Wiki source code of SES-PRO Robotic Arm UI

Version 48.1 by Eric Nantel on 2024/10/16 12:29

Show last authors
1 {{lightbox image="https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/ses-pro-software/ses-pro-arm-ui/WebHome/SES-PRO-Robotic-Arm-UI.png" width="350"/}}
2
3 [[[[image:[email protected]]]>>https://lynxmotion.com/tools/ses-pro-app/lynxmotion_ses_pro_robotic_arm_ui_stable.exe]]
4
5 **Table of Contents**
6
7 {{toc/}}
8
9 = Description =
10
11 The Lynxmotion Servo Erector Set Professional (SES PRO) Robotic Arm User Interface (UI) is a simple software which allows a user to control any of the Lynxmotion Professional Modular robotic arms in their default configuration. The two compatible gripper kits which are compatible with the SES PRO system (based on the DH Robotics PGE-50-40 and CGE-10-10 DC grillers) can also be controlled via this interface in each of their possible configurations. The included manual jog feature can be used to either position each joint angle, or move to specific cartesian coordinates. Arm (and gripper) positions can then be recorded as part of the built-in sequencer. A 3D display of the arm shows the position of the arm, and a graph can be used to show various information to the user. In order to get a better understanding of the protocol, commands sent to the arm are shown in the interface, and a user input field are standard.
12
13 = Features =
14
15 * Angular and cartesian positioning of the end effector
16 * 3D graphical display of the appropriate robotic arm and end effector
17 * Sequencer to record and play back frames (single, looped or infinite)
18 * Error checking (speed, temperature etc.)
19 * Command output and user input
20 * Safety (Software E-Stop, Halt&Hold & Limp)
21
22 __Compatibility: Windows 7 Operating System or above__
23
24
25 |(% colspan="3" %)(((
26 = User Guide =
27 )))
28 |(% style="width:25px" %) |(% style="text-align:center; vertical-align:middle; width:100px" %)[[image:ses-pro-robotic-arm-ui-info.png]]|Pressing the i "Information" icon in the software will bring you to this page.
29 | |(% style="text-align:center; vertical-align:middle" %) |(((
30 Before proceeding with the guide, it is important to note the following:
31
32 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
33 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
34 )))
35 | |(% colspan="2" rowspan="1" %)(((
36 == IMPORTANT ==
37 )))
38 | |(% colspan="2" rowspan="1" %)(((
39 === Payload Considerations ===
40 )))
41 | |(% style="text-align:center; vertical-align:middle" %) |(((
42 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
43 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
44 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
45 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
46 )))
47 | |(% colspan="2" rowspan="1" %)(((
48 === Emergency ===
49 )))
50 | |(% style="text-align:center; vertical-align:middle" %) |Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. 
51 The following emergency options are available based on severity:
52 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-halt.png]]|(((
53 **Halt (and hold)**
54
55 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
56 )))
57 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-limp.png]]|(((
58 **Limp**
59
60 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
61 )))
62 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-emergency.png]]|(((
63 **Software E-Stop**
64
65 The E-stop button within the software sets all joints to limp, this can possibly cause the arm to fall.
66 )))
67 | |(% style="text-align:center; vertical-align:middle" %) |(((
68 **Power Supply E-Stop**
69
70 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
71 )))
72 | |(% style="text-align:center; vertical-align:middle" %) |
73 | |(% style="text-align:center; vertical-align:middle" %) |
74 | |(% style="text-align:center; vertical-align:middle" %) |
75 | |(% style="text-align:center; vertical-align:middle" %) |
76 | |(% style="text-align:center; vertical-align:middle" %) |
77 | |(% style="text-align:center; vertical-align:middle" %) |
78 | |(% style="text-align:center; vertical-align:middle" %) |
79 | |(% style="text-align:center; vertical-align:middle" %) |
80 | |(% style="text-align:center; vertical-align:middle" %) |
81 | |(% style="text-align:center; vertical-align:middle" %) |
82 | |(% style="text-align:center; vertical-align:middle" %) |
83 | |(% style="text-align:center; vertical-align:middle" %) |
84 | |(% style="text-align:center; vertical-align:middle" %) |
85 | |(% style="text-align:center; vertical-align:middle" %) |
86 | |(% style="text-align:center; vertical-align:middle" %) |
87 | |(% style="text-align:center; vertical-align:middle" %) |
88 | |(% style="text-align:center; vertical-align:middle" %) |
89 | |(% style="text-align:center; vertical-align:middle" %) |
90 | |(% style="text-align:center; vertical-align:middle" %) |
91 | |(% style="text-align:center; vertical-align:middle" %) |
92 | |(% style="text-align:center; vertical-align:middle" %) |
93 | |(% style="text-align:center; vertical-align:middle" %) |
94 | |(% style="text-align:center; vertical-align:middle" %) |
95 | |(% style="text-align:center; vertical-align:middle" %) |
96 | |(% style="text-align:center; vertical-align:middle" %) |
97 | |(% style="text-align:center; vertical-align:middle" %) |
98 | |(% style="text-align:center; vertical-align:middle" %) |
99 | |(% style="text-align:center; vertical-align:middle" %) |
100 | |(% style="text-align:center; vertical-align:middle" %) |
101 | |(% style="text-align:center; vertical-align:middle" %) |
102 | |(% style="text-align:center; vertical-align:middle" %) |
103 | |(% style="text-align:center; vertical-align:middle" %) |
104 | |(% style="text-align:center; vertical-align:middle" %) |
105 | |(% style="text-align:center; vertical-align:middle" %) |
106 | |(% style="text-align:center; vertical-align:middle" %) |
107 | |(% style="text-align:center; vertical-align:middle" %) |
108 | |(% style="text-align:center; vertical-align:middle" %) |
109 | |(% style="text-align:center; vertical-align:middle" %) |
110 | |(% style="text-align:center; vertical-align:middle" %) |
111
112
113 |(% colspan="2" %)(((
114 = User Guide =
115 )))
116 |(% style="width:26px" %) |(% style="width:1452px" %)(((
117 Before proceeding with the guide, it is important to note the following:
118
119 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
120 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
121
122 Pressing the i "Information" icon in the software will bring you to this page.
123
124 [[image:ses-pro-robotic-arm-ui-info.png]]
125 )))
126 |(% colspan="2" %)(((
127 == IMPORTANT ==
128 )))
129 |(% style="width:26px" %) |(% style="width:1452px" %)(((
130 === Payload Considerations ===
131
132 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
133 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
134 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
135 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
136 )))
137 |(% style="width:26px" %) |(% style="width:1452px" %)(((
138 === Emergency ===
139
140 Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. The following emergency options are available based on severity:
141
142 **Halt (and hold)**
143
144 **[[image:ses-pro-robotic-arm-ui-halt.png]]**
145
146 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
147
148 **Limp**
149
150 **[[image:ses-pro-robotic-arm-ui-limp.png]]**
151
152 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
153
154 **Software E-Stop**
155
156 **[[image:ses-pro-robotic-arm-ui-arm-emergency.png]]**
157
158 The E-stop button within the software sets all joints to limp, this can possibly cause the arm to fall.
159
160 **Power Supply E-Stop**
161 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
162 )))
163 |(% colspan="2" %)(((
164 == Arm Connection ==
165 )))
166 |(% style="width:26px" %) |(% style="width:1452px" %)(((
167 **Model**
168
169 **[[image:ses-pro-robotic-arm-ui-arm-version.png]]**
170
171 The software currently supports the following Lynxmotion PRO Arms:
172
173 * 550mm 5DoF
174 * 550mm 6DoF
175 * 900mm 5DoF
176 * 900mm 6DoF
177
178 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
179
180 **COM Port**
181
182 **[[image:ses-pro-robotic-arm-ui-com.png]]**
183
184 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues. 
185
186 **Connect / Disconnect**
187
188 [[image:ses-pro-robotic-arm-ui-connect.png]]
189
190 [[image:ses-pro-robotic-arm-ui-disconnect.png]]
191
192 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
193 )))
194 |(% colspan="2" %)(((
195 == Gripper Controls ==
196 )))
197 |(% style="width:26px" %) |(% style="width:1452px" %)(((
198 **Model**
199
200 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as J7.
201
202 * PGE-50-40 (40mm default configuration)
203 * PGE-50-40 (60mm configuration)
204 * PGE-50-40 (80mm configuration)
205 * CGE-10-10 (20mm configuration)
206 * CGE-10-10 (40mm configuration)
207 * CGE-10-10 (60mm configuration)
208
209 **COM Port**
210
211 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
212
213 **Baudrate**
214
215 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in the software.
216
217 **Initialize**
218
219 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
220
221 **Connect**
222
223 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
224
225 **Speed**
226
227 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
228
229 **Force**
230
231 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
232
233 **Open / Close**
234
235 These are shortcut buttons to either fully open or fully close the gripper.
236
237 **Sequencer**
238
239 The sequencer displays the gripper position as joint 7 (J7).
240
241 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only J7 moves.
242 )))
243 |(% colspan="2" %)(((
244 == 3D Model ==
245 )))
246 |(% style="width:26px" %) |(% style="width:1452px" %)(((
247 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
248
249 **View Controls**
250
251 Zoom: Shift + Middle Scroll
252
253 Rotate: Shift + Middle Mouse
254
255 Pan: None
256 )))
257 |(% colspan="2" %)(((
258 == Manual Move ==
259 )))
260 |(% style="width:26px" %) |(% style="width:1452px" %)(((
261 **Angular Control**
262
263 In angular mode, the user can control the angle of each joint
264
265 **Coordinates Control**
266
267 In coordinate control the user can control the cartesian position of the end effector
268
269 **End Effector Lock**
270
271 The orientation of the end effector can be locked.
272 )))
273 |(% colspan="2" %)(((
274 == Direct Command ==
275 )))
276 |(% style="width:26px" %) |(% style="width:1452px" %)(((
277 This section allow the user to send commands using the [[LSS-PRO Communication Protocol>>path:/info/wiki/lynxmotion/view/ses-pro/lss-pro/lss-p-communication-protocol/]] directly if required.
278
279 A few things to keep in mind when using this:
280
281 * Make sure you know what you are doing as you can make the arm move in __dangerous__ ways.
282 * Sending commands does not require ‘#’ and ‘\r’ chars.
283 ** example for #2\r you should enter 2Q and press the "SEND" button
284 * The commands are validated, and it shows a notification in case of error.
285 * The replies of queries are shown in the text field below.
286 )))
287 |(% colspan="2" %)(((
288 == Command Output ==
289 )))
290 |(% style="width:26px" %) |(% style="width:1452px" %)(((
291 //{Coming Soon}//
292 )))
293 |(% colspan="2" %)(((
294 == Telemetry ==
295 )))
296 |(% style="width:26px" %) |(% style="width:1452px" %)(((
297 **Data to Display**
298
299 Various telemetry data can be retrieved from each actuators / joints, here is what the software support:
300
301 * Position
302 * Current
303 * Linear Accel X
304 * Linear Accel Y
305 * Linear Accel Z
306 * Angular Accel α
307 * Angular Accel β
308 * Angular Accel γ
309 * MCU Temperature
310 * PCB Temperature
311 * Probe Temperature
312
313 **Display / Hide **
314
315 At the bottom of the graphics you will find squares to activate / deactivate the desired actuator / joint to be displayed in the graph.
316 )))
317 |(% colspan="2" style="width:26px" %)(((
318 == Sequencer ==
319 )))
320 |(% style="width:26px" %) |(% style="width:1452px" %)(((
321 **Sequence**
322
323 Add
324
325 Substract
326
327 Copy
328
329 Save
330
331 Open
332
333 Delete
334
335 //{Coming Soon}//
336
337 **Frames**
338
339 Add
340
341 Sequence Selector
342
343 Record
344
345 Delete
346
347 Copy
348
349 Paste
350
351 Swap
352
353 Manual Edit
354
355 Time, angles, gripper
356
357 Moving Frames
358
359 //Alt + Left Click = Drag time//
360
361 //{Coming Soon}//
362
363 **Errors**
364
365 //{Coming Soon}//
366 )))
367 |(% style="width:26px" %) |(% style="width:1452px" %)
368 |(% style="width:26px" %) |(% style="width:1452px" %)
369 |(% style="width:26px" %) |(% style="width:1452px" %)
370 |(% style="width:26px" %) |(% style="width:1452px" %)
371 |(% style="width:26px" %) |(% style="width:1452px" %)
372 |(% style="width:26px" %) |(% style="width:1452px" %)
373 |(% style="width:26px" %) |(% style="width:1452px" %)
374 |(% style="width:26px" %) |(% style="width:1452px" %)
375 |(% style="width:26px" %) |(% style="width:1452px" %)
376 |(% style="width:26px" %) |(% style="width:1452px" %)
377 |(% style="width:26px" %) |(% style="width:1452px" %)
378 |(% style="width:26px" %) |(% style="width:1452px" %)
379 |(% style="width:26px" %) |(% style="width:1452px" %)
380 |(% style="width:26px" %) |(% style="width:1452px" %)
381 |(% style="width:26px" %) |(% style="width:1452px" %)
382 |(% style="width:26px" %) |(% style="width:1452px" %)
383 |(% style="width:26px" %) |(% style="width:1452px" %)
384 |(% style="width:26px" %) |(% style="width:1452px" %)
385 |(% style="width:26px" %) |(% style="width:1452px" %)
386 |(% style="width:26px" %) |(% style="width:1452px" %)
387 |(% style="width:26px" %) |(% style="width:1452px" %)
388 |(% style="width:26px" %) |(% style="width:1452px" %)
389 |(% style="width:26px" %) |(% style="width:1452px" %)
390 |(% style="width:26px" %) |(% style="width:1452px" %)
391 |(% style="width:26px" %) |(% style="width:1452px" %)
392 |(% style="width:26px" %) |(% style="width:1452px" %)
393 |(% style="width:26px" %) |(% style="width:1452px" %)
394 |(% style="width:26px" %) |(% style="width:1452px" %)
395 |(% style="width:26px" %) |(% style="width:1452px" %)
396 |(% style="width:26px" %) |(% style="width:1452px" %)
397 |(% style="width:26px" %) |(% style="width:1452px" %)
398 |(% style="width:26px" %) |(% style="width:1452px" %)
399 |(% style="width:26px" %) |(% style="width:1452px" %)
400 |(% style="width:26px" %) |(% style="width:1452px" %)
401 |(% style="width:26px" %) |(% style="width:1452px" %)
402 |(% style="width:26px" %) |(% style="width:1452px" %)
403 |(% style="width:26px" %) |(% style="width:1452px" %)
404 |(% style="width:26px" %) |(% style="width:1452px" %)
405 |(% style="width:26px" %) |(% style="width:1452px" %)
406 |(% style="width:26px" %) |(% style="width:1452px" %)
407 |(% style="width:26px" %) |(% style="width:1452px" %)
408 |(% style="width:26px" %) |(% style="width:1452px" %)
409 |(% style="width:26px" %) |(% style="width:1452px" %)
410 |(% style="width:26px" %) |(% style="width:1452px" %)
411 |(% style="width:26px" %) |(% style="width:1452px" %)
412 |(% style="width:26px" %) |(% style="width:1452px" %)
413 |(% style="width:26px" %) |(% style="width:1452px" %)
414 |(% style="width:26px" %) |(% style="width:1452px" %)
415 |(% style="width:26px" %) |(% style="width:1452px" %)
416 |(% style="width:26px" %) |(% style="width:1452px" %)
417 |(% style="width:26px" %) |(% style="width:1452px" %)
418 |(% style="width:26px" %) |(% style="width:1452px" %)
419 |(% style="width:26px" %) |(% style="width:1452px" %)
420 |(% style="width:26px" %) |(% style="width:1452px" %)
421
422 {{comment}}
423 = =
424
425 = User Guide =
426
427 Pressing the i "Information" icon in the software will bring you to this page. Before proceeding with the guide, it is important to note the following:
428
429 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
430 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
431
432 == IMPORTANT: Payload Considerations ==
433
434 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
435 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
436 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
437 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
438
439 == IMPORTANT: Emergency ==
440
441 Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. The following emergency options are available based on severity:
442
443 **Halt & Hold**
444
445 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
446
447 **Limp**
448
449 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
450
451 **Software Stop**
452
453 The E-stop button within the software sets all joints to limp.
454
455 **Hardware E-Stop**
456 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
457
458 == Arm Connection ==
459
460 **Model**
461
462 The software currently supports the following Lynxmotion PRO Arms:
463
464 * 550mm 5DoF
465 * 550mm 6DoF
466 * 900mm 5DoF
467 * 900mm 6DoF
468
469 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
470
471 **COM Port**
472
473 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues. 
474
475 **Connect**
476
477 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
478
479 == Gripper Controls ==
480
481 **Model**
482
483 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as J7.
484
485 * PGE-50-40 (40mm default configuration)
486 * PGE-50-40 (60mm configuration)
487 * PGE-50-40 (80mm configuration)
488 * CGE-10-10 (20mm configuration)
489 * CGE-10-10 (40mm configuration)
490 * CGE-10-10 (60mm configuration)
491
492 **COM Port**
493
494 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
495
496 **Baudrate**
497
498 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in teh software.
499
500 **Initialize**
501
502 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
503
504 **Connect**
505
506 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
507
508 **Speed**
509
510 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
511
512 **Force**
513
514 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
515
516 **Open / Close**
517
518 These are shortcut buttons to either fully open or fully close the gripper.
519
520 **Sequencer**
521
522 The sequencer displays the gripper position as joint 7 (J7).
523
524 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only J7 moves.
525
526 == 3D Model ==
527
528 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
529
530 **View Controls**
531
532 Zoom: Shift + Middle Scroll
533
534 Rotate: Shift + Middle Mouse
535
536 Pan: None
537
538 == Manual Move ==
539
540 **Angular Control**
541
542 In angular mode, the user can control the angle of each joint
543
544 **Coordinates Control**
545
546 In coordinate control the user can control the cartesian position of the end effector
547
548 **End Effector Lock**
549
550 The orientation of the end effector can be locked.
551
552 == Direct Command ==
553
554 This section allow the user to send commands using the [[doc:ses-pro.lss-pro.lss-p-communication-protocol.WebHome]] directly if required.
555
556 A few things to keep in mind when using this:
557
558 * Make sure you know what you are doing as you can make the arm move in __dangerous__ ways.
559 * Sending commands does not require ‘#’ and ‘\r’ chars.
560 ** example for #2\r you should enter 2Q and press the "SEND" button
561 * The commands are validated, and it shows a notification in case of error.
562 * The replies of queries are shown in the text field below.
563
564 == Command Output ==
565
566 //{Coming Soon}//
567
568 == Telemetry ==
569
570 **Data to Display**
571
572 //{Coming Soon}//
573
574 **Display / Hide Actuator**
575
576 //{Coming Soon}//
577
578 == Sequencer ==
579
580 **Frames**
581
582 //{Coming Soon}//
583
584 **Record **
585
586 //{Coming Soon}//
587
588 **Edit **
589
590 Time, angles, gripper
591
592 //Alt + Left Click = Drag time//
593
594 **Reorder**
595
596 //{Coming Soon}//
597
598 **Play**
599
600 //{Coming Soon}//
601
602 **Errors**
603
604 //{Coming Soon}//
605 {{/comment}}
Copyright RobotShop 2018