Wiki source code of SES-PRO Robotic Arm UI

Version 53.1 by Eric Nantel on 2024/10/16 12:46

Show last authors
1 {{lightbox image="https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/ses-pro-software/ses-pro-arm-ui/WebHome/SES-PRO-Robotic-Arm-UI.png" width="350"/}}
2
3 [[[[image:[email protected]]]>>https://lynxmotion.com/tools/ses-pro-app/lynxmotion_ses_pro_robotic_arm_ui_stable.exe]]
4
5 **Table of Contents**
6
7 {{toc/}}
8
9 = Description =
10
11 The Lynxmotion Servo Erector Set Professional (SES PRO) Robotic Arm User Interface (UI) is a simple software which allows a user to control any of the Lynxmotion Professional Modular robotic arms in their default configuration. The two compatible gripper kits which are compatible with the SES PRO system (based on the DH Robotics PGE-50-40 and CGE-10-10 DC grillers) can also be controlled via this interface in each of their possible configurations. The included manual jog feature can be used to either position each joint angle, or move to specific cartesian coordinates. Arm (and gripper) positions can then be recorded as part of the built-in sequencer. A 3D display of the arm shows the position of the arm, and a graph can be used to show various information to the user. In order to get a better understanding of the protocol, commands sent to the arm are shown in the interface, and a user input field are standard.
12
13 = Features =
14
15 * Angular and cartesian positioning of the end effector
16 * 3D graphical display of the appropriate robotic arm and end effector
17 * Sequencer to record and play back frames (single, looped or infinite)
18 * Error checking (speed, temperature etc.)
19 * Command output and user input
20 * Safety (Software E-Stop, Halt&Hold & Limp)
21
22 __Compatibility: Windows 7 Operating System or above__
23
24
25 |(% colspan="3" %)(((
26 = User Guide =
27 )))
28 |(% style="width:25px" %) |(% colspan="2" rowspan="1" style="width:100px" %)(((
29 Before proceeding with the guide, it is important to note the following:
30
31 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
32 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
33 )))
34 | |(% style="text-align:center; vertical-align:middle; width:125px" %)[[image:ses-pro-robotic-arm-ui-info.png]]|Pressing the i "Information" icon in the software will bring you to this page.
35 | |(% colspan="2" rowspan="1" %)(((
36 == IMPORTANT ==
37 )))
38 | |(% colspan="2" rowspan="1" %)(((
39 === Payload Considerations ===
40 )))
41 | |(% colspan="2" rowspan="1" %)(((
42 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
43 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
44 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
45 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
46 )))
47 | |(% colspan="2" rowspan="1" %)(((
48 === Emergency ===
49 )))
50 | |(% colspan="2" rowspan="1" %)Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. 
51 The following emergency options are available based on severity:
52 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-halt.png]]|(((
53 **Halt (and hold)**
54
55 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
56 )))
57 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-limp.png]]|(((
58 **Limp**
59
60 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
61 )))
62 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-emergency.png]]|(((
63 **Software E-Stop**
64
65 The E-stop button within the software sets all joints to limp, this can possibly cause the arm to fall.
66 )))
67 | |(% style="text-align:center; vertical-align:middle" %) |(((
68 **Power Supply E-Stop**
69
70 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
71 )))
72 | |(% colspan="2" rowspan="1" %)(((
73 == Arm Connection ==
74 )))
75 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-version.png]]|(((
76 **Model**
77
78 The software currently supports the following Lynxmotion PRO Arms:
79
80 * 550mm 5DoF
81 * 550mm 6DoF
82 * 900mm 5DoF
83 * 900mm 6DoF
84
85 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
86 )))
87 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-com.png]]|(((
88 **COM Port**
89
90 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues.
91 )))
92 | |(% style="text-align:center; vertical-align:middle" %)(((
93 [[image:ses-pro-robotic-arm-ui-connect.png]]
94
95 [[image:ses-pro-robotic-arm-ui-disconnect.png]]
96 )))|(((
97 **Connect / Disconnect**
98
99 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
100 )))
101 | |(% colspan="2" rowspan="1" %)(((
102 == Gripper Controls ==
103 )))
104 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-version-drop.png]]|(((
105 **Model**
106
107 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as J7.
108 )))
109 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-version.png]]|(((
110 * PGE-50-40 (40mm default configuration)
111 * PGE-50-40 (60mm configuration)
112 * PGE-50-40 (80mm configuration)
113 * CGE-10-10 (20mm configuration)
114 * CGE-10-10 (40mm configuration)
115 * CGE-10-10 (60mm configuration)
116 )))
117 | |(% style="text-align:center; vertical-align:middle" %) |(((
118 **COM Port**
119
120 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
121 )))
122 | |(% style="text-align:center; vertical-align:middle" %) |(((
123 **Baudrate**
124
125 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in the software.
126 )))
127 | |(% style="text-align:center; vertical-align:middle" %) |(((
128 **Initialize**
129
130 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
131 )))
132 | |(% style="text-align:center; vertical-align:middle" %) |(((
133 **Connect**
134
135 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
136 )))
137 | |(% style="text-align:center; vertical-align:middle" %) |(((
138 **Speed**
139
140 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
141 )))
142 | |(% style="text-align:center; vertical-align:middle" %) |(((
143 **Force**
144
145 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
146 )))
147 | |(% style="text-align:center; vertical-align:middle" %) |(((
148 **Open / Close**
149
150 These are shortcut buttons to either fully open or fully close the gripper.
151 )))
152 | |(% style="text-align:center; vertical-align:middle" %) |(((
153 **Sequencer**
154
155 The sequencer displays the gripper position as joint 7 (J7).
156
157 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only J7 moves.
158 )))
159 | |(% colspan="2" rowspan="1" %)(((
160 == 3D Model ==
161 )))
162 | |(% colspan="2" rowspan="1" %)(((
163 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
164 )))
165 | |(% style="text-align:center; vertical-align:middle" %) |(((
166 **View Controls**
167
168 Zoom: Shift + Middle Scroll
169
170 Rotate: Shift + Middle Mouse
171
172 Pan: None
173 )))
174 | |(% colspan="2" rowspan="1" %)(((
175 == Manual Move ==
176 )))
177 | |(% style="text-align:center; vertical-align:middle" %) |(((
178 **Angular Control**
179
180 In angular mode, the user can control the angle of each joint
181 )))
182 | |(% style="text-align:center; vertical-align:middle" %) |(((
183 **Coordinates Control**
184
185 In coordinate control the user can control the cartesian position of the end effector
186 )))
187 | |(% style="text-align:center; vertical-align:middle" %) |(((
188 **End Effector Lock**
189
190 The orientation of the end effector can be locked.
191 )))
192 | |(% colspan="2" rowspan="1" %)(((
193 == Direct Command ==
194 )))
195 | |(% colspan="2" rowspan="1" %)(((
196 This section allow the user to send commands using the [[LSS-PRO Communication Protocol>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-pro/lss-pro/lss-p-communication-protocol/]] directly if required.
197
198 A few things to keep in mind when using this:
199
200 * Make sure you know what you are doing as you can make the arm move in __dangerous__ ways.
201 * Sending commands does not require ‘#’ and ‘\r’ chars.
202 ** example for #2\r you should enter 2Q and press the "SEND" button
203 * The commands are validated, and it shows a notification in case of error.
204 * The replies of queries are shown in the text field below.
205 )))
206 | |(% style="text-align:center; vertical-align:middle" %) |
207 | |(% style="text-align:center; vertical-align:middle" %) |
208 | |(% style="text-align:center; vertical-align:middle" %) |
209 | |(% style="text-align:center; vertical-align:middle" %) |
210 | |(% style="text-align:center; vertical-align:middle" %) |
211 | |(% style="text-align:center; vertical-align:middle" %) |
212 | |(% style="text-align:center; vertical-align:middle" %) |
213 | |(% style="text-align:center; vertical-align:middle" %) |
214 | |(% style="text-align:center; vertical-align:middle" %) |
215 | |(% style="text-align:center; vertical-align:middle" %) |
216 | |(% style="text-align:center; vertical-align:middle" %) |
217 | |(% style="text-align:center; vertical-align:middle" %) |
218 | |(% style="text-align:center; vertical-align:middle" %) |
219 | |(% style="text-align:center; vertical-align:middle" %) |
220 | |(% style="text-align:center; vertical-align:middle" %) |
221
222 |(% colspan="2" %)(((
223 = User Guide =
224 )))
225 |(% style="width:26px" %) |(% style="width:1452px" %)(((
226 Before proceeding with the guide, it is important to note the following:
227
228 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
229 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
230
231 Pressing the i "Information" icon in the software will bring you to this page.
232
233 [[image:ses-pro-robotic-arm-ui-info.png]]
234 )))
235 |(% colspan="2" %)(((
236 == IMPORTANT ==
237 )))
238 |(% style="width:26px" %) |(% style="width:1452px" %)(((
239 === Payload Considerations ===
240
241 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
242 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
243 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
244 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
245 )))
246 |(% style="width:26px" %) |(% style="width:1452px" %)(((
247 === Emergency ===
248
249 Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. The following emergency options are available based on severity:
250
251 **Halt (and hold)**
252
253 **[[image:ses-pro-robotic-arm-ui-halt.png]]**
254
255 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
256
257 **Limp**
258
259 **[[image:ses-pro-robotic-arm-ui-limp.png]]**
260
261 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
262
263 **Software E-Stop**
264
265 **[[image:ses-pro-robotic-arm-ui-arm-emergency.png]]**
266
267 The E-stop button within the software sets all joints to limp, this can possibly cause the arm to fall.
268
269 **Power Supply E-Stop**
270 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
271 )))
272 |(% colspan="2" %)(((
273 == Arm Connection ==
274 )))
275 |(% style="width:26px" %) |(% style="width:1452px" %)(((
276 **Model**
277
278 **[[image:ses-pro-robotic-arm-ui-arm-version.png]]**
279
280 The software currently supports the following Lynxmotion PRO Arms:
281
282 * 550mm 5DoF
283 * 550mm 6DoF
284 * 900mm 5DoF
285 * 900mm 6DoF
286
287 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
288
289 **COM Port**
290
291 **[[image:ses-pro-robotic-arm-ui-com.png]]**
292
293 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues. 
294
295 **Connect / Disconnect**
296
297 [[image:ses-pro-robotic-arm-ui-connect.png]]
298
299 [[image:ses-pro-robotic-arm-ui-disconnect.png]]
300
301 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
302 )))
303 |(% colspan="2" %)(((
304 == Gripper Controls ==
305 )))
306 |(% style="width:26px" %) |(% style="width:1452px" %)(((
307 **Model**
308
309 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as J7.
310
311 * PGE-50-40 (40mm default configuration)
312 * PGE-50-40 (60mm configuration)
313 * PGE-50-40 (80mm configuration)
314 * CGE-10-10 (20mm configuration)
315 * CGE-10-10 (40mm configuration)
316 * CGE-10-10 (60mm configuration)
317
318 **COM Port**
319
320 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
321
322 **Baudrate**
323
324 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in the software.
325
326 **Initialize**
327
328 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
329
330 **Connect**
331
332 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
333
334 **Speed**
335
336 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
337
338 **Force**
339
340 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
341
342 **Open / Close**
343
344 These are shortcut buttons to either fully open or fully close the gripper.
345
346 **Sequencer**
347
348 The sequencer displays the gripper position as joint 7 (J7).
349
350 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only J7 moves.
351 )))
352 |(% colspan="2" %)(((
353 == 3D Model ==
354 )))
355 |(% style="width:26px" %) |(% style="width:1452px" %)(((
356 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
357
358 **View Controls**
359
360 Zoom: Shift + Middle Scroll
361
362 Rotate: Shift + Middle Mouse
363
364 Pan: None
365 )))
366 |(% colspan="2" %)(((
367 == Manual Move ==
368 )))
369 |(% style="width:26px" %) |(% style="width:1452px" %)(((
370 **Angular Control**
371
372 In angular mode, the user can control the angle of each joint
373
374 **Coordinates Control**
375
376 In coordinate control the user can control the cartesian position of the end effector
377
378 **End Effector Lock**
379
380 The orientation of the end effector can be locked.
381 )))
382 |(% colspan="2" %)(((
383 == Direct Command ==
384 )))
385 |(% style="width:26px" %) |(% style="width:1452px" %)(((
386 This section allow the user to send commands using the [[LSS-PRO Communication Protocol>>path:/info/wiki/lynxmotion/view/ses-pro/lss-pro/lss-p-communication-protocol/]] directly if required.
387
388 A few things to keep in mind when using this:
389
390 * Make sure you know what you are doing as you can make the arm move in __dangerous__ ways.
391 * Sending commands does not require ‘#’ and ‘\r’ chars.
392 ** example for #2\r you should enter 2Q and press the "SEND" button
393 * The commands are validated, and it shows a notification in case of error.
394 * The replies of queries are shown in the text field below.
395 )))
396 |(% colspan="2" %)(((
397 == Command Output ==
398 )))
399 |(% style="width:26px" %) |(% style="width:1452px" %)(((
400 //{Coming Soon}//
401 )))
402 |(% colspan="2" %)(((
403 == Telemetry ==
404 )))
405 |(% style="width:26px" %) |(% style="width:1452px" %)(((
406 **Data to Display**
407
408 Various telemetry data can be retrieved from each actuators / joints, here is what the software support:
409
410 * Position
411 * Current
412 * Linear Accel X
413 * Linear Accel Y
414 * Linear Accel Z
415 * Angular Accel α
416 * Angular Accel β
417 * Angular Accel γ
418 * MCU Temperature
419 * PCB Temperature
420 * Probe Temperature
421
422 **Display / Hide **
423
424 At the bottom of the graphics you will find squares to activate / deactivate the desired actuator / joint to be displayed in the graph.
425 )))
426 |(% colspan="2" style="width:26px" %)(((
427 == Sequencer ==
428 )))
429 |(% style="width:26px" %) |(% style="width:1452px" %)(((
430 **Sequence**
431
432 Add
433
434 Substract
435
436 Copy
437
438 Save
439
440 Open
441
442 Delete
443
444 //{Coming Soon}//
445
446 **Frames**
447
448 Add
449
450 Sequence Selector
451
452 Record
453
454 Delete
455
456 Copy
457
458 Paste
459
460 Swap
461
462 Manual Edit
463
464 Time, angles, gripper
465
466 Moving Frames
467
468 //Alt + Left Click = Drag time//
469
470 //{Coming Soon}//
471
472 **Errors**
473
474 //{Coming Soon}//
475 )))
476 |(% style="width:26px" %) |(% style="width:1452px" %)
477 |(% style="width:26px" %) |(% style="width:1452px" %)
478 |(% style="width:26px" %) |(% style="width:1452px" %)
479 |(% style="width:26px" %) |(% style="width:1452px" %)
480 |(% style="width:26px" %) |(% style="width:1452px" %)
481 |(% style="width:26px" %) |(% style="width:1452px" %)
482 |(% style="width:26px" %) |(% style="width:1452px" %)
483 |(% style="width:26px" %) |(% style="width:1452px" %)
484 |(% style="width:26px" %) |(% style="width:1452px" %)
485 |(% style="width:26px" %) |(% style="width:1452px" %)
486 |(% style="width:26px" %) |(% style="width:1452px" %)
487 |(% style="width:26px" %) |(% style="width:1452px" %)
488 |(% style="width:26px" %) |(% style="width:1452px" %)
489 |(% style="width:26px" %) |(% style="width:1452px" %)
490 |(% style="width:26px" %) |(% style="width:1452px" %)
491 |(% style="width:26px" %) |(% style="width:1452px" %)
492 |(% style="width:26px" %) |(% style="width:1452px" %)
493 |(% style="width:26px" %) |(% style="width:1452px" %)
494 |(% style="width:26px" %) |(% style="width:1452px" %)
495 |(% style="width:26px" %) |(% style="width:1452px" %)
496 |(% style="width:26px" %) |(% style="width:1452px" %)
497 |(% style="width:26px" %) |(% style="width:1452px" %)
498 |(% style="width:26px" %) |(% style="width:1452px" %)
499 |(% style="width:26px" %) |(% style="width:1452px" %)
500 |(% style="width:26px" %) |(% style="width:1452px" %)
501 |(% style="width:26px" %) |(% style="width:1452px" %)
502 |(% style="width:26px" %) |(% style="width:1452px" %)
503 |(% style="width:26px" %) |(% style="width:1452px" %)
504 |(% style="width:26px" %) |(% style="width:1452px" %)
505 |(% style="width:26px" %) |(% style="width:1452px" %)
506 |(% style="width:26px" %) |(% style="width:1452px" %)
507 |(% style="width:26px" %) |(% style="width:1452px" %)
508 |(% style="width:26px" %) |(% style="width:1452px" %)
509 |(% style="width:26px" %) |(% style="width:1452px" %)
510 |(% style="width:26px" %) |(% style="width:1452px" %)
511 |(% style="width:26px" %) |(% style="width:1452px" %)
512 |(% style="width:26px" %) |(% style="width:1452px" %)
513 |(% style="width:26px" %) |(% style="width:1452px" %)
514 |(% style="width:26px" %) |(% style="width:1452px" %)
515 |(% style="width:26px" %) |(% style="width:1452px" %)
516 |(% style="width:26px" %) |(% style="width:1452px" %)
517 |(% style="width:26px" %) |(% style="width:1452px" %)
518 |(% style="width:26px" %) |(% style="width:1452px" %)
519 |(% style="width:26px" %) |(% style="width:1452px" %)
520 |(% style="width:26px" %) |(% style="width:1452px" %)
521 |(% style="width:26px" %) |(% style="width:1452px" %)
522 |(% style="width:26px" %) |(% style="width:1452px" %)
523 |(% style="width:26px" %) |(% style="width:1452px" %)
524 |(% style="width:26px" %) |(% style="width:1452px" %)
525 |(% style="width:26px" %) |(% style="width:1452px" %)
526 |(% style="width:26px" %) |(% style="width:1452px" %)
527 |(% style="width:26px" %) |(% style="width:1452px" %)
528 |(% style="width:26px" %) |(% style="width:1452px" %)
529 |(% style="width:26px" %) |(% style="width:1452px" %)
530
531 {{comment}}
532 = =
533
534 = User Guide =
535
536 Pressing the i "Information" icon in the software will bring you to this page. Before proceeding with the guide, it is important to note the following:
537
538 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
539 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
540
541 == IMPORTANT: Payload Considerations ==
542
543 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
544 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
545 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
546 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
547
548 == IMPORTANT: Emergency ==
549
550 Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. The following emergency options are available based on severity:
551
552 **Halt & Hold**
553
554 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
555
556 **Limp**
557
558 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
559
560 **Software Stop**
561
562 The E-stop button within the software sets all joints to limp.
563
564 **Hardware E-Stop**
565 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
566
567 == Arm Connection ==
568
569 **Model**
570
571 The software currently supports the following Lynxmotion PRO Arms:
572
573 * 550mm 5DoF
574 * 550mm 6DoF
575 * 900mm 5DoF
576 * 900mm 6DoF
577
578 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
579
580 **COM Port**
581
582 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues. 
583
584 **Connect**
585
586 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
587
588 == Gripper Controls ==
589
590 **Model**
591
592 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as J7.
593
594 * PGE-50-40 (40mm default configuration)
595 * PGE-50-40 (60mm configuration)
596 * PGE-50-40 (80mm configuration)
597 * CGE-10-10 (20mm configuration)
598 * CGE-10-10 (40mm configuration)
599 * CGE-10-10 (60mm configuration)
600
601 **COM Port**
602
603 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
604
605 **Baudrate**
606
607 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in teh software.
608
609 **Initialize**
610
611 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
612
613 **Connect**
614
615 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
616
617 **Speed**
618
619 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
620
621 **Force**
622
623 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
624
625 **Open / Close**
626
627 These are shortcut buttons to either fully open or fully close the gripper.
628
629 **Sequencer**
630
631 The sequencer displays the gripper position as joint 7 (J7).
632
633 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only J7 moves.
634
635 == 3D Model ==
636
637 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
638
639 **View Controls**
640
641 Zoom: Shift + Middle Scroll
642
643 Rotate: Shift + Middle Mouse
644
645 Pan: None
646
647 == Manual Move ==
648
649 **Angular Control**
650
651 In angular mode, the user can control the angle of each joint
652
653 **Coordinates Control**
654
655 In coordinate control the user can control the cartesian position of the end effector
656
657 **End Effector Lock**
658
659 The orientation of the end effector can be locked.
660
661 == Direct Command ==
662
663 This section allow the user to send commands using the [[doc:ses-pro.lss-pro.lss-p-communication-protocol.WebHome]] directly if required.
664
665 A few things to keep in mind when using this:
666
667 * Make sure you know what you are doing as you can make the arm move in __dangerous__ ways.
668 * Sending commands does not require ‘#’ and ‘\r’ chars.
669 ** example for #2\r you should enter 2Q and press the "SEND" button
670 * The commands are validated, and it shows a notification in case of error.
671 * The replies of queries are shown in the text field below.
672
673 == Command Output ==
674
675 //{Coming Soon}//
676
677 == Telemetry ==
678
679 **Data to Display**
680
681 //{Coming Soon}//
682
683 **Display / Hide Actuator**
684
685 //{Coming Soon}//
686
687 == Sequencer ==
688
689 **Frames**
690
691 //{Coming Soon}//
692
693 **Record **
694
695 //{Coming Soon}//
696
697 **Edit **
698
699 Time, angles, gripper
700
701 //Alt + Left Click = Drag time//
702
703 **Reorder**
704
705 //{Coming Soon}//
706
707 **Play**
708
709 //{Coming Soon}//
710
711 **Errors**
712
713 //{Coming Soon}//
714 {{/comment}}

Recently Visited

Copyright RobotShop 2018