Wiki source code of SES-PRO Robotic Arm UI

Version 52.3 by Eric Nantel on 2024/10/16 12:43

Show last authors
1 {{lightbox image="https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/ses-pro-software/ses-pro-arm-ui/WebHome/SES-PRO-Robotic-Arm-UI.png" width="350"/}}
2
3 [[[[image:[email protected]]]>>https://lynxmotion.com/tools/ses-pro-app/lynxmotion_ses_pro_robotic_arm_ui_stable.exe]]
4
5 **Table of Contents**
6
7 {{toc/}}
8
9 = Description =
10
11 The Lynxmotion Servo Erector Set Professional (SES PRO) Robotic Arm User Interface (UI) is a simple software which allows a user to control any of the Lynxmotion Professional Modular robotic arms in their default configuration. The two compatible gripper kits which are compatible with the SES PRO system (based on the DH Robotics PGE-50-40 and CGE-10-10 DC grillers) can also be controlled via this interface in each of their possible configurations. The included manual jog feature can be used to either position each joint angle, or move to specific cartesian coordinates. Arm (and gripper) positions can then be recorded as part of the built-in sequencer. A 3D display of the arm shows the position of the arm, and a graph can be used to show various information to the user. In order to get a better understanding of the protocol, commands sent to the arm are shown in the interface, and a user input field are standard.
12
13 = Features =
14
15 * Angular and cartesian positioning of the end effector
16 * 3D graphical display of the appropriate robotic arm and end effector
17 * Sequencer to record and play back frames (single, looped or infinite)
18 * Error checking (speed, temperature etc.)
19 * Command output and user input
20 * Safety (Software E-Stop, Halt&Hold & Limp)
21
22 __Compatibility: Windows 7 Operating System or above__
23
24
25 |(% colspan="3" %)(((
26 = User Guide =
27 )))
28 |(% style="width:25px" %) |(% colspan="2" rowspan="1" style="width:100px" %)(((
29 Before proceeding with the guide, it is important to note the following:
30
31 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
32 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
33 )))
34 | |(% style="text-align:center; vertical-align:middle; width:125px" %)[[image:ses-pro-robotic-arm-ui-info.png]]|Pressing the i "Information" icon in the software will bring you to this page.
35 | |(% colspan="2" rowspan="1" %)(((
36 == IMPORTANT ==
37 )))
38 | |(% colspan="2" rowspan="1" %)(((
39 === Payload Considerations ===
40 )))
41 | |(% colspan="2" rowspan="1" %)(((
42 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
43 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
44 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
45 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
46 )))
47 | |(% colspan="2" rowspan="1" %)(((
48 === Emergency ===
49 )))
50 | |(% colspan="2" rowspan="1" %)Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. 
51 The following emergency options are available based on severity:
52 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-halt.png]]|(((
53 **Halt (and hold)**
54
55 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
56 )))
57 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-limp.png]]|(((
58 **Limp**
59
60 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
61 )))
62 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-emergency.png]]|(((
63 **Software E-Stop**
64
65 The E-stop button within the software sets all joints to limp, this can possibly cause the arm to fall.
66 )))
67 | |(% style="text-align:center; vertical-align:middle" %) |(((
68 **Power Supply E-Stop**
69
70 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
71 )))
72 | |(% colspan="2" rowspan="1" %)(((
73 == Arm Connection ==
74 )))
75 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-version.png]]|(((
76 **Model**
77
78 The software currently supports the following Lynxmotion PRO Arms:
79
80 * 550mm 5DoF
81 * 550mm 6DoF
82 * 900mm 5DoF
83 * 900mm 6DoF
84
85 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
86 )))
87 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-com.png]]|(((
88 **COM Port**
89
90 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues.
91 )))
92 | |(% style="text-align:center; vertical-align:middle" %)(((
93 [[image:ses-pro-robotic-arm-ui-connect.png]]
94
95 [[image:ses-pro-robotic-arm-ui-disconnect.png]]
96 )))|(((
97 **Connect / Disconnect**
98
99 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
100 )))
101 | |(% colspan="2" rowspan="1" %)(((
102 == Gripper Controls ==
103 )))
104 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-version-drop.png]]|(((
105 **Model**
106
107 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as J7.
108 )))
109 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-version.png]]|(((
110 * PGE-50-40 (40mm default configuration)
111 * PGE-50-40 (60mm configuration)
112 * PGE-50-40 (80mm configuration)
113 * CGE-10-10 (20mm configuration)
114 * CGE-10-10 (40mm configuration)
115 * CGE-10-10 (60mm configuration)
116 )))
117 | |(% style="text-align:center; vertical-align:middle" %) |(((
118 **COM Port**
119
120 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
121 )))
122 | |(% style="text-align:center; vertical-align:middle" %) |(((
123 **Baudrate**
124
125 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in the software.
126 )))
127 | |(% style="text-align:center; vertical-align:middle" %) |(((
128 **Initialize**
129
130 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
131 )))
132 | |(% style="text-align:center; vertical-align:middle" %) |(((
133 **Connect**
134
135 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
136 )))
137 | |(% style="text-align:center; vertical-align:middle" %) |(((
138 **Speed**
139
140 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
141 )))
142 | |(% style="text-align:center; vertical-align:middle" %) |(((
143 **Force**
144
145 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
146 )))
147 | |(% style="text-align:center; vertical-align:middle" %) |(((
148 **Open / Close**
149
150 These are shortcut buttons to either fully open or fully close the gripper.
151 )))
152 | |(% style="text-align:center; vertical-align:middle" %) |(((
153 **Sequencer**
154
155 The sequencer displays the gripper position as joint 7 (J7).
156
157 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only J7 moves.
158 )))
159 | |(% colspan="2" rowspan="1" %)(((
160 == 3D Model ==
161 )))
162 | |(% colspan="2" rowspan="1" %)(((
163 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
164 )))
165 | |(% style="text-align:center; vertical-align:middle" %) |(((
166 **View Controls**
167
168 Zoom: Shift + Middle Scroll
169
170 Rotate: Shift + Middle Mouse
171
172 Pan: None
173 )))
174 | |(% style="text-align:center; vertical-align:middle" %) |
175 | |(% style="text-align:center; vertical-align:middle" %) |
176 | |(% style="text-align:center; vertical-align:middle" %) |
177 | |(% style="text-align:center; vertical-align:middle" %) |
178 | |(% style="text-align:center; vertical-align:middle" %) |
179 | |(% style="text-align:center; vertical-align:middle" %) |
180 | |(% style="text-align:center; vertical-align:middle" %) |
181 | |(% style="text-align:center; vertical-align:middle" %) |
182 | |(% style="text-align:center; vertical-align:middle" %) |
183 | |(% style="text-align:center; vertical-align:middle" %) |
184 | |(% style="text-align:center; vertical-align:middle" %) |
185 | |(% style="text-align:center; vertical-align:middle" %) |
186 | |(% style="text-align:center; vertical-align:middle" %) |
187 | |(% style="text-align:center; vertical-align:middle" %) |
188 | |(% style="text-align:center; vertical-align:middle" %) |
189 | |(% style="text-align:center; vertical-align:middle" %) |
190 | |(% style="text-align:center; vertical-align:middle" %) |
191 | |(% style="text-align:center; vertical-align:middle" %) |
192 | |(% style="text-align:center; vertical-align:middle" %) |
193 | |(% style="text-align:center; vertical-align:middle" %) |
194 | |(% style="text-align:center; vertical-align:middle" %) |
195
196 |(% colspan="2" %)(((
197 = User Guide =
198 )))
199 |(% style="width:26px" %) |(% style="width:1452px" %)(((
200 Before proceeding with the guide, it is important to note the following:
201
202 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
203 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
204
205 Pressing the i "Information" icon in the software will bring you to this page.
206
207 [[image:ses-pro-robotic-arm-ui-info.png]]
208 )))
209 |(% colspan="2" %)(((
210 == IMPORTANT ==
211 )))
212 |(% style="width:26px" %) |(% style="width:1452px" %)(((
213 === Payload Considerations ===
214
215 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
216 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
217 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
218 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
219 )))
220 |(% style="width:26px" %) |(% style="width:1452px" %)(((
221 === Emergency ===
222
223 Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. The following emergency options are available based on severity:
224
225 **Halt (and hold)**
226
227 **[[image:ses-pro-robotic-arm-ui-halt.png]]**
228
229 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
230
231 **Limp**
232
233 **[[image:ses-pro-robotic-arm-ui-limp.png]]**
234
235 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
236
237 **Software E-Stop**
238
239 **[[image:ses-pro-robotic-arm-ui-arm-emergency.png]]**
240
241 The E-stop button within the software sets all joints to limp, this can possibly cause the arm to fall.
242
243 **Power Supply E-Stop**
244 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
245 )))
246 |(% colspan="2" %)(((
247 == Arm Connection ==
248 )))
249 |(% style="width:26px" %) |(% style="width:1452px" %)(((
250 **Model**
251
252 **[[image:ses-pro-robotic-arm-ui-arm-version.png]]**
253
254 The software currently supports the following Lynxmotion PRO Arms:
255
256 * 550mm 5DoF
257 * 550mm 6DoF
258 * 900mm 5DoF
259 * 900mm 6DoF
260
261 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
262
263 **COM Port**
264
265 **[[image:ses-pro-robotic-arm-ui-com.png]]**
266
267 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues. 
268
269 **Connect / Disconnect**
270
271 [[image:ses-pro-robotic-arm-ui-connect.png]]
272
273 [[image:ses-pro-robotic-arm-ui-disconnect.png]]
274
275 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
276 )))
277 |(% colspan="2" %)(((
278 == Gripper Controls ==
279 )))
280 |(% style="width:26px" %) |(% style="width:1452px" %)(((
281 **Model**
282
283 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as J7.
284
285 * PGE-50-40 (40mm default configuration)
286 * PGE-50-40 (60mm configuration)
287 * PGE-50-40 (80mm configuration)
288 * CGE-10-10 (20mm configuration)
289 * CGE-10-10 (40mm configuration)
290 * CGE-10-10 (60mm configuration)
291
292 **COM Port**
293
294 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
295
296 **Baudrate**
297
298 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in the software.
299
300 **Initialize**
301
302 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
303
304 **Connect**
305
306 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
307
308 **Speed**
309
310 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
311
312 **Force**
313
314 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
315
316 **Open / Close**
317
318 These are shortcut buttons to either fully open or fully close the gripper.
319
320 **Sequencer**
321
322 The sequencer displays the gripper position as joint 7 (J7).
323
324 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only J7 moves.
325 )))
326 |(% colspan="2" %)(((
327 == 3D Model ==
328 )))
329 |(% style="width:26px" %) |(% style="width:1452px" %)(((
330 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
331
332 **View Controls**
333
334 Zoom: Shift + Middle Scroll
335
336 Rotate: Shift + Middle Mouse
337
338 Pan: None
339 )))
340 |(% colspan="2" %)(((
341 == Manual Move ==
342 )))
343 |(% style="width:26px" %) |(% style="width:1452px" %)(((
344 **Angular Control**
345
346 In angular mode, the user can control the angle of each joint
347
348 **Coordinates Control**
349
350 In coordinate control the user can control the cartesian position of the end effector
351
352 **End Effector Lock**
353
354 The orientation of the end effector can be locked.
355 )))
356 |(% colspan="2" %)(((
357 == Direct Command ==
358 )))
359 |(% style="width:26px" %) |(% style="width:1452px" %)(((
360 This section allow the user to send commands using the [[LSS-PRO Communication Protocol>>path:/info/wiki/lynxmotion/view/ses-pro/lss-pro/lss-p-communication-protocol/]] directly if required.
361
362 A few things to keep in mind when using this:
363
364 * Make sure you know what you are doing as you can make the arm move in __dangerous__ ways.
365 * Sending commands does not require ‘#’ and ‘\r’ chars.
366 ** example for #2\r you should enter 2Q and press the "SEND" button
367 * The commands are validated, and it shows a notification in case of error.
368 * The replies of queries are shown in the text field below.
369 )))
370 |(% colspan="2" %)(((
371 == Command Output ==
372 )))
373 |(% style="width:26px" %) |(% style="width:1452px" %)(((
374 //{Coming Soon}//
375 )))
376 |(% colspan="2" %)(((
377 == Telemetry ==
378 )))
379 |(% style="width:26px" %) |(% style="width:1452px" %)(((
380 **Data to Display**
381
382 Various telemetry data can be retrieved from each actuators / joints, here is what the software support:
383
384 * Position
385 * Current
386 * Linear Accel X
387 * Linear Accel Y
388 * Linear Accel Z
389 * Angular Accel α
390 * Angular Accel β
391 * Angular Accel γ
392 * MCU Temperature
393 * PCB Temperature
394 * Probe Temperature
395
396 **Display / Hide **
397
398 At the bottom of the graphics you will find squares to activate / deactivate the desired actuator / joint to be displayed in the graph.
399 )))
400 |(% colspan="2" style="width:26px" %)(((
401 == Sequencer ==
402 )))
403 |(% style="width:26px" %) |(% style="width:1452px" %)(((
404 **Sequence**
405
406 Add
407
408 Substract
409
410 Copy
411
412 Save
413
414 Open
415
416 Delete
417
418 //{Coming Soon}//
419
420 **Frames**
421
422 Add
423
424 Sequence Selector
425
426 Record
427
428 Delete
429
430 Copy
431
432 Paste
433
434 Swap
435
436 Manual Edit
437
438 Time, angles, gripper
439
440 Moving Frames
441
442 //Alt + Left Click = Drag time//
443
444 //{Coming Soon}//
445
446 **Errors**
447
448 //{Coming Soon}//
449 )))
450 |(% style="width:26px" %) |(% style="width:1452px" %)
451 |(% style="width:26px" %) |(% style="width:1452px" %)
452 |(% style="width:26px" %) |(% style="width:1452px" %)
453 |(% style="width:26px" %) |(% style="width:1452px" %)
454 |(% style="width:26px" %) |(% style="width:1452px" %)
455 |(% style="width:26px" %) |(% style="width:1452px" %)
456 |(% style="width:26px" %) |(% style="width:1452px" %)
457 |(% style="width:26px" %) |(% style="width:1452px" %)
458 |(% style="width:26px" %) |(% style="width:1452px" %)
459 |(% style="width:26px" %) |(% style="width:1452px" %)
460 |(% style="width:26px" %) |(% style="width:1452px" %)
461 |(% style="width:26px" %) |(% style="width:1452px" %)
462 |(% style="width:26px" %) |(% style="width:1452px" %)
463 |(% style="width:26px" %) |(% style="width:1452px" %)
464 |(% style="width:26px" %) |(% style="width:1452px" %)
465 |(% style="width:26px" %) |(% style="width:1452px" %)
466 |(% style="width:26px" %) |(% style="width:1452px" %)
467 |(% style="width:26px" %) |(% style="width:1452px" %)
468 |(% style="width:26px" %) |(% style="width:1452px" %)
469 |(% style="width:26px" %) |(% style="width:1452px" %)
470 |(% style="width:26px" %) |(% style="width:1452px" %)
471 |(% style="width:26px" %) |(% style="width:1452px" %)
472 |(% style="width:26px" %) |(% style="width:1452px" %)
473 |(% style="width:26px" %) |(% style="width:1452px" %)
474 |(% style="width:26px" %) |(% style="width:1452px" %)
475 |(% style="width:26px" %) |(% style="width:1452px" %)
476 |(% style="width:26px" %) |(% style="width:1452px" %)
477 |(% style="width:26px" %) |(% style="width:1452px" %)
478 |(% style="width:26px" %) |(% style="width:1452px" %)
479 |(% style="width:26px" %) |(% style="width:1452px" %)
480 |(% style="width:26px" %) |(% style="width:1452px" %)
481 |(% style="width:26px" %) |(% style="width:1452px" %)
482 |(% style="width:26px" %) |(% style="width:1452px" %)
483 |(% style="width:26px" %) |(% style="width:1452px" %)
484 |(% style="width:26px" %) |(% style="width:1452px" %)
485 |(% style="width:26px" %) |(% style="width:1452px" %)
486 |(% style="width:26px" %) |(% style="width:1452px" %)
487 |(% style="width:26px" %) |(% style="width:1452px" %)
488 |(% style="width:26px" %) |(% style="width:1452px" %)
489 |(% style="width:26px" %) |(% style="width:1452px" %)
490 |(% style="width:26px" %) |(% style="width:1452px" %)
491 |(% style="width:26px" %) |(% style="width:1452px" %)
492 |(% style="width:26px" %) |(% style="width:1452px" %)
493 |(% style="width:26px" %) |(% style="width:1452px" %)
494 |(% style="width:26px" %) |(% style="width:1452px" %)
495 |(% style="width:26px" %) |(% style="width:1452px" %)
496 |(% style="width:26px" %) |(% style="width:1452px" %)
497 |(% style="width:26px" %) |(% style="width:1452px" %)
498 |(% style="width:26px" %) |(% style="width:1452px" %)
499 |(% style="width:26px" %) |(% style="width:1452px" %)
500 |(% style="width:26px" %) |(% style="width:1452px" %)
501 |(% style="width:26px" %) |(% style="width:1452px" %)
502 |(% style="width:26px" %) |(% style="width:1452px" %)
503 |(% style="width:26px" %) |(% style="width:1452px" %)
504
505 {{comment}}
506 = =
507
508 = User Guide =
509
510 Pressing the i "Information" icon in the software will bring you to this page. Before proceeding with the guide, it is important to note the following:
511
512 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
513 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
514
515 == IMPORTANT: Payload Considerations ==
516
517 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
518 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
519 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
520 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
521
522 == IMPORTANT: Emergency ==
523
524 Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. The following emergency options are available based on severity:
525
526 **Halt & Hold**
527
528 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
529
530 **Limp**
531
532 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
533
534 **Software Stop**
535
536 The E-stop button within the software sets all joints to limp.
537
538 **Hardware E-Stop**
539 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
540
541 == Arm Connection ==
542
543 **Model**
544
545 The software currently supports the following Lynxmotion PRO Arms:
546
547 * 550mm 5DoF
548 * 550mm 6DoF
549 * 900mm 5DoF
550 * 900mm 6DoF
551
552 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
553
554 **COM Port**
555
556 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues. 
557
558 **Connect**
559
560 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
561
562 == Gripper Controls ==
563
564 **Model**
565
566 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as J7.
567
568 * PGE-50-40 (40mm default configuration)
569 * PGE-50-40 (60mm configuration)
570 * PGE-50-40 (80mm configuration)
571 * CGE-10-10 (20mm configuration)
572 * CGE-10-10 (40mm configuration)
573 * CGE-10-10 (60mm configuration)
574
575 **COM Port**
576
577 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
578
579 **Baudrate**
580
581 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in teh software.
582
583 **Initialize**
584
585 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
586
587 **Connect**
588
589 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
590
591 **Speed**
592
593 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
594
595 **Force**
596
597 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
598
599 **Open / Close**
600
601 These are shortcut buttons to either fully open or fully close the gripper.
602
603 **Sequencer**
604
605 The sequencer displays the gripper position as joint 7 (J7).
606
607 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only J7 moves.
608
609 == 3D Model ==
610
611 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
612
613 **View Controls**
614
615 Zoom: Shift + Middle Scroll
616
617 Rotate: Shift + Middle Mouse
618
619 Pan: None
620
621 == Manual Move ==
622
623 **Angular Control**
624
625 In angular mode, the user can control the angle of each joint
626
627 **Coordinates Control**
628
629 In coordinate control the user can control the cartesian position of the end effector
630
631 **End Effector Lock**
632
633 The orientation of the end effector can be locked.
634
635 == Direct Command ==
636
637 This section allow the user to send commands using the [[doc:ses-pro.lss-pro.lss-p-communication-protocol.WebHome]] directly if required.
638
639 A few things to keep in mind when using this:
640
641 * Make sure you know what you are doing as you can make the arm move in __dangerous__ ways.
642 * Sending commands does not require ‘#’ and ‘\r’ chars.
643 ** example for #2\r you should enter 2Q and press the "SEND" button
644 * The commands are validated, and it shows a notification in case of error.
645 * The replies of queries are shown in the text field below.
646
647 == Command Output ==
648
649 //{Coming Soon}//
650
651 == Telemetry ==
652
653 **Data to Display**
654
655 //{Coming Soon}//
656
657 **Display / Hide Actuator**
658
659 //{Coming Soon}//
660
661 == Sequencer ==
662
663 **Frames**
664
665 //{Coming Soon}//
666
667 **Record **
668
669 //{Coming Soon}//
670
671 **Edit **
672
673 Time, angles, gripper
674
675 //Alt + Left Click = Drag time//
676
677 **Reorder**
678
679 //{Coming Soon}//
680
681 **Play**
682
683 //{Coming Soon}//
684
685 **Errors**
686
687 //{Coming Soon}//
688 {{/comment}}

Recently Visited

Copyright RobotShop 2018