Wiki source code of LSS-PRO Communication Protocol

Last modified by Eric Nantel on 2024/09/06 14:52

Hide last authors
Eric Nantel 1.2 1 (% class="wikigeneratedid" id="HTableofContents" %)
2 **Page Contents**
3
4 {{toc depth="3"/}}
5
6 = Serial Protocol =
7
Coleman Benson 20.1 8 The Lynxmotion Smart Servo (LSS) PRO serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's Smart Servo (LSS) protocol, which itself was based on the SSC-32 & SSC-32U RC servo controllers. The LSS PRO series and normal LSS share many of the same commands, but because of higher angular precision, slightly different operation and different features, the two protocols do not fully overlap.
Eric Nantel 1.2 9
10 In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol.
Coleman Benson 9.1 11
12 = Action Commands =
13
Coleman Benson 23.1 14 Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]] (described below). Action commands are sent serially to the servo and must be sent in the following format:
Coleman Benson 9.1 15
Coleman Benson 11.1 16 1. Start with a number sign **#** (Unicode Character: U+0023)
17 1. Servo ID number as an integer (assigning an ID described below)
18 1. Action command (one or more letters, no whitespace, capital or lowercase from the list below)
19 1. Action value in the correct units with no decimal
20 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
Coleman Benson 9.1 21
Coleman Benson 11.1 22 (((
Coleman Benson 20.1 23 Ex: #5D130000<cr>
Coleman Benson 9.1 24
Coleman Benson 20.1 25 This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (13000 in hundredths of degrees) of 130.00 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
Coleman Benson 10.1 26
27 == Modifiers ==
28
Coleman Benson 35.1 29 Modifiers can only be used with certain **action commands**. The format to include a modifier is:
Coleman Benson 10.1 30
Coleman Benson 35.1 31 1. Start with a number sign **#** (Unicode Character: U+0023)
Coleman Benson 10.1 32 1. Servo ID number as an integer
33 1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
34 1. Action value in the correct units with no decimal
Coleman Benson 35.1 35 1. Modifier command (one or two letters from the list of modifiers below)
Coleman Benson 10.1 36 1. Modifier value in the correct units with no decimal
Coleman Benson 35.1 37 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
Coleman Benson 10.1 38
Coleman Benson 35.1 39 Ex: #5D13000T1500<cr>This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).
Coleman Benson 10.1 40
Coleman Benson 35.1 41 == Queries ==
Coleman Benson 12.1 42
Coleman Benson 35.1 43 Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:
Coleman Benson 12.1 44
Coleman Benson 35.1 45 1. Start with a number sign **#** (Unicode Character: U+0023)
Coleman Benson 12.1 46 1. Servo ID number as an integer
47 1. Query command (one to four letters, no spaces, capital or lower case)
Coleman Benson 35.1 48 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
Coleman Benson 12.1 49
Coleman Benson 35.1 50 Ex: #5QD<cr> Query the position in (hundredths of) degrees for servo with ID #5The query will return a serial string (almost instantaneously) via the servo's Tx in the following format:
Coleman Benson 12.1 51
52 1. Start with an asterisk * (Unicode Character: U+0023)
53 1. Servo ID number as an integer
54 1. Query command (one to four letters, no spaces, capital letters)
55 1. The reported value in the units described, no decimals.
Coleman Benson 35.1 56 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
Coleman Benson 12.1 57
Coleman Benson 35.1 58 There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:
Coleman Benson 12.1 59
Coleman Benson 35.1 60 Ex: *5QD13000<cr>
Coleman Benson 12.1 61
Coleman Benson 20.1 62 This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees).
Coleman Benson 12.1 63
Coleman Benson 35.1 64 == Configurations ==
Coleman Benson 24.1 65
Coleman Benson 35.1 66 Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.
Coleman Benson 12.1 67
Coleman Benson 35.1 68 The format to send a configuration command is identical to that of an action command:
Coleman Benson 12.1 69
Coleman Benson 35.1 70 1. Start with a number sign **#** (Unicode Character: U+0023)
Coleman Benson 12.1 71 1. Servo ID number as an integer
72 1. Configuration command (two to four letters, no spaces, capital or lower case)
73 1. Configuration value in the correct units with no decimal
Coleman Benson 35.1 74 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
Coleman Benson 12.1 75
Coleman Benson 35.1 76 Ex: #5CO-500<cr>
Coleman Benson 12.1 77
Coleman Benson 35.1 78 This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).
Coleman Benson 12.1 79
Coleman Benson 35.1 80 **Session vs Configuration Query**
Coleman Benson 12.1 81
Coleman Benson 35.1 82 By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
Coleman Benson 12.1 83
Coleman Benson 35.1 84 Ex: #5CSR10<cr> immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.
Coleman Benson 12.1 85
Coleman Benson 35.1 86 After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
Coleman Benson 12.1 87
Coleman Benson 35.1 88 #5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas
Coleman Benson 12.1 89
Coleman Benson 35.1 90 #5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM
Coleman Benson 12.1 91
Coleman Benson 35.1 92 The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).
Coleman Benson 12.1 93
Eric Nantel 75.1 94 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]
Coleman Benson 12.1 95
Coleman Benson 35.1 96 In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
Coleman Benson 12.1 97
Coleman Benson 35.1 98 #1D-3000<cr> This causes the servo to move to -30.00 degrees (green arrow)
Coleman Benson 12.1 99
Coleman Benson 35.1 100 #1D21000<cr> This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)
Coleman Benson 12.1 101
Coleman Benson 35.1 102 #1D-42000<cr> This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.
Coleman Benson 12.1 103
Coleman Benson 35.1 104 Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees.
Coleman Benson 12.1 105
Coleman Benson 35.1 106 #1D48000<cr> This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
Coleman Benson 12.1 107
Coleman Benson 35.1 108 #1D33000<cr> would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).
Coleman Benson 12.1 109
Coleman Benson 25.1 110 If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.00 degrees before power is cycled, upon power up the servo's position will be read as +120.00 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.00°, 180.00°].
Coleman Benson 11.1 111 )))
Coleman Benson 13.1 112
113 = Command List =
114
115 **Latest firmware version currently : v0.0.780**
116
Coleman Benson 22.1 117 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]]
118 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
Eric Nantel 76.1 119 | |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Soft reset
Eric Nantel 79.3 120 | |[[**Default** Configuration>>||anchor="HDefault"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Revert to firmware default values
121 | |[[Firmware **Update** Mode>>||anchor="HUpdate"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Update firmware
Eric Nantel 76.1 122 | |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |Confirm the action for some commands
Eric Nantel 79.3 123 | |[[**ID** Number >>||anchor="HIDNumber"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %)0|(% style="text-align:center" %) |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
124 | |[[**E**nable CAN **T**erminal>>doc:||anchor="HEnableCANTerminalResistor"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET|(% style="text-align:center" %)1|(% style="text-align:center" %)0 or 1|0: Disable  1: Enable
125 | |[[**U**SB **C**onnection Status>>||anchor="HUSBConnectionStatus"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)0 or 1|0: Not connected 1: Connected
Coleman Benson 13.1 126
Coleman Benson 22.1 127 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]]
128 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
Eric Nantel 79.3 129 | |[[Position in **D**egrees>>||anchor="HPositioninDegrees"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD|(% style="text-align:center" %) | |0.01°|
130 | |[[**M**ove in **D**egrees (relative)>>||anchor="HRelativeMoveinDegrees"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) | |0.01°|
131 | |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD|(% style="text-align:center" %) | |0.01°/s|A.K.A. "Speed mode" or "Continuous rotation"
132 | |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) | |RPM|A.K.A. "Speed mode" or "Continuous rotation"
133 | |[[**Q**uery Motion Status>>||anchor="HStatus"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) | |1 to 8 integer|See command description for details
Eric Nantel 76.1 134 | |[[**Q**uery **M**otion **T**ime>>doc:||anchor="HMotionTime"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMT|(% style="text-align:center" %) | |0.01s|
135 | |[[**Q**uery **C**urrent **S**peed>>doc:||anchor="HCurrentSpeed"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | |0.01°/s|
Eric Nantel 79.3 136 | |[[**L**imp>>||anchor="HLimp"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Removes power from stepper coils
137 | |[[**H**alt & Hold>>doc:||anchor="HHalt26Hold"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Stops (halts) motion and holds last position
Coleman Benson 13.1 138
Coleman Benson 22.1 139 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]]
140 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
Eric Nantel 79.3 141 | |[[**O**rigin Offset>>||anchor="HOriginOffset"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)0|(% style="text-align:center" %)0.01°|
142 | |[[**A**ngular **R**ange>>||anchor="HAngularRange"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)36000|(% style="text-align:center" %)0.01°|
143 | |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s^2|
144 | |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s^2|
145 | |[[**G**yre Direction>>||anchor="HGyreDirection"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)1|(% style="text-align:center" %)1 or -1|Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
146 | |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %) |(% style="text-align:center" %)0.01°/s|SD / CSD overwrites SR / CSR
147 | |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %) |(% style="text-align:center" %)RPM|SR / CSR overwrites SD / CSD
Coleman Benson 13.1 148
Coleman Benson 22.1 149 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]]
150 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
Eric Nantel 79.3 151 | |[[**S**peed in **D**egrees>>doc:||anchor="HSpeed"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) | |0.01°/s|For D and MD action commands
152 | |[[**T**imed move>>||anchor="HTimedmove"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) | |ms|Time associated with D, MD commands
Coleman Benson 13.1 153
Coleman Benson 22.1 154 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]]
Eric Nantel 79.7 155 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:100px" %)**Default**|(% style="text-align:center; width:170px" %)**Unit**|**Notes**
156 | |[[PCB **T**emperature>>doc:||anchor="HTemperaturePCB"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) | |(% style="text-align:center" %)0.1°C|
157 | |[[**C**urrent>>doc:||anchor="HCurrent"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) | |(% style="text-align:center" %)mA|Nominal RMS value to stepper motor driver IC.
158 | |[[**M**odel **S**tring>>doc:||anchor="HModelString"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) | |(% style="text-align:center" %) |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
159 | |[[**F**irmware Version>>doc:||anchor="HFirmware"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) | |(% style="text-align:center" %) |
160 | |[[Serial **N**umber>>doc:||anchor="HSerialNumber"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) | |(% style="text-align:center" %) |Returns the unique serial number for the servo
161 | |[[**T**emperature **P**robe>>doc:||anchor="HTemperatureProbe"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | |(% style="text-align:center" %)0.1°C|Queries temperature probe fixed to the stepper motor
162 | |[[**T**emp of **M**CU>>doc:||anchor="HTemperatureMCU"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTM|(% style="text-align:center" %) | |(% style="text-align:center" %)0.1°C|
163 | |[[**T**emp of **C**ontroller **E**rror>>doc:||anchor="HTempControllerError"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTCE|(% style="text-align:center" %) | |(% style="text-align:center" %) |(((
Eric Nantel 76.1 164 Temperature error status of the motor controller (over-temp error)
Coleman Benson 22.1 165 )))
Eric Nantel 79.7 166 | |[[**T**emp of **C**ontroller **W**arning>>doc:||anchor="HTempControllerWarning"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW|(% style="text-align:center" %) | |(% style="text-align:center" %) |Temperature error status of the motor controller (pre-warning)
167 | |[[**E**rror **F**lag>>doc:||anchor="HErrorFlag"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QEF|(% style="text-align:center" %) | |(% style="text-align:center" %) |
168 | |[[**I**MU Linear **X**>>doc:||anchor="HIMULinear"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |(% style="text-align:center" %)mm/s^2|
169 | |[[**I**MU Linear **Y**>>doc:||anchor="HIMULinear"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |(% style="text-align:center" %)mm/s^2|
170 | |[[**I**MU Linear **Z**>>doc:||anchor="HIMULinear"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |(% style="text-align:center" %)mm/s^2|
171 | |[[**I**MU Angular Accel **α** >>doc:||anchor="HIMUAngular"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |(% style="text-align:center" %)°/s^2|Query IMU Angular Accel α (Alpha)
172 | |[[**I**MU Angular Accel **β**>>doc:||anchor="HIMUAngular"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |(% style="text-align:center" %)°/s^2|Query IMU Angular Accel β (Beta)
173 | |[[**I**MU Angular Accel **γ**>>doc:||anchor="HIMUAngular"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QIG|(% style="text-align:center" %) | |(% style="text-align:center" %)°/s^2|Query IMU Angular Accel γ (Gamma)
Coleman Benson 19.1 174
Coleman Benson 22.1 175 |(% colspan="8" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]]
Eric Nantel 79.7 176 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:100px" %)**Default**|(% style="text-align:center; width:170px" %)**Unit**|**Notes**
Eric Nantel 79.8 177 | |[[**LED** Color>>||anchor="HLEDColor"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED|(% style="text-align:center" %)3|(% style="text-align:center" %)0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
Eric Nantel 79.9 178 | |[[**L**ED **B**linking>>doc:||anchor="HLEDBlinking"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QLB|(% style="text-align:center" %)CLB|(% style="text-align:center" %)0|(% style="text-align:center" %) |
Eric Nantel 79.8 179 | |[[**L**ED **I**ndicator>>doc:||anchor="HLEDIndicator"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QLI|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |
Coleman Benson 22.1 180
Coleman Benson 19.1 181 = (% style="color:inherit; font-family:inherit" %)Details(%%) =
182
183 == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
184
Coleman Benson 57.1 185 |(% colspan="2" %)(((
186 ====== __Reset__ ======
187 )))
188 | |(((
Eric Nantel 79.2 189 Reset (**RESET**)
190
Coleman Benson 57.1 191 Ex: #5RESET<cr>
Coleman Benson 36.1 192
Coleman Benson 57.1 193 This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See Session, note #2 for more details.
194 )))
Coleman Benson 36.1 195
Coleman Benson 57.1 196 |(% colspan="2" %)(((
Eric Nantel 79.2 197 ====== (% style="color:inherit; font-family:inherit" %)__Default__(%%) ======
Coleman Benson 57.1 198 )))
Coleman Benson 60.1 199 |(% style="width:30px" %) |(((
Eric Nantel 79.2 200 (% style="color:inherit; font-family:inherit" %)Default (**DEFAULT**)
201
Coleman Benson 36.1 202 (% style="color:inherit; font-family:inherit" %)Ex: #5DEFAULT<cr>
203
204 (% style="color:inherit; font-family:inherit" %)This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
205
206 (% style="color:inherit; font-family:inherit" %)EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
207
208 (% style="color:inherit; font-family:inherit" %)Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
209
210 (% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
Coleman Benson 58.1 211 )))
Coleman Benson 36.1 212
Coleman Benson 58.1 213 |(% colspan="2" %)(((
Eric Nantel 79.2 214 ====== (% style="color:inherit; font-family:inherit" %)__Update__(%%) ======
Coleman Benson 58.1 215 )))
Coleman Benson 60.1 216 |(% style="width:30px" %) |(((
Eric Nantel 79.2 217 (% style="color:inherit; font-family:inherit" %)Update (**UPDATE**)
218
Coleman Benson 36.1 219 (% style="color:inherit; font-family:inherit" %)Ex: #5UPDATE<cr>
220
221 (% style="color:inherit; font-family:inherit" %)This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
222
223 (% style="color:inherit; font-family:inherit" %)EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
224
225 (% style="color:inherit; font-family:inherit" %)Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
226
227 (% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
Coleman Benson 58.1 228 )))
Coleman Benson 36.1 229
Coleman Benson 60.1 230 |(% colspan="2" %)(((
231 ====== (% style="color:inherit; font-family:inherit" %)__Confirm__(%%) ======
232 )))
Coleman Benson 59.1 233 |(% style="width:30px" %) |(((
Eric Nantel 79.2 234 (% style="color:inherit; font-family:inherit" %)Confirm (**CONFIRM**)
235
Coleman Benson 36.1 236 (% style="color:inherit; font-family:inherit" %)Ex: #5CONFIRM<cr>
237
238 (% style="color:inherit; font-family:inherit" %)This command is used to confirm changes after a Default or Update command.
Coleman Benson 37.1 239 Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
Coleman Benson 59.1 240 )))
Coleman Benson 36.1 241
Coleman Benson 60.1 242 |(% colspan="2" %)(((
Coleman Benson 61.1 243 ====== (% style="color:inherit; font-family:inherit" %)__ID Number__(%%) ======
Coleman Benson 60.1 244 )))
Coleman Benson 59.1 245 |(% style="width:30px" %) |(((
Coleman Benson 61.1 246 This assigns ID #5 to the servo previously assigned to ID 0
247
Coleman Benson 39.1 248 (% style="color:inherit; font-family:inherit" %)Configure ID Number (**CID**)
249
250 (% style="color:inherit; font-family:inherit" %)Ex: #0CID5<cr>
251
252 The default ID is 0, so this sets the servo to ID 5.
253
254 Query ID Number (**QID**)
255
256 Ex: #254QID<cr> might return *254QID5<cr>
257
258 In this case, the broadcast ID is used to ensure the servo connected will reply with the ID. This can be used in case the ID assigned to a servo is forgotten.
Coleman Benson 59.1 259 )))
Coleman Benson 39.1 260
Coleman Benson 60.1 261 |(% colspan="2" %)(((
Coleman Benson 61.1 262 ====== (% style="color:inherit; font-family:inherit" %)__Enable CAN Terminal Resistor__(%%) ======
Coleman Benson 60.1 263 )))
Coleman Benson 59.1 264 |(% style="width:30px" %) |(((
Coleman Benson 37.1 265 Query Enable CAN Terminal Resistor (**QET**)
266
267 Ex: #5QET<cr> might return *QET0<cr>
268
269 This means that servo with ID 5 is NOT configured as the last servo in the CAN bus.
270
271 Configure Enable CAN Terminal Resistor (**CET**)
272
273 (% style="color:inherit; font-family:inherit" %)Ex: #5CET1<cr>
274
275 (% style="color:inherit; font-family:inherit" %)This commands sets servo with ID 5 as being the last in the CAN Bus. The last servo in a CAN bus must be configured this way.
Coleman Benson 59.1 276 )))
Coleman Benson 37.1 277
Coleman Benson 60.1 278 |(% colspan="2" %)(((
Coleman Benson 61.1 279 ====== __USB Connection Status__ ======
Coleman Benson 60.1 280 )))
Coleman Benson 59.1 281 |(% style="width:30px" %) |(((
Coleman Benson 37.1 282 Query USB Connection Status (**QUC**)
283
284 Ex: #5QUC<cr> might return *5QUC1<cr> meaning the servo is connected via USB
Coleman Benson 59.1 285 )))
Coleman Benson 37.1 286
Coleman Benson 19.1 287 == Motion ==
288
Coleman Benson 62.1 289 |(% colspan="2" %)(((
Eric Nantel 79.1 290 ====== __Position in Degrees__ ======
Coleman Benson 62.1 291 )))
292 |(% style="width:30px" %) |(((
Eric Nantel 79.1 293 Position in Degrees (**D**)
294
Coleman Benson 28.1 295 Example: #5D1456<cr>
Coleman Benson 19.1 296
Coleman Benson 28.1 297 This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction.
Coleman Benson 19.1 298
Coleman Benson 28.1 299 Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above).
Coleman Benson 19.1 300
Coleman Benson 28.1 301 Query Position in Degrees (**QD**)
Coleman Benson 19.1 302
Coleman Benson 28.1 303 Example: #5QD<cr> might return *5QD132<cr>
Coleman Benson 19.1 304
Coleman Benson 28.1 305 This means the servo is located at 13.2 degrees.
Coleman Benson 19.1 306
Coleman Benson 28.1 307 Query Target Position in Degrees (**QDT**)
Coleman Benson 19.1 308
Coleman Benson 28.1 309 Ex: #5QDT<cr> might return *5QDT6783<cr>
310
Coleman Benson 19.1 311 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
Coleman Benson 62.1 312 )))
Coleman Benson 19.1 313
Coleman Benson 62.1 314 |(% colspan="2" %)(((
Eric Nantel 79.1 315 ====== __Relative Move in Degrees__ ======
Coleman Benson 62.1 316 )))
317 |(% style="width:30px" %) |(((
Eric Nantel 78.16 318 (% class="wikigeneratedid" %)
Eric Nantel 79.1 319 Move in Degrees (**MD**)
320
321 (% class="wikigeneratedid" %)
Eric Nantel 78.16 322 Example: #5M1500<cr>
Coleman Benson 19.1 323
Eric Nantel 78.16 324 (% class="wikigeneratedid" id="HTherelativemoveinPWMcommandcausestheservotoreaditscurrentpositionandmovebythespecifiednumberofPWMsignal.ForexampleiftheservoissettorotateCW28default29andanMcommandof1500issenttotheservo2Citwillcausetheservotorotateclockwiseby90degrees.NegativePWMvaluewouldcausetheservotorotateintheoppositeconfigureddirection." %)
325 The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
Coleman Benson 62.1 326 )))
Coleman Benson 19.1 327
Coleman Benson 62.1 328 |(% colspan="2" %)(((
Eric Nantel 79.1 329 ====== __Wheel Mode in Degrees__ ======
Coleman Benson 62.1 330 )))
331 |(% style="width:30px" %) |(((
332 Wheel mode in Degrees (**WD**)
Coleman Benson 19.1 333
Coleman Benson 28.1 334 Ex: #5WD90<cr>
Coleman Benson 19.1 335
Coleman Benson 28.1 336 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
Coleman Benson 19.1 337
Coleman Benson 28.1 338 Query Wheel Mode in Degrees (**QWD**)
Coleman Benson 19.1 339
Coleman Benson 28.1 340 Ex: #5QWD<cr> might return *5QWD90<cr>
341
Coleman Benson 19.1 342 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
Coleman Benson 62.1 343 )))
Coleman Benson 19.1 344
Coleman Benson 62.1 345 |(% colspan="2" %)(((
Eric Nantel 79.1 346 ====== __Wheel Mode in RPM__ ======
Coleman Benson 62.1 347 )))
348 |(% style="width:30px" %) |(((
349 Wheel moed in RPM (**WR**)
Coleman Benson 19.1 350
Coleman Benson 28.1 351 Ex: #5WR40<cr>
Coleman Benson 19.1 352
Coleman Benson 28.1 353 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
Coleman Benson 19.1 354
Coleman Benson 28.1 355 Query Wheel Mode in RPM (**QWR**)
Coleman Benson 19.1 356
Coleman Benson 28.1 357 Ex: #5QWR<cr> might return *5QWR40<cr>
358
Coleman Benson 19.1 359 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
Coleman Benson 62.1 360 )))
Coleman Benson 19.1 361
Coleman Benson 62.1 362 |(% colspan="2" %)(((
Eric Nantel 79.1 363 ====== __Status__ ======
Coleman Benson 62.1 364 )))
365 |(% style="width:30px" %) |(((
Eric Nantel 79.1 366 Query Status (**Q**)
367
Coleman Benson 28.1 368 The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.
Coleman Benson 19.1 369
Coleman Benson 28.1 370 Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
Coleman Benson 19.1 371
372 |(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description**
373 | |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
374 | |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
Eric Nantel 82.1 375 | |ex: *5Q2<cr>|2: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
376 | |ex: *5Q3<cr>|3: Traveling|Moving at a stable speed
377 | |ex: *5Q4<cr>|4: Decelerating|Decreasing from travel speed towards final position.
378 | |ex: *5Q5<cr>|5: Holding|Keeping current position (in EM0 mode, return will normally be holding)
Eric Nantel 85.1 379 | |ex: *5Q6<cr>|6: Error|If the status is Error, the error value consists of binary flags ([[HERE>>doc:||anchor="HErrorFlag"]])
Coleman Benson 19.1 380
Eric Nantel 82.1 381 *Value returned (Q)StatusDetailed description
382
Coleman Benson 28.1 383 If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
Coleman Benson 19.1 384
385 |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
386 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
387 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
388 | |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
389 | |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
Coleman Benson 62.1 390 )))
Coleman Benson 19.1 391
Coleman Benson 62.1 392 |(% colspan="2" %)(((
Eric Nantel 79.1 393 ====== __Motion Time__ ======
Eric Nantel 76.1 394 )))
395 |(% style="width:30px" %) |(((
Eric Nantel 79.1 396 Query Motion Time (**QMT**)
Eric Nantel 85.2 397
398 Ex: #5QMT9000<cr> might return *5QMT1000<cr>, which indicates the motor would take 1.000s to do that movement.
399
400 This is really important for movement using the modifier "T" as asking a movement that could not be achieved in the time asked will result in no movement.
Eric Nantel 76.1 401 )))
402
403 |(% colspan="2" %)(((
Eric Nantel 79.1 404 ====== __Current Speed__ ======
Eric Nantel 76.1 405 )))
406 |(% style="width:30px" %) |(((
Eric Nantel 79.1 407 Query Current Speed (**QCS**)
Eric Nantel 85.2 408
409 Ex: #5QCS<cr> might return *5QCS1245<cr>, which indicate the actuator is moving currently at 12deg/s.
Eric Nantel 76.1 410 )))
411
412 |(% colspan="2" %)(((
Eric Nantel 79.1 413 ====== __Limp__ ======
Coleman Benson 62.1 414 )))
415 |(% style="width:30px" %) |(((
Coleman Benson 28.1 416 Example: #5L<cr>
Coleman Benson 19.1 417
Coleman Benson 28.1 418 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
Coleman Benson 62.1 419 )))
Coleman Benson 28.1 420
Coleman Benson 62.1 421 |(% colspan="2" %)(((
Eric Nantel 79.1 422 ====== __Halt & Hold__ ======
Coleman Benson 62.1 423 )))
424 |(% style="width:30px" %) |(((
Coleman Benson 28.1 425 Example: #5H<cr>
426
Coleman Benson 19.1 427 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
Coleman Benson 62.1 428 )))
Coleman Benson 19.1 429
430 == Motion Setup ==
431
Eric Nantel 76.1 432 |(% colspan="2" %)(((
Eric Nantel 79.1 433 ====== __Origin Offset__ ======
Eric Nantel 76.1 434 )))
435 |(% style="width:30px" %) |(((
Coleman Benson 29.1 436 Example: #5O2400<cr>This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
Coleman Benson 19.1 437
Eric Nantel 75.1 438 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
Coleman Benson 19.1 439
440
Coleman Benson 29.1 441 In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
Coleman Benson 19.1 442
Eric Nantel 75.1 443 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]
Coleman Benson 19.1 444
445
Coleman Benson 29.1 446 Origin Offset Query (**QO**)
Coleman Benson 19.1 447
Coleman Benson 29.1 448 Example: #5QO<cr> might return *5QO-13
Coleman Benson 19.1 449
Coleman Benson 29.1 450 This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
Coleman Benson 19.1 451
Coleman Benson 29.1 452 Configure Origin Offset (**CO**)
Coleman Benson 19.1 453
Coleman Benson 29.1 454 Example: #5CO-24<cr>
Coleman Benson 19.1 455
456 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
Eric Nantel 76.1 457 )))
Coleman Benson 19.1 458
Eric Nantel 76.1 459 |(% colspan="2" %)(((
Eric Nantel 79.1 460 ====== __Angular Range__ ======
Eric Nantel 76.1 461 )))
462 |(% style="width:30px" %) |(((
Coleman Benson 29.1 463 Example: #5AR1800<cr>
Coleman Benson 19.1 464
Coleman Benson 29.1 465 This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
Coleman Benson 19.1 466
Eric Nantel 75.1 467 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
Coleman Benson 19.1 468
Coleman Benson 29.1 469 Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
Coleman Benson 19.1 470
Eric Nantel 75.1 471 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]
Coleman Benson 19.1 472
473
Coleman Benson 29.1 474 Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
Coleman Benson 19.1 475
Eric Nantel 75.1 476 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/lss-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]
Coleman Benson 19.1 477
478
Coleman Benson 29.1 479 Query Angular Range (**QAR**)
Coleman Benson 19.1 480
Coleman Benson 29.1 481 Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
Coleman Benson 19.1 482
Coleman Benson 29.1 483 Configure Angular Range (**CAR**)
Coleman Benson 19.1 484
Coleman Benson 29.1 485 This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
Eric Nantel 76.1 486 )))
Coleman Benson 19.1 487
Eric Nantel 76.1 488 |(% colspan="2" %)(((
Eric Nantel 79.1 489 ====== __Angular Acceleration__ ======
Eric Nantel 76.1 490 )))
491 |(% style="width:30px" %) |(((
Coleman Benson 29.1 492 The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
Coleman Benson 19.1 493
Coleman Benson 29.1 494 Ex: #5AA30<cr>
Coleman Benson 19.1 495
Coleman Benson 29.1 496 This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
Coleman Benson 19.1 497
Coleman Benson 29.1 498 Query Angular Acceleration (**QAA**)
Coleman Benson 19.1 499
Coleman Benson 29.1 500 Ex: #5QAA<cr> might return *5QAA30<cr>
Coleman Benson 19.1 501
Coleman Benson 29.1 502 This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).
Coleman Benson 19.1 503
Coleman Benson 29.1 504 Configure Angular Acceleration (**CAA**)
Coleman Benson 19.1 505
Coleman Benson 29.1 506 Ex: #5CAA30<cr>
Coleman Benson 19.1 507
508 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
Eric Nantel 76.1 509 )))
Coleman Benson 19.1 510
Eric Nantel 76.1 511 |(% colspan="2" %)(((
Eric Nantel 79.1 512 ====== __Angular Deceleration__ ======
Eric Nantel 76.1 513 )))
514 |(% style="width:30px" %) |(((
Coleman Benson 29.1 515 The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
Coleman Benson 19.1 516
Coleman Benson 29.1 517 Ex: #5AD30<cr>
Coleman Benson 19.1 518
Coleman Benson 29.1 519 This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
Coleman Benson 19.1 520
Coleman Benson 29.1 521 Query Angular Deceleration (**QAD**)
Coleman Benson 19.1 522
Coleman Benson 29.1 523 Ex: #5QAD<cr> might return *5QAD30<cr>
Coleman Benson 19.1 524
Coleman Benson 29.1 525 This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).
Coleman Benson 19.1 526
Coleman Benson 29.1 527 Configure Angular Deceleration (**CAD**)
Coleman Benson 19.1 528
Coleman Benson 29.1 529 Ex: #5CAD30<cr>
Coleman Benson 19.1 530
Coleman Benson 29.1 531 This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
Eric Nantel 76.1 532 )))
Coleman Benson 19.1 533
Eric Nantel 76.1 534 |(% colspan="2" %)(((
Eric Nantel 79.1 535 ====== __Gyre Direction__ ======
Eric Nantel 76.1 536 )))
537 |(% style="width:30px" %) |(((
Coleman Benson 29.1 538 "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.
Coleman Benson 19.1 539
Coleman Benson 29.1 540 Ex: #5G-1<cr>
Coleman Benson 19.1 541
Coleman Benson 29.1 542 This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
Coleman Benson 19.1 543
Coleman Benson 47.1 544 Query Gyre Direction (**QG**)
Coleman Benson 19.1 545
Coleman Benson 47.1 546 Ex: #5QG<cr> might return *5QG-1<cr>
547
Coleman Benson 29.1 548 The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.
Coleman Benson 19.1 549
Coleman Benson 29.1 550 Configure Gyre (**CG**)
Coleman Benson 19.1 551
Coleman Benson 29.1 552 Ex: #5CG-1<cr>
Coleman Benson 19.1 553
554 This changes the gyre direction as described above and also writes to EEPROM.
Eric Nantel 76.1 555 )))
Coleman Benson 19.1 556
Eric Nantel 76.1 557 |(% colspan="2" %)(((
Eric Nantel 79.1 558 ====== __Maximum Speed in Degrees__ ======
Eric Nantel 76.1 559 )))
560 |(% style="width:30px" %) |(((
Eric Nantel 79.1 561 Maximum Speed in Degrees (**SD**)
Coleman Benson 19.1 562
Eric Nantel 79.1 563 Ex: #5SD1800<cr>
564
565 This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
566
567 Query Speed in Degrees (**QSD**)
568
569 Ex: #5QSD<cr> might return *5QSD1800<cr>
570
571 By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
572
Coleman Benson 19.1 573 |**Command sent**|**Returned value (1/10 °)**
Coleman Benson 29.1 574 |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
575 |ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
576 |ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
577 |ex: #5QSD3<cr>|Target travel speed
Coleman Benson 19.1 578
Eric Nantel 79.1 579 Configure Speed in Degrees (**CSD**)
580
581 Ex: #5CSD1800<cr>
582
583 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
Eric Nantel 76.1 584 )))
Coleman Benson 19.1 585
Eric Nantel 76.1 586 |(% colspan="2" %)(((
Eric Nantel 79.1 587 ====== __Maximum Speed in RPM__ ======
Eric Nantel 76.1 588 )))
589 |(% style="width:30px" %) |(((
Eric Nantel 79.1 590 (% class="wikigeneratedid" %)
591 Maximum Speed in RPM (**SR**)
Coleman Benson 19.1 592
Eric Nantel 79.1 593 (% class="wikigeneratedid" id="HEx:235SR453Ccr3EThiscommandsetstheservo27smaximumspeedformotioncommandsinrpmforthatsession.Intheexampleabove2Ctheservo27smaximumspeedforthatsessionwouldbesetto45rpm.Theservo27smaximumspeedcannotbesethigherthanitsphysicallimitatagivenvoltage.SRoverridesCSR28describedbelow29forthatsession.Uponresetorpowercycle2CtheservorevertstothevalueassociatedwithCSRasdescribedbelow.NotethatSD28describedabove29andSRareeffectivelythesame2Cbutallowtheusertospecifythespeedineitherunit.Thelastcommand28eitherSRorSD29receivediswhattheservousesforthatsession.QuerySpeedinRPM28QSR29Ex:235QSR3Ccr3Emightreturn2A5QSR453Ccr3EBydefaultQSRwillreturnthecurrentsessionvalue2CwhichissettothevalueofCSRasreset2FpowercycleandchangedwheneveranSD2FSRcommandisprocessed.If235QSR13Ccr3Eissent2Ctheconfiguredmaximumspeed28CSRvalue29willbereturnedinstead.Youcanalsoquerythecurrentspeedusing22222andthecurrenttargettravelspeedusing22322.Seethetablebelowforanexample:" %)
594 Ex: #5SR45<cr>
595
596 (% class="wikigeneratedid" %)
597 This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below.
598
599 (% class="wikigeneratedid" %)
600 Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit.
601
602 (% class="wikigeneratedid" %)
603 The last command (either SR or SD) received is what the servo uses for that session.
604
605 (% class="wikigeneratedid" %)
606 Query Speed in RPM (**QSR**)
607
608 (% class="wikigeneratedid" %)
609 Ex: #5QSR<cr> might return *5QSR45<cr>
610
611 (% class="wikigeneratedid" %)
612 By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
613
Coleman Benson 19.1 614 |**Command sent**|**Returned value (1/10 °)**
Coleman Benson 29.1 615 |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
616 |ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
617 |ex: #5QSR2<cr>|Instantaneous speed (same as QWD)
618 |ex: #5QSR3<cr>|Target travel speed
Coleman Benson 19.1 619
Eric Nantel 79.1 620 Configure Speed in RPM (**CSR**)
621
622 Ex: #5CSR45<cr>
623
624 Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
Eric Nantel 76.1 625 )))
Coleman Benson 19.1 626
627 == Modifiers ==
628
Eric Nantel 76.1 629 |(% colspan="2" %)(((
Eric Nantel 79.1 630 ====== __Speed __ ======
Eric Nantel 76.1 631 )))
632 |(% style="width:30px" %) |(((
Eric Nantel 79.1 633 (% class="wikigeneratedid" %)
634 Speed in Degrees (**SD**)
Coleman Benson 19.1 635
Eric Nantel 79.1 636 (% class="wikigeneratedid" id="HExample:235D0SD1803Ccr3E" %)
637 Example: #5D0SD180<cr>
638
Coleman Benson 30.1 639 (% class="wikigeneratedid" %)
640 Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.
Coleman Benson 19.1 641
Coleman Benson 30.1 642 (% class="wikigeneratedid" %)
643 Query Speed (**QS**)
Coleman Benson 19.1 644
Coleman Benson 30.1 645 (% class="wikigeneratedid" %)
646 Example: #5QS<cr> might return *5QS300<cr>
Coleman Benson 19.1 647
Coleman Benson 30.1 648 (% class="wikigeneratedid" %)
649 This command queries the current speed in microseconds per second.
Eric Nantel 76.1 650 )))
Coleman Benson 19.1 651
Eric Nantel 76.1 652 |(% colspan="2" %)(((
Eric Nantel 79.1 653 ====== __Timed move__ ======
Eric Nantel 76.1 654 )))
655 |(% style="width:30px" %) |(((
Eric Nantel 79.1 656 Timed Move (**T**)
657
Coleman Benson 30.1 658 Example: #5D15000T2500<cr>
Coleman Benson 19.1 659
Coleman Benson 30.1 660 Timed move can be used only as a modifier for a position (D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
Coleman Benson 19.1 661
Coleman Benson 30.1 662 **Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested
Eric Nantel 76.1 663 )))
Coleman Benson 19.1 664
665 == Telemetry ==
666
Eric Nantel 76.1 667 |(% colspan="2" %)(((
Eric Nantel 79.1 668 ====== __Temperature PCB__ ======
Eric Nantel 76.1 669 )))
670 |(% style="width:30px" %) |(((
Eric Nantel 79.1 671 Query Temp PCB (**QT**)
672
Coleman Benson 51.1 673 Ex: #5QT<cr> might return *5QT564<cr>
Coleman Benson 19.1 674
Coleman Benson 51.1 675 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
Eric Nantel 76.1 676 )))
Coleman Benson 31.1 677
Eric Nantel 76.1 678 |(% colspan="2" %)(((
Eric Nantel 79.1 679 ====== __Current__ ======
Eric Nantel 76.1 680 )))
681 |(% style="width:30px" %) |(((
Eric Nantel 79.1 682 (% class="wikigeneratedid" %)
683 Query Current (**QC**)
Coleman Benson 19.1 684
Eric Nantel 79.1 685 (% class="wikigeneratedid" id="HEx:235QC3Ccr3Emightreturn2A5QC1403Ccr3E" %)
686 Ex: #5QC<cr> might return *5QC140<cr>
687
Coleman Benson 51.1 688 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value. The query calculates the RMS value of the current sent from the motor driver to the stepper motor.
Eric Nantel 76.1 689 )))
Coleman Benson 31.1 690
Eric Nantel 76.1 691 |(% colspan="2" %)(((
Eric Nantel 79.1 692 ====== __Model String__ ======
Eric Nantel 76.1 693 )))
694 |(% style="width:30px" %) |(((
Eric Nantel 79.1 695 (% class="wikigeneratedid" %)
696 Query Model String (**QMS**)
Coleman Benson 19.1 697
Eric Nantel 79.1 698 (% class="wikigeneratedid" id="HEx:235QMS3Ccr3Emightreturn2A5QMSLSS-HS13Ccr3E" %)
699 Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
700
Coleman Benson 31.1 701 This reply means that the servo model is LSS-HS1: a high speed servo, first revision.
Eric Nantel 76.1 702 )))
Coleman Benson 31.1 703
Eric Nantel 76.1 704 |(% colspan="2" %)(((
Eric Nantel 79.1 705 ====== __Firmware__ ======
Eric Nantel 76.1 706 )))
707 |(% style="width:30px" %) |(((
Eric Nantel 79.1 708 Query Firmware (**QF**)
709
Coleman Benson 31.1 710 Ex: #5QF<cr> might return *5QF368<cr>
Coleman Benson 19.1 711
Coleman Benson 31.1 712 The number in the reply represents the firmware version, in this example being 368.The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14
Eric Nantel 76.1 713 )))
Coleman Benson 31.1 714
Eric Nantel 76.1 715 |(% colspan="2" %)(((
Eric Nantel 79.1 716 ====== __Serial Number__ ======
Eric Nantel 76.1 717 )))
718 |(% style="width:30px" %) |(((
Eric Nantel 79.1 719 (% class="wikigeneratedid" %)
720 Query Serial Number (**QN**)
Coleman Benson 19.1 721
Eric Nantel 79.1 722 (% class="wikigeneratedid" id="HEx:235QN3Ccr3Emightreturn2A5QN123456783Ccr3E" %)
723 Ex: #5QN<cr> might return *5QN12345678<cr>
724
Coleman Benson 31.1 725 The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
Eric Nantel 76.1 726 )))
Coleman Benson 49.1 727
Eric Nantel 76.1 728 |(% colspan="2" %)(((
Eric Nantel 79.1 729 ====== __Temperature Probe__ ======
Eric Nantel 76.1 730 )))
731 |(% style="width:30px" %) |(((
Eric Nantel 79.1 732 Query Temp motor Probe (**QTP**)
Eric Nantel 85.2 733
734 Ex: #5QTP<cr> might return *5QTP564<cr>
735
736 The units are in tenths of degrees Celcius, so in the example above, the servo's motor temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
Eric Nantel 76.1 737 )))
Coleman Benson 49.1 738
Eric Nantel 76.1 739 |(% colspan="2" %)(((
Eric Nantel 79.1 740 ====== __Temperature MCU__ ======
Eric Nantel 76.1 741 )))
742 |(% style="width:30px" %) |(((
Eric Nantel 79.1 743 Query Temp MCU (**QTM**)
Eric Nantel 85.2 744
745 Ex: #5QTM<cr> might return *5QTM564<cr>
746
747 The units are in tenths of degrees Celcius, so in the example above, the servo's microcontroller temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
Eric Nantel 76.1 748 )))
Coleman Benson 49.1 749
Eric Nantel 76.1 750 |(% colspan="2" %)(((
Eric Nantel 79.1 751 ====== __Temp Controller Error__ ======
Eric Nantel 76.1 752 )))
753 |(% style="width:30px" %) |(((
Eric Nantel 79.1 754 (% class="wikigeneratedid" id="HEx:236QIX3Ccr3Emightreturn2A6QIX303Ccr3E" %)
755 Query Temp Controller Error (**QTCE**)
Eric Nantel 85.3 756
757
758
759 (% class="wikigeneratedid" %)
760 Returns the value of the "ot" bit of the motor driver's DRV_STATUS register (addr: 0x6F). If the response is 1, the motor driver has detected overtemperature (over 150℃).
Eric Nantel 76.1 761 )))
762
763 |(% colspan="2" %)(((
Eric Nantel 79.1 764 ====== __Temp Controller Warning__ ======
Eric Nantel 76.1 765 )))
766 |(% style="width:30px" %) |(((
Eric Nantel 79.1 767 (% class="wikigeneratedid" id="HEx:236QIX3Ccr3Emightreturn2A6QIX303Ccr3E" %)
768 Query Temp Controller Warning (**QTCW**)
Eric Nantel 85.3 769
770
771 (% class="wikigeneratedid" %)
772 Returns the value of the "otpw" bit of the motor driver's DRV_STATUS register (addr: 0x6F). If the response is 1, the motor driver has detected overtemperature pre-warning (over 120℃).
Eric Nantel 76.1 773 )))
774
775 |(% colspan="2" %)(((
Eric Nantel 79.1 776 ====== __Error Flag__ ======
Eric Nantel 76.1 777 )))
778 |(% style="width:30px" %) |(((
Eric Nantel 79.1 779 Query Error Flag (**QEF**)
Eric Nantel 84.1 780
Eric Nantel 86.1 781 Ex: #5QEF<cr> might return *5QEF64<cr>
Eric Nantel 85.3 782
Eric Nantel 86.1 783
Eric Nantel 84.1 784 |(% style="width:25px" %) |***Value returned (QEF)**|**Status**|**Detailed description**
Eric Nantel 86.1 785 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_PCBOverTemerature|
786 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_MCUOverTemerature|
787 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_MotorProbeOverTemerature|
788 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_MotorDriverOverTemerature|
789 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_Blocked|
790 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_ExceedSpeedLimit|
791 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_ExceedAccelLimit|
792 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_ExceedDecelLimit|
793 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_CurrentPositionOutOfRangePlus|
794 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_CurrentPositionOutOfRangeMinus|
795 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_EEPROMHeaderDataError|
796 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_EEPROMCheckSumError|
797 | |ex: *5QEF<cr>|LSSP_ERROR_BITS_EEPROMMapVersionIsNotSupported|
Eric Nantel 76.1 798 )))
799
Eric Nantel 78.2 800 |(% colspan="2" %)(((
Eric Nantel 79.1 801 ====== __IMU Linear__ ======
Eric Nantel 78.2 802 )))
803 |(% style="width:30px" %) |(((
Eric Nantel 79.1 804 (% class="wikigeneratedid" %)
805 Query IMU Linear (**QIX QIY QIZ**)
806
Eric Nantel 80.1 807 (% class="wikigeneratedid" id="HEx:236QIX3Ccr3Emightreturn2A6QIX303Ccr3E" %)
808 Ex: #6QIX<cr> might return *6QIX30<cr>
Eric Nantel 76.1 809
Coleman Benson 50.1 810 This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 30mm per second squared.
Eric Nantel 76.1 811 )))
Coleman Benson 49.1 812
Eric Nantel 76.1 813 |(% colspan="2" %)(((
Eric Nantel 79.1 814 ====== __IMU Angular__ ======
Eric Nantel 78.7 815 )))
816 |(% style="width:30px" %) |(((
Eric Nantel 79.1 817 (% class="wikigeneratedid" id="HEx:236QIB3Ccr3Emightreturn2A6QIB443Ccr3E" %)
818 Query IMU Angular (**QIA QIB QIG**)
Eric Nantel 80.1 819
820 (% class="wikigeneratedid" %)
Eric Nantel 79.1 821 Ex: #6QIB<cr> might return *6QIB44<cr>
Coleman Benson 49.1 822
823 This command queries servo 6's IMU's linear accelerometer in the X direction. The response is 4.4 degrees per second squared.
Eric Nantel 76.1 824 )))
Eric Nantel 78.8 825
Eric Nantel 79.5 826 == RGB LED ==
827
828 |(% colspan="2" %)(((
829 ====== __LED Color__ ======
830 )))
831 |(% style="width:30px" %) |(((
832 (% class="wikigeneratedid" id="HEx:236QIB3Ccr3Emightreturn2A6QIB443Ccr3E" %)
Eric Nantel 89.1 833 The user defined LED color can be changed permanently (CLED) or until reboot (LED).
834
835 (% class="wikigeneratedid" %)
Eric Nantel 90.1 836 Ex: #5LED5<cr>, will set the user LED color to Cyan until reboot of the actuator.
Eric Nantel 89.1 837
Eric Nantel 90.1 838 (% class="wikigeneratedid" %)
839 Ex: #5CLED3<cr>, will set the user LED color to Blue and will be that way ever after rebooting the actuator.
840
841
Eric Nantel 89.1 842 (% style="width:200px" %)
Eric Nantel 90.1 843 |(% colspan="2" style="text-align:center; vertical-align:middle; width:35px" %)**Color vs Value**
Eric Nantel 89.1 844 |(% style="text-align:center; vertical-align:middle; width:35px" %)[[image:[email protected]]]|0 = Off / Black
845 |(% style="text-align:center; vertical-align:middle" %)[[image:[email protected]]]|1 = Red
846 |(% style="text-align:center; vertical-align:middle" %)[[image:[email protected]]]|2 = Green
847 |(% style="text-align:center; vertical-align:middle" %)[[image:[email protected]]]|3 = Blue
848 |(% style="text-align:center; vertical-align:middle" %)[[image:[email protected]]]|4 = Yellow
Eric Nantel 90.1 849 |(% style="text-align:center; vertical-align:middle" %)[[image:[email protected]||alt="SQUARE-Black.png"]]|5 = Cyan
Eric Nantel 89.1 850 |(% style="text-align:center; vertical-align:middle" %)[[image:[email protected]]]|6 = Magenta
851 |(% style="text-align:center; vertical-align:middle" %)[[image:[email protected]]]|7 = White
Eric Nantel 79.5 852 )))
Eric Nantel 79.6 853
854 |(% colspan="2" %)(((
Eric Nantel 79.8 855 ====== __LED Blinking__ ======
Eric Nantel 79.6 856 )))
857 |(% style="width:30px" %) |(((
858 (% class="wikigeneratedid" id="HEx:236QIB3Ccr3Emightreturn2A6QIB443Ccr3E" %)
Eric Nantel 90.3 859 This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:
860
861 (% style="width:200px" %)
862 |**Blink While:**|(% style="text-align:center; width:35px" %)**#**
863 |No blinking|(% style="text-align:center" %)0
864 |Limp|(% style="text-align:center" %)1
865 |Holding|(% style="text-align:center" %)2
866 |Accelerating|(% style="text-align:center" %)4
867 |Decelerating|(% style="text-align:center" %)8
868 |Free|(% style="text-align:center" %)16
869 |Travelling|(% style="text-align:center" %)32
870 |Always blink|(% style="text-align:center" %)63
871
872 (% class="wikigeneratedid" %)
873 To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:Ex: #5CLB0 to turn off all blinking (LED always solid)Ex: #5CLB1 only blink when limp (1)Ex: #5CLB2 only blink when holding (2)Ex: #5CLB12 only blink when accel or decel (accel 4 + decel 8 = 12)Ex: #5CLB48 only blink when free or travel (free 16 + travel 32 = 48)Ex: #5CLB63 blink in all status (1 + 2 + 4 + 8 + 16 + 32)RESETTING the servo is needed.
Eric Nantel 79.6 874 )))
875
876 |(% colspan="2" %)(((
877 ====== __LED Indicator__ ======
878 )))
879 |(% style="width:30px" %) |(((
880 (% class="wikigeneratedid" id="HEx:236QIB3Ccr3Emightreturn2A6QIB443Ccr3E" %)
Eric Nantel 90.2 881 The LED Indicator will reflect the blinking pattern from the LED at a given time.
Eric Nantel 89.1 882
883 (% class="wikigeneratedid" %)
Eric Nantel 90.2 884 Ex: #5QLI<cr> might return *5QLI4<cr>, and the actuator would be blinking 3 times as an Exceed speed limits error.
885
886 (% class="wikigeneratedid" %)
Eric Nantel 89.1 887 [[image:QLI-Info.png]]
Eric Nantel 79.6 888 )))
Copyright RobotShop 2018