(% colspan="2" %)(((
511 ====== __Angular Deceleration__ ======
512 )))
513 |(% style="width:30px" %) |(((
514 The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
515
516 Ex: #5AD30<cr>
517
518 This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
519
520 Query Angular Deceleration (**QAD**)
521
522 Ex: #5QAD<cr> might return *5QAD30<cr>
523
524 This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).
525
526 Configure Angular Deceleration (**CAD**)
527
528 Ex: #5CAD30<cr>
529
530 This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
531 )))
532
533 |(% colspan="2" %)(((
534 ====== __Gyre Direction__ ======
535 )))
536 |(% style="width:30px" %) |(((
537 "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.
538
539 Ex: #5G-1<cr>
540
541 This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
542
543 Query Gyre Direction (**QG**)
544
545 Ex: #5QG<cr> might return *5QG-1<cr>
546
547 The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.
548
549 Configure Gyre (**CG**)
550
551 Ex: #5CG-1<cr>
552
553 This changes the gyre direction as described above and also writes to EEPROM.
554 )))
555
556 |(% colspan="2" %)(((
557 ====== __First Position__ ======
558 )))
559 |(% style="width:30px" %) |(((
560 In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned.
561
562 Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.
563
564 Query First Position in Degrees (**QFD**)
565
566 Ex: #5QFD<cr> might return *5QFD900<cr>The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.
567
568 Configure First Position in Degrees (**CFD**)
569
570 Ex: #5CFD900<cr>
571
572 This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
573 )))
574
575 |(% colspan="2" %)(((
576 ====== __Maximum Speed in Degrees__ ======
577 )))
578 |(% style="width:30px" %) |(((
579 Maximum Speed in Degrees (**SD**)
580
581 Ex: #5SD1800<cr>
582
583 This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
584
585 Query Speed in Degrees (**QSD**)
586
587 Ex: #5QSD<cr> might return *5QSD1800<cr>
588
589 By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
590
591 |**Command sent**|**Returned value (1/10 °)**
592 |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
593 |ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
594 |ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
595 |ex: #5QSD3<cr>|Target travel speed
596
597 Configure Speed in Degrees (**CSD**)
598
599 Ex: #5CSD1800<cr>
600
601 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
602 )))
603
604 |(% colspan="2" %)(((
605 ====== __Maximum Speed in RPM__ ======
606 )))
607 |(% style="width:30px" %) |(((
608 (% class="wikigeneratedid" %)
609 Maximum Speed in RPM (**SR**)
610
611 (% class="wikigeneratedid" id="HEx:235SR453Ccr3EThiscommandsetstheservo27smaximumspeedformotioncommandsinrpmforthatsession.Intheexampleabove2Ctheservo27smaximumspeedforthatsessionwouldbesetto45rpm.Theservo27smaximumspeedcannotbesethigherthanitsphysicallimitatagivenvoltage.SRoverridesCSR28describedbelow29forthatsession.Uponresetorpowercycle2CtheservorevertstothevalueassociatedwithCSRasdescribedbelow.NotethatSD28describedabove29andSRareeffectivelythesame2Cbutallowtheusertospecifythespeedineitherunit.Thelastcommand28eitherSRorSD29receivediswhattheservousesforthatsession.QuerySpeedinRPM28QSR29Ex:235QSR3Ccr3Emightreturn2A5QSR453Ccr3EBydefaultQSRwillreturnthecurrentsessionvalue2CwhichissettothevalueofCSRasreset2FpowercycleandchangedwheneveranSD2FSRcommandisprocessed.If235QSR13Ccr3Eissent2Ctheconfiguredmaximumspeed28CSRvalue29willbereturnedinstead.Youcanalsoquerythecurrentspeedusing22222andthecurrenttargettravelspeedusing22322.Seethetablebelowforanexample:" %)
612 Ex: #5SR45<cr>
613
614 (% class="wikigeneratedid" %)
615 This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below.
616
617 (% class="wikigeneratedid" %)
618 Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit.
619
620 (% class="wikigeneratedid" %)
621 The last command (either SR or SD) received is what the servo uses for that session.
622
623 (% class="wikigeneratedid" %)
624 Query Speed in RPM (**QSR**)
625
626 (% class="wikigeneratedid" %)
627 Ex: #5QSR<cr> might return *5QSR45<cr>
628
629 (% class="wikigeneratedid" %)
630 By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
631
632 |**Command sent**|**Returned value (1/10 °)**
633 |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
634 |ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
635 |ex: #5QSR2<cr>|Instantaneous speed (same as QWD)
636 |ex: #5QSR3<cr>|Target travel speed
637
638 Configure Speed in RPM (**CSR**)
639
640 Ex: #5CSR45<cr>
641
642 Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
643 )))
644
645 == Modifiers ==
646
647 |(% colspan="2" %)(((
648 ====== __Speed __ ======
649 )))
650 |(% style="width:30px" %) |(((
651 (% class="wikigeneratedid" %)
652 Speed in Degrees (**SD**)
653
654 (% class="wikigeneratedid" id="HExample:235D0SD1803Ccr3E" %)
655 Example: #5D0SD180<cr>
656
657 (% class="wikigeneratedid" %)
658 Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.
659
660 (% class="wikigeneratedid" %)
661 Query Speed (**QS**)
662
663 (% class="wikigeneratedid" %)
664 Example: #5QS<cr> might return *5QS300<cr>
665
666 (% class="wikigeneratedid" %)
667 This command queries the current speed in microseconds per second.
668 )))
669
670 |(% colspan="2" %)(((
671 ====== __Timed move__ ======
672 )))
673 |(% style="width:30px" %) |(((
674 Timed Move (**T**)
675
676 Example: #5D15000T2500<cr>
677
678 Timed move can be used only as a modifier for a position (D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
679
680 **Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested
681 )))
682
683 == Telemetry ==
684
685 |(% colspan="2" %)(((
686 ====== __Temperature PCB__ ======
687 )))
688 |(% style="width:30px" %) |(((
689 Query Temp PCB (**QT**)
690
691 Ex: #5QT<cr> might return *5QT564<cr>
692
693 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
694 )))
695
696 |(% colspan="2" %)(((
697 ====== __Current__ ======
698 )))
699 |(% style="width:30px" %) |(((
700 (% class="wikigeneratedid" %)
701 Query Current (**QC**)
702
703 (% class="wikigeneratedid" id="HEx:235QC3Ccr3Emightreturn2A5QC1403Ccr3E" %)
704 Ex: #5QC<cr> might return *5QC140<cr>
705
706 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value. The query calculates the RMS value of the current sent from the motor driver to the stepper motor.
707 )))
708
709 |(% colspan="2" %)(((
710 ====== __Model String__ ======
711 )))
712 |(% style="width:30px" %) |(((
713 (% class="wikigeneratedid" %)
714 Query Model String (**QMS**)
715
716 (% class="wikigeneratedid" id="HEx:235QMS3Ccr3Emightreturn2A5QMSLSS-HS13Ccr3E" %)
717 Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
718
719 This reply means that the servo model is LSS-HS1: a high speed servo, first revision.
720 )))
721
722 |(% colspan="2" %)(((
723 ====== __Firmware__ ======
724 )))
725 |(% style="width:30px" %) |(((
726 Query Firmware (**QF**)
727
728 Ex: #5QF<cr> might return *5QF368<cr>
729
730 The number in the reply represents the firmware version, in this example being 368.The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14
731 )))
732
733 |(% colspan="2" %)(((
734 ====== __Serial Number__ ======
735 )))
736 |(% style="width:30px" %) |(((
737 (% class="wikigeneratedid" %)
738 Query Serial Number (**QN**)
739
740 (% class="wikigeneratedid" id="HEx:235QN3Ccr3Emightreturn2A5QN123456783Ccr3E" %)
741 Ex: #5QN<cr> might return *5QN12345678<cr>
742
743 The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
744 )))
745
746 |(% colspan="2" %)(((
747 ====== __Temperature Probe__ ======
748 )))
749 |(% style="width:30px" %) |(((
750 Query Temp motor Probe (**QTP**)
751 )))
752
753 |(% colspan="2" %)(((
754 ====== __Temperature MCU__ ======
755 )))
756 |(% style="width:30px" %) |(((
757 Query Temp MCU (**QTM**)
758 )))
759
760 |(% colspan="2" %)(((
761 ====== __Temp Controller Error__ ======
762 )))
763 |(% style="width:30px" %) |(((
764 (% class="wikigeneratedid" id="HEx:236QIX3Ccr3Emightreturn2A6QIX303Ccr3E" %)
765 Query Temp Controller Error (**QTCE**)
766 )))
767
768 |(% colspan="2" %)(((
769 ====== __Temp Controller Warning__ ======
770 )))
771 |(% style="width:30px" %) |(((
772 (% class="wikigeneratedid" id="HEx:236QIX3Ccr3Emightreturn2A6QIX303Ccr3E" %)
773 Query Temp Controller Warning (**QTCW**)
774 )))
775
776 |(% colspan="2" %)(((
777 ====== __Error Flag__ ======
778 )))
779 |(% style="width:30px" %) |(((
780 Query Error Flag (**QEF**)
781 )))
782
783 |(% colspan="2" %)(((
784 ====== __IMU Linear__ ======
785 )))
786 |(% style="width:30px" %) |(((
787 (% class="wikigeneratedid" %)
788 Query IMU Linear (**QIX QIY QIZ**)
789
790 ====== Ex: #6QIX<cr> might return *6QIX30<cr> ======
791
792 This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 30mm per second squared.
793 )))
794
795 |(% colspan="2" %)(((
796 ====== __IMU Angular__ ======
797 )))
798 |(% style="width:30px" %) |(((
799 (% class="wikigeneratedid" id="HEx:236QIB3Ccr3Emightreturn2A6QIB443Ccr3E" %)
800 Query IMU Angular (**QIA QIB QIG**)
801 Ex: #6QIB<cr> might return *6QIB44<cr>
802
803 This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 4.4 degrees per second squared.
804 )))
805
806
Copyright RobotShop 2018