Wiki source code of SES-PRO Robotic Arm UI

Version 47.1 by Eric Nantel on 2024/10/16 12:22

Hide last authors
Eric Nantel 34.1 1 {{lightbox image="https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/ses-pro-software/ses-pro-arm-ui/WebHome/SES-PRO-Robotic-Arm-UI.png" width="350"/}}
Eric Nantel 5.1 2
Eric Nantel 38.1 3 [[[[image:[email protected]]]>>https://lynxmotion.com/tools/ses-pro-app/lynxmotion_ses_pro_robotic_arm_ui_stable.exe]]
Eric Nantel 5.1 4
5 **Table of Contents**
6
7 {{toc/}}
8
9 = Description =
10
Eric Nantel 30.1 11 The Lynxmotion Servo Erector Set Professional (SES PRO) Robotic Arm User Interface (UI) is a simple software which allows a user to control any of the Lynxmotion Professional Modular robotic arms in their default configuration. The two compatible gripper kits which are compatible with the SES PRO system (based on the DH Robotics PGE-50-40 and CGE-10-10 DC grillers) can also be controlled via this interface in each of their possible configurations. The included manual jog feature can be used to either position each joint angle, or move to specific cartesian coordinates. Arm (and gripper) positions can then be recorded as part of the built-in sequencer. A 3D display of the arm shows the position of the arm, and a graph can be used to show various information to the user. In order to get a better understanding of the protocol, commands sent to the arm are shown in the interface, and a user input field are standard.
Eric Nantel 5.1 12
13 = Features =
14
Coleman Benson 23.1 15 * Angular and cartesian positioning of the end effector
16 * 3D graphical display of the appropriate robotic arm and end effector
17 * Sequencer to record and play back frames (single, looped or infinite)
18 * Error checking (speed, temperature etc.)
19 * Command output and user input
20 * Safety (Software E-Stop, Halt&Hold & Limp)
Eric Nantel 12.1 21
Eric Nantel 29.1 22 __Compatibility: Windows 7 Operating System or above__
23
Eric Nantel 25.1 24 |(% colspan="2" %)(((
Eric Nantel 25.2 25 = User Guide =
Eric Nantel 25.1 26 )))
Eric Nantel 26.1 27 |(% style="width:26px" %) |(% style="width:1452px" %)(((
Eric Nantel 47.1 28 Before proceeding with the guide, it is important to note the following:
Eric Nantel 25.1 29
30 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
31 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
Eric Nantel 47.1 32
33 Pressing the i "Information" icon in the software will bring you to this page.
34
35 [[image:ses-pro-robotic-arm-ui-info.png]]
Eric Nantel 25.1 36 )))
Eric Nantel 25.2 37 |(% colspan="2" %)(((
38 == IMPORTANT ==
39 )))
Eric Nantel 26.1 40 |(% style="width:26px" %) |(% style="width:1452px" %)(((
Eric Nantel 25.2 41 === Payload Considerations ===
42
43 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
44 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
45 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
46 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
47 )))
Eric Nantel 26.1 48 |(% style="width:26px" %) |(% style="width:1452px" %)(((
Eric Nantel 25.2 49 === Emergency ===
50
51 Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. The following emergency options are available based on severity:
52
Eric Nantel 47.1 53 **Halt (and hold)**
Eric Nantel 25.2 54
Eric Nantel 47.1 55 **[[image:ses-pro-robotic-arm-ui-halt.png]]**
56
Eric Nantel 25.2 57 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
58
59 **Limp**
60
Eric Nantel 47.1 61 **[[image:ses-pro-robotic-arm-ui-limp.png]]**
62
Eric Nantel 25.2 63 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
64
Eric Nantel 47.1 65 **Software E-Stop**
Eric Nantel 25.2 66
Eric Nantel 47.1 67 **[[image:ses-pro-robotic-arm-ui-arm-emergency.png]]**
Eric Nantel 25.2 68
Eric Nantel 47.1 69 The E-stop button within the software sets all joints to limp, this can possibly cause the arm to fall.
70
71 **Power Supply E-Stop**
Eric Nantel 25.2 72 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
73 )))
74 |(% colspan="2" %)(((
75 == Arm Connection ==
76 )))
Eric Nantel 26.1 77 |(% style="width:26px" %) |(% style="width:1452px" %)(((
Eric Nantel 25.2 78 **Model**
79
Eric Nantel 47.1 80 **[[image:ses-pro-robotic-arm-ui-arm-version.png]]**
81
Eric Nantel 25.2 82 The software currently supports the following Lynxmotion PRO Arms:
83
84 * 550mm 5DoF
85 * 550mm 6DoF
86 * 900mm 5DoF
87 * 900mm 6DoF
88
89 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
90
91 **COM Port**
92
Eric Nantel 47.1 93 **[[image:ses-pro-robotic-arm-ui-com.png]]**
94
Eric Nantel 25.2 95 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues. 
96
Eric Nantel 47.1 97 **Connect / Disconnect**
Eric Nantel 25.2 98
Eric Nantel 47.1 99 [[image:ses-pro-robotic-arm-ui-connect.png]]
100
101 [[image:ses-pro-robotic-arm-ui-disconnect.png]]
102
Eric Nantel 25.2 103 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
104 )))
105 |(% colspan="2" %)(((
106 == Gripper Controls ==
107 )))
Eric Nantel 26.1 108 |(% style="width:26px" %) |(% style="width:1452px" %)(((
Eric Nantel 25.2 109 **Model**
110
111 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as J7.
112
113 * PGE-50-40 (40mm default configuration)
114 * PGE-50-40 (60mm configuration)
115 * PGE-50-40 (80mm configuration)
116 * CGE-10-10 (20mm configuration)
117 * CGE-10-10 (40mm configuration)
118 * CGE-10-10 (60mm configuration)
119
120 **COM Port**
121
122 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
123
124 **Baudrate**
125
Eric Nantel 27.2 126 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in the software.
Eric Nantel 25.2 127
128 **Initialize**
129
130 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
131
132 **Connect**
133
134 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
135
136 **Speed**
137
138 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
139
140 **Force**
141
142 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
143
144 **Open / Close**
145
146 These are shortcut buttons to either fully open or fully close the gripper.
147
148 **Sequencer**
149
150 The sequencer displays the gripper position as joint 7 (J7).
151
152 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only J7 moves.
153 )))
Eric Nantel 25.3 154 |(% colspan="2" %)(((
155 == 3D Model ==
156 )))
Eric Nantel 26.1 157 |(% style="width:26px" %) |(% style="width:1452px" %)(((
Eric Nantel 25.3 158 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
159
160 **View Controls**
161
162 Zoom: Shift + Middle Scroll
163
164 Rotate: Shift + Middle Mouse
165
166 Pan: None
167 )))
168 |(% colspan="2" %)(((
169 == Manual Move ==
170 )))
Eric Nantel 26.1 171 |(% style="width:26px" %) |(% style="width:1452px" %)(((
Eric Nantel 25.3 172 **Angular Control**
173
174 In angular mode, the user can control the angle of each joint
175
176 **Coordinates Control**
177
178 In coordinate control the user can control the cartesian position of the end effector
179
180 **End Effector Lock**
181
182 The orientation of the end effector can be locked.
183 )))
184 |(% colspan="2" %)(((
185 == Direct Command ==
186 )))
Eric Nantel 26.1 187 |(% style="width:26px" %) |(% style="width:1452px" %)(((
Eric Nantel 25.3 188 This section allow the user to send commands using the [[LSS-PRO Communication Protocol>>path:/info/wiki/lynxmotion/view/ses-pro/lss-pro/lss-p-communication-protocol/]] directly if required.
189
190 A few things to keep in mind when using this:
191
192 * Make sure you know what you are doing as you can make the arm move in __dangerous__ ways.
193 * Sending commands does not require ‘#’ and ‘\r’ chars.
194 ** example for #2\r you should enter 2Q and press the "SEND" button
195 * The commands are validated, and it shows a notification in case of error.
196 * The replies of queries are shown in the text field below.
197 )))
Eric Nantel 26.1 198 |(% colspan="2" %)(((
199 == Command Output ==
200 )))
201 |(% style="width:26px" %) |(% style="width:1452px" %)(((
202 //{Coming Soon}//
203 )))
204 |(% colspan="2" %)(((
205 == Telemetry ==
206 )))
207 |(% style="width:26px" %) |(% style="width:1452px" %)(((
208 **Data to Display**
Eric Nantel 25.1 209
Eric Nantel 27.3 210 Various telemetry data can be retrieved from each actuators / joints, here is what the software support:
211
Eric Nantel 27.2 212 * Position
213 * Current
214 * Linear Accel X
215 * Linear Accel Y
216 * Linear Accel Z
217 * Angular Accel α
218 * Angular Accel β
219 * Angular Accel γ
220 * MCU Temperature
221 * PCB Temperature
222 * Probe Temperature
Eric Nantel 26.1 223
Eric Nantel 27.3 224 **Display / Hide **
Eric Nantel 26.1 225
Eric Nantel 27.3 226 At the bottom of the graphics you will find squares to activate / deactivate the desired actuator / joint to be displayed in the graph.
Eric Nantel 26.1 227 )))
228 |(% colspan="2" style="width:26px" %)(((
229 == Sequencer ==
230 )))
231 |(% style="width:26px" %) |(% style="width:1452px" %)(((
Eric Nantel 28.1 232 **Sequence**
Eric Nantel 26.1 233
Eric Nantel 28.1 234 Add
Eric Nantel 26.1 235
Eric Nantel 28.1 236 Substract
Eric Nantel 26.1 237
Eric Nantel 28.1 238 Copy
239
240 Save
241
242 Open
243
244 Delete
245
Eric Nantel 26.1 246 //{Coming Soon}//
247
Eric Nantel 28.1 248 **Frames**
Eric Nantel 26.1 249
Eric Nantel 28.1 250 Add
Eric Nantel 26.1 251
Eric Nantel 28.1 252 Sequence Selector
Eric Nantel 26.1 253
Eric Nantel 28.1 254 Record
Eric Nantel 26.1 255
Eric Nantel 28.1 256 Delete
Eric Nantel 26.1 257
Eric Nantel 28.1 258 Copy
Eric Nantel 26.1 259
Eric Nantel 28.1 260 Paste
261
262 Swap
263
264 Manual Edit
265
266 Time, angles, gripper
267
268 Moving Frames
269
270 //Alt + Left Click = Drag time//
271
Eric Nantel 26.1 272 //{Coming Soon}//
273
274 **Errors**
275
276 //{Coming Soon}//
277 )))
278 |(% style="width:26px" %) |(% style="width:1452px" %)
279 |(% style="width:26px" %) |(% style="width:1452px" %)
280 |(% style="width:26px" %) |(% style="width:1452px" %)
281 |(% style="width:26px" %) |(% style="width:1452px" %)
282 |(% style="width:26px" %) |(% style="width:1452px" %)
283 |(% style="width:26px" %) |(% style="width:1452px" %)
284 |(% style="width:26px" %) |(% style="width:1452px" %)
285 |(% style="width:26px" %) |(% style="width:1452px" %)
286 |(% style="width:26px" %) |(% style="width:1452px" %)
287 |(% style="width:26px" %) |(% style="width:1452px" %)
288 |(% style="width:26px" %) |(% style="width:1452px" %)
289 |(% style="width:26px" %) |(% style="width:1452px" %)
290 |(% style="width:26px" %) |(% style="width:1452px" %)
291 |(% style="width:26px" %) |(% style="width:1452px" %)
292 |(% style="width:26px" %) |(% style="width:1452px" %)
293 |(% style="width:26px" %) |(% style="width:1452px" %)
294 |(% style="width:26px" %) |(% style="width:1452px" %)
295 |(% style="width:26px" %) |(% style="width:1452px" %)
296 |(% style="width:26px" %) |(% style="width:1452px" %)
297 |(% style="width:26px" %) |(% style="width:1452px" %)
298 |(% style="width:26px" %) |(% style="width:1452px" %)
299 |(% style="width:26px" %) |(% style="width:1452px" %)
300 |(% style="width:26px" %) |(% style="width:1452px" %)
301 |(% style="width:26px" %) |(% style="width:1452px" %)
302 |(% style="width:26px" %) |(% style="width:1452px" %)
303 |(% style="width:26px" %) |(% style="width:1452px" %)
304 |(% style="width:26px" %) |(% style="width:1452px" %)
305 |(% style="width:26px" %) |(% style="width:1452px" %)
306 |(% style="width:26px" %) |(% style="width:1452px" %)
307 |(% style="width:26px" %) |(% style="width:1452px" %)
308 |(% style="width:26px" %) |(% style="width:1452px" %)
309 |(% style="width:26px" %) |(% style="width:1452px" %)
310 |(% style="width:26px" %) |(% style="width:1452px" %)
311 |(% style="width:26px" %) |(% style="width:1452px" %)
312 |(% style="width:26px" %) |(% style="width:1452px" %)
313 |(% style="width:26px" %) |(% style="width:1452px" %)
314 |(% style="width:26px" %) |(% style="width:1452px" %)
315 |(% style="width:26px" %) |(% style="width:1452px" %)
316 |(% style="width:26px" %) |(% style="width:1452px" %)
317 |(% style="width:26px" %) |(% style="width:1452px" %)
318 |(% style="width:26px" %) |(% style="width:1452px" %)
319 |(% style="width:26px" %) |(% style="width:1452px" %)
320 |(% style="width:26px" %) |(% style="width:1452px" %)
321 |(% style="width:26px" %) |(% style="width:1452px" %)
322 |(% style="width:26px" %) |(% style="width:1452px" %)
323 |(% style="width:26px" %) |(% style="width:1452px" %)
324 |(% style="width:26px" %) |(% style="width:1452px" %)
325 |(% style="width:26px" %) |(% style="width:1452px" %)
326 |(% style="width:26px" %) |(% style="width:1452px" %)
327 |(% style="width:26px" %) |(% style="width:1452px" %)
328 |(% style="width:26px" %) |(% style="width:1452px" %)
329 |(% style="width:26px" %) |(% style="width:1452px" %)
330 |(% style="width:26px" %) |(% style="width:1452px" %)
331 |(% style="width:26px" %) |(% style="width:1452px" %)
332
Eric Nantel 27.1 333 {{comment}}
Eric Nantel 25.1 334 = =
335
Eric Nantel 15.1 336 = User Guide =
337
Coleman Benson 24.1 338 Pressing the i "Information" icon in the software will bring you to this page. Before proceeding with the guide, it is important to note the following:
Eric Nantel 16.1 339
Coleman Benson 23.1 340 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
341 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
Eric Nantel 16.1 342
Coleman Benson 23.1 343 == IMPORTANT: Payload Considerations ==
Eric Nantel 16.1 344
Coleman Benson 23.1 345 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
346 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
347 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
348 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
Eric Nantel 16.1 349
Coleman Benson 23.1 350 == IMPORTANT: Emergency ==
Eric Nantel 16.1 351
Coleman Benson 23.1 352 Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. The following emergency options are available based on severity:
Eric Nantel 16.3 353
Coleman Benson 23.1 354 **Halt & Hold**
Coleman Benson 24.1 355
Coleman Benson 23.1 356 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
Eric Nantel 16.3 357
Coleman Benson 23.1 358 **Limp**
Coleman Benson 24.1 359
Coleman Benson 23.1 360 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
Eric Nantel 15.1 361
Coleman Benson 23.1 362 **Software Stop**
363
364 The E-stop button within the software sets all joints to limp.
365
366 **Hardware E-Stop**
367 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
368
369 == Arm Connection ==
370
Eric Nantel 17.1 371 **Model**
Eric Nantel 15.1 372
Coleman Benson 24.1 373 The software currently supports the following Lynxmotion PRO Arms:
Coleman Benson 23.1 374
Coleman Benson 24.1 375 * 550mm 5DoF
376 * 550mm 6DoF
377 * 900mm 5DoF
378 * 900mm 6DoF
Eric Nantel 16.2 379
Coleman Benson 24.1 380 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
381
382 **COM Port**
383
Coleman Benson 23.1 384 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues. 
385
Eric Nantel 17.1 386 **Connect**
Eric Nantel 16.2 387
Coleman Benson 24.1 388 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
Eric Nantel 15.1 389
Coleman Benson 24.1 390 == Gripper Controls ==
391
Eric Nantel 17.1 392 **Model**
Eric Nantel 15.1 393
Coleman Benson 23.1 394 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as J7.
395
Coleman Benson 24.1 396 * PGE-50-40 (40mm default configuration)
397 * PGE-50-40 (60mm configuration)
398 * PGE-50-40 (80mm configuration)
399 * CGE-10-10 (20mm configuration)
400 * CGE-10-10 (40mm configuration)
401 * CGE-10-10 (60mm configuration)
Eric Nantel 16.2 402
Coleman Benson 24.1 403 **COM Port**
Coleman Benson 23.1 404
Coleman Benson 24.1 405 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
406
Eric Nantel 17.1 407 **Baudrate**
Eric Nantel 16.2 408
Coleman Benson 24.1 409 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in teh software.
Coleman Benson 23.1 410
Coleman Benson 24.1 411 **Initialize**
Eric Nantel 16.2 412
Coleman Benson 24.1 413 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
Coleman Benson 23.1 414
Coleman Benson 24.1 415 **Connect**
Eric Nantel 16.2 416
Coleman Benson 24.1 417 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
Coleman Benson 23.1 418
Eric Nantel 17.1 419 **Speed**
Eric Nantel 16.2 420
Coleman Benson 24.1 421 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
Coleman Benson 23.1 422
Eric Nantel 17.1 423 **Force**
Eric Nantel 16.2 424
Coleman Benson 24.1 425 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
Coleman Benson 23.1 426
Eric Nantel 17.1 427 **Open / Close**
Eric Nantel 16.2 428
Coleman Benson 24.1 429 These are shortcut buttons to either fully open or fully close the gripper.
Eric Nantel 16.4 430
Coleman Benson 24.1 431 **Sequencer**
432
433 The sequencer displays the gripper position as joint 7 (J7).
434
435 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only J7 moves.
436
Coleman Benson 23.1 437 == 3D Model ==
Eric Nantel 16.4 438
Coleman Benson 23.1 439 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
440
441 **View Controls**
442
Coleman Benson 24.1 443 Zoom: Shift + Middle Scroll
Coleman Benson 23.1 444
Coleman Benson 24.1 445 Rotate: Shift + Middle Mouse
446
447 Pan: None
448
Coleman Benson 23.1 449 == Manual Move ==
450
451 **Angular Control**
452
453 In angular mode, the user can control the angle of each joint
454
Eric Nantel 16.4 455 **Coordinates Control**
456
Coleman Benson 23.1 457 In coordinate control the user can control the cartesian position of the end effector
458
459 **End Effector Lock**
460
461 The orientation of the end effector can be locked.
462
Eric Nantel 15.2 463 == Direct Command ==
Eric Nantel 15.1 464
Eric Nantel 15.2 465 This section allow the user to send commands using the [[doc:ses-pro.lss-pro.lss-p-communication-protocol.WebHome]] directly if required.
Eric Nantel 15.1 466
Eric Nantel 15.2 467 A few things to keep in mind when using this:
Eric Nantel 15.1 468
Eric Nantel 15.2 469 * Make sure you know what you are doing as you can make the arm move in __dangerous__ ways.
470 * Sending commands does not require ‘#’ and ‘\r’ chars.
471 ** example for #2\r you should enter 2Q and press the "SEND" button
Eric Nantel 12.1 472 * The commands are validated, and it shows a notification in case of error.
Eric Nantel 15.2 473 * The replies of queries are shown in the text field below.
Eric Nantel 12.1 474
Coleman Benson 23.1 475 == Command Output ==
476
477 //{Coming Soon}//
478
Eric Nantel 16.3 479 == Telemetry ==
480
Eric Nantel 17.1 481 **Data to Display**
Eric Nantel 16.3 482
Coleman Benson 23.1 483 //{Coming Soon}//
484
Eric Nantel 17.1 485 **Display / Hide Actuator**
Eric Nantel 16.3 486
Coleman Benson 23.1 487 //{Coming Soon}//
488
Coleman Benson 24.1 489 == Sequencer ==
Coleman Benson 23.1 490
491 **Frames**
492
493 //{Coming Soon}//
494
495 **Record **
496
497 //{Coming Soon}//
498
499 **Edit **
500
501 Time, angles, gripper
502
Coleman Benson 24.1 503 //Alt + Left Click = Drag time//
Coleman Benson 23.1 504
505 **Reorder**
506
507 //{Coming Soon}//
508
509 **Play**
510
511 //{Coming Soon}//
512
513 **Errors**
514
515 //{Coming Soon}//
Eric Nantel 27.1 516 {{/comment}}
Copyright RobotShop 2018