Wiki source code of SES-PRO Robotic Arm UI

Version 54.1 by Eric Nantel on 2024/10/16 13:08

Hide last authors
Eric Nantel 34.1 1 {{lightbox image="https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/ses-pro-software/ses-pro-arm-ui/WebHome/SES-PRO-Robotic-Arm-UI.png" width="350"/}}
Eric Nantel 5.1 2
Eric Nantel 38.1 3 [[[[image:[email protected]]]>>https://lynxmotion.com/tools/ses-pro-app/lynxmotion_ses_pro_robotic_arm_ui_stable.exe]]
Eric Nantel 5.1 4
5 **Table of Contents**
6
7 {{toc/}}
8
9 = Description =
10
Eric Nantel 30.1 11 The Lynxmotion Servo Erector Set Professional (SES PRO) Robotic Arm User Interface (UI) is a simple software which allows a user to control any of the Lynxmotion Professional Modular robotic arms in their default configuration. The two compatible gripper kits which are compatible with the SES PRO system (based on the DH Robotics PGE-50-40 and CGE-10-10 DC grillers) can also be controlled via this interface in each of their possible configurations. The included manual jog feature can be used to either position each joint angle, or move to specific cartesian coordinates. Arm (and gripper) positions can then be recorded as part of the built-in sequencer. A 3D display of the arm shows the position of the arm, and a graph can be used to show various information to the user. In order to get a better understanding of the protocol, commands sent to the arm are shown in the interface, and a user input field are standard.
Eric Nantel 5.1 12
13 = Features =
14
Coleman Benson 23.1 15 * Angular and cartesian positioning of the end effector
16 * 3D graphical display of the appropriate robotic arm and end effector
17 * Sequencer to record and play back frames (single, looped or infinite)
18 * Error checking (speed, temperature etc.)
19 * Command output and user input
20 * Safety (Software E-Stop, Halt&Hold & Limp)
Eric Nantel 12.1 21
Eric Nantel 29.1 22 __Compatibility: Windows 7 Operating System or above__
23
Eric Nantel 48.1 24
25 |(% colspan="3" %)(((
26 = User Guide =
27 )))
Eric Nantel 48.2 28 |(% style="width:25px" %) |(% colspan="2" rowspan="1" style="width:100px" %)(((
Eric Nantel 48.1 29 Before proceeding with the guide, it is important to note the following:
30
31 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
32 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
33 )))
Eric Nantel 49.1 34 | |(% style="text-align:center; vertical-align:middle; width:125px" %)[[image:ses-pro-robotic-arm-ui-info.png]]|Pressing the i "Information" icon in the software will bring you to this page.
Eric Nantel 48.1 35 | |(% colspan="2" rowspan="1" %)(((
36 == IMPORTANT ==
37 )))
38 | |(% colspan="2" rowspan="1" %)(((
39 === Payload Considerations ===
40 )))
Eric Nantel 50.1 41 | |(% colspan="2" rowspan="1" %)(((
Eric Nantel 48.1 42 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
43 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
44 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
45 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
46 )))
47 | |(% colspan="2" rowspan="1" %)(((
48 === Emergency ===
49 )))
Eric Nantel 49.1 50 | |(% colspan="2" rowspan="1" %)Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. 
Eric Nantel 48.1 51 The following emergency options are available based on severity:
52 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-halt.png]]|(((
53 **Halt (and hold)**
54
55 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
56 )))
57 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-limp.png]]|(((
58 **Limp**
59
60 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
61 )))
62 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-emergency.png]]|(((
63 **Software E-Stop**
64
65 The E-stop button within the software sets all joints to limp, this can possibly cause the arm to fall.
66 )))
67 | |(% style="text-align:center; vertical-align:middle" %) |(((
68 **Power Supply E-Stop**
69
70 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
71 )))
Eric Nantel 49.1 72 | |(% colspan="2" rowspan="1" %)(((
73 == Arm Connection ==
74 )))
75 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-version.png]]|(((
76 **Model**
77
78 The software currently supports the following Lynxmotion PRO Arms:
79
80 * 550mm 5DoF
81 * 550mm 6DoF
82 * 900mm 5DoF
83 * 900mm 6DoF
84
85 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
86 )))
87 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-com.png]]|(((
88 **COM Port**
89
90 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues.
91 )))
92 | |(% style="text-align:center; vertical-align:middle" %)(((
93 [[image:ses-pro-robotic-arm-ui-connect.png]]
94
95 [[image:ses-pro-robotic-arm-ui-disconnect.png]]
96 )))|(((
97 **Connect / Disconnect**
98
99 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
100 )))
101 | |(% colspan="2" rowspan="1" %)(((
102 == Gripper Controls ==
103 )))
Eric Nantel 52.2 104 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-version-drop.png]]|(((
105 **Model**
106
Eric Nantel 54.1 107 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as G.
Eric Nantel 52.2 108 )))
109 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-version.png]]|(((
110 * PGE-50-40 (40mm default configuration)
111 * PGE-50-40 (60mm configuration)
112 * PGE-50-40 (80mm configuration)
113 * CGE-10-10 (20mm configuration)
114 * CGE-10-10 (40mm configuration)
115 * CGE-10-10 (60mm configuration)
116 )))
117 | |(% style="text-align:center; vertical-align:middle" %) |(((
118 **COM Port**
119
120 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
121 )))
122 | |(% style="text-align:center; vertical-align:middle" %) |(((
123 **Baudrate**
124
125 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in the software.
126 )))
127 | |(% style="text-align:center; vertical-align:middle" %) |(((
128 **Initialize**
129
130 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
131 )))
132 | |(% style="text-align:center; vertical-align:middle" %) |(((
133 **Connect**
134
135 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
136 )))
137 | |(% style="text-align:center; vertical-align:middle" %) |(((
138 **Speed**
139
140 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
141 )))
142 | |(% style="text-align:center; vertical-align:middle" %) |(((
143 **Force**
144
145 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
146 )))
147 | |(% style="text-align:center; vertical-align:middle" %) |(((
148 **Open / Close**
149
150 These are shortcut buttons to either fully open or fully close the gripper.
151 )))
152 | |(% style="text-align:center; vertical-align:middle" %) |(((
153 **Sequencer**
154
Eric Nantel 54.1 155 The sequencer displays the gripper position as joint G.
Eric Nantel 52.2 156
Eric Nantel 54.1 157 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only G moves.
Eric Nantel 52.2 158 )))
Eric Nantel 52.3 159 | |(% colspan="2" rowspan="1" %)(((
160 == 3D Model ==
161 )))
162 | |(% colspan="2" rowspan="1" %)(((
163 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
164 )))
165 | |(% style="text-align:center; vertical-align:middle" %) |(((
166 **View Controls**
167
168 Zoom: Shift + Middle Scroll
169
170 Rotate: Shift + Middle Mouse
171
172 Pan: None
173 )))
Eric Nantel 53.1 174 | |(% colspan="2" rowspan="1" %)(((
175 == Manual Move ==
176 )))
177 | |(% style="text-align:center; vertical-align:middle" %) |(((
178 **Angular Control**
179
180 In angular mode, the user can control the angle of each joint
181 )))
182 | |(% style="text-align:center; vertical-align:middle" %) |(((
183 **Coordinates Control**
184
185 In coordinate control the user can control the cartesian position of the end effector
186 )))
187 | |(% style="text-align:center; vertical-align:middle" %) |(((
188 **End Effector Lock**
189
190 The orientation of the end effector can be locked.
191 )))
192 | |(% colspan="2" rowspan="1" %)(((
193 == Direct Command ==
194 )))
195 | |(% colspan="2" rowspan="1" %)(((
196 This section allow the user to send commands using the [[LSS-PRO Communication Protocol>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-pro/lss-pro/lss-p-communication-protocol/]] directly if required.
197
198 A few things to keep in mind when using this:
199
200 * Make sure you know what you are doing as you can make the arm move in __dangerous__ ways.
201 * Sending commands does not require ‘#’ and ‘\r’ chars.
202 ** example for #2\r you should enter 2Q and press the "SEND" button
203 * The commands are validated, and it shows a notification in case of error.
204 * The replies of queries are shown in the text field below.
205 )))
Eric Nantel 54.1 206 | |(% colspan="2" rowspan="1" %)(((
Eric Nantel 26.1 207 == Telemetry ==
208 )))
Eric Nantel 54.1 209 | |(% style="text-align:center; vertical-align:middle" %) |(((
Eric Nantel 26.1 210 **Data to Display**
Eric Nantel 25.1 211
Eric Nantel 27.3 212 Various telemetry data can be retrieved from each actuators / joints, here is what the software support:
213
Eric Nantel 27.2 214 * Position
215 * Current
216 * Linear Accel X
217 * Linear Accel Y
218 * Linear Accel Z
219 * Angular Accel α
220 * Angular Accel β
221 * Angular Accel γ
222 * MCU Temperature
223 * PCB Temperature
224 * Probe Temperature
Eric Nantel 54.1 225 )))
226 | |(% style="text-align:center; vertical-align:middle" %) |(((
Eric Nantel 27.3 227 **Display / Hide **
Eric Nantel 26.1 228
Eric Nantel 27.3 229 At the bottom of the graphics you will find squares to activate / deactivate the desired actuator / joint to be displayed in the graph.
Eric Nantel 26.1 230 )))
Eric Nantel 54.1 231 | |(% colspan="2" rowspan="1" %)(((
Eric Nantel 26.1 232 == Sequencer ==
233 )))
Eric Nantel 54.1 234 | |(% colspan="2" rowspan="1" %)**Sequence**
235 | |(% style="text-align:center; vertical-align:middle" %) |(((
236 **Sequence Selector**
Eric Nantel 26.1 237
Eric Nantel 54.1 238
239 )))
240 | |(% style="text-align:center; vertical-align:middle" %) |(((
241 **Add**
Eric Nantel 26.1 242
Eric Nantel 54.1 243
244 )))
245 | |(% style="text-align:center; vertical-align:middle" %) |(((
246 **Substract**
Eric Nantel 26.1 247
Eric Nantel 54.1 248
249 )))
250 | |(% style="text-align:center; vertical-align:middle" %) |(((
251 **Copy**
Eric Nantel 28.1 252
Eric Nantel 54.1 253
254 )))
255 | |(% style="text-align:center; vertical-align:middle" %) |(((
256 **Save**
Eric Nantel 28.1 257
Eric Nantel 54.1 258
259 )))
260 | |(% style="text-align:center; vertical-align:middle" %) |(((
261 **Open**
Eric Nantel 28.1 262
Eric Nantel 54.1 263
264 )))
265 | |(% style="text-align:center; vertical-align:middle" %) |(((
266 **Delete**
Eric Nantel 28.1 267
Eric Nantel 54.1 268
269 )))
270 | |(% colspan="2" rowspan="1" %)**Frames**
271 | |(% style="text-align:center; vertical-align:middle" %) |(((
272 **Add**
Eric Nantel 26.1 273
Eric Nantel 54.1 274
275 )))
276 | |(% style="text-align:center; vertical-align:middle" %) |(((
277 **Sequence Selector**
Eric Nantel 26.1 278
Eric Nantel 54.1 279
280 )))
281 | |(% style="text-align:center; vertical-align:middle" %) |(((
282 **Record**
Eric Nantel 26.1 283
Eric Nantel 54.1 284
285 )))
286 | |(% style="text-align:center; vertical-align:middle" %) |(((
287 **Delete**
Eric Nantel 26.1 288
Eric Nantel 54.1 289
290 )))
291 | |(% style="text-align:center; vertical-align:middle" %) |(((
292 **Copy**
Eric Nantel 26.1 293
Eric Nantel 54.1 294
295 )))
296 | |(% style="text-align:center; vertical-align:middle" %) |(((
297 **Paste**
Eric Nantel 26.1 298
Eric Nantel 54.1 299
300 )))
301 | |(% style="text-align:center; vertical-align:middle" %) |(((
302 **Swap**
Eric Nantel 26.1 303
Eric Nantel 54.1 304
305 )))
306 | |(% style="text-align:center; vertical-align:middle" %) |(((
307 **Frame Name**
Eric Nantel 28.1 308
Eric Nantel 54.1 309
310 )))
311 | |(% style="text-align:center; vertical-align:middle" %) |(((
312 **Frame length**
Eric Nantel 28.1 313
314 //Alt + Left Click = Drag time//
Eric Nantel 54.1 315 )))
316 | |(% style="text-align:center; vertical-align:middle" %) |(((
317 **Frame Move**
Eric Nantel 28.1 318
Eric Nantel 54.1 319
320 )))
321 | |(% style="text-align:center; vertical-align:middle" %) |(((
322 **Loop**
Eric Nantel 26.1 323
Eric Nantel 54.1 324
325 )))
326 | |(% style="text-align:center; vertical-align:middle" %) |(((
327 **Manual Edit**
Eric Nantel 26.1 328
Eric Nantel 54.1 329 Time, angles, gripper
Eric Nantel 26.1 330 )))
Eric Nantel 54.1 331 | |(% style="text-align:center; vertical-align:middle" %) |(((
332 **Zoom**
Eric Nantel 26.1 333
Eric Nantel 54.1 334
335 )))
336 | |(% colspan="2" rowspan="1" %)**Errors**
337 | |(% style="text-align:center; vertical-align:middle" %) |
338 | |(% style="text-align:center; vertical-align:middle" %) |
339
Eric Nantel 27.1 340 {{comment}}
Eric Nantel 25.1 341 = =
342
Eric Nantel 15.1 343 = User Guide =
344
Coleman Benson 24.1 345 Pressing the i "Information" icon in the software will bring you to this page. Before proceeding with the guide, it is important to note the following:
Eric Nantel 16.1 346
Coleman Benson 23.1 347 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
348 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
Eric Nantel 16.1 349
Coleman Benson 23.1 350 == IMPORTANT: Payload Considerations ==
Eric Nantel 16.1 351
Coleman Benson 23.1 352 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
353 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
354 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
355 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
Eric Nantel 16.1 356
Coleman Benson 23.1 357 == IMPORTANT: Emergency ==
Eric Nantel 16.1 358
Coleman Benson 23.1 359 Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. The following emergency options are available based on severity:
Eric Nantel 16.3 360
Coleman Benson 23.1 361 **Halt & Hold**
Coleman Benson 24.1 362
Coleman Benson 23.1 363 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
Eric Nantel 16.3 364
Coleman Benson 23.1 365 **Limp**
Coleman Benson 24.1 366
Coleman Benson 23.1 367 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
Eric Nantel 15.1 368
Coleman Benson 23.1 369 **Software Stop**
370
371 The E-stop button within the software sets all joints to limp.
372
373 **Hardware E-Stop**
374 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
375
376 == Arm Connection ==
377
Eric Nantel 17.1 378 **Model**
Eric Nantel 15.1 379
Coleman Benson 24.1 380 The software currently supports the following Lynxmotion PRO Arms:
Coleman Benson 23.1 381
Coleman Benson 24.1 382 * 550mm 5DoF
383 * 550mm 6DoF
384 * 900mm 5DoF
385 * 900mm 6DoF
Eric Nantel 16.2 386
Coleman Benson 24.1 387 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
388
389 **COM Port**
390
Coleman Benson 23.1 391 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues. 
392
Eric Nantel 17.1 393 **Connect**
Eric Nantel 16.2 394
Coleman Benson 24.1 395 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
Eric Nantel 15.1 396
Coleman Benson 24.1 397 == Gripper Controls ==
398
Eric Nantel 17.1 399 **Model**
Eric Nantel 15.1 400
Coleman Benson 23.1 401 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as J7.
402
Coleman Benson 24.1 403 * PGE-50-40 (40mm default configuration)
404 * PGE-50-40 (60mm configuration)
405 * PGE-50-40 (80mm configuration)
406 * CGE-10-10 (20mm configuration)
407 * CGE-10-10 (40mm configuration)
408 * CGE-10-10 (60mm configuration)
Eric Nantel 16.2 409
Coleman Benson 24.1 410 **COM Port**
Coleman Benson 23.1 411
Coleman Benson 24.1 412 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
413
Eric Nantel 17.1 414 **Baudrate**
Eric Nantel 16.2 415
Coleman Benson 24.1 416 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in teh software.
Coleman Benson 23.1 417
Coleman Benson 24.1 418 **Initialize**
Eric Nantel 16.2 419
Coleman Benson 24.1 420 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
Coleman Benson 23.1 421
Coleman Benson 24.1 422 **Connect**
Eric Nantel 16.2 423
Coleman Benson 24.1 424 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
Coleman Benson 23.1 425
Eric Nantel 17.1 426 **Speed**
Eric Nantel 16.2 427
Coleman Benson 24.1 428 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
Coleman Benson 23.1 429
Eric Nantel 17.1 430 **Force**
Eric Nantel 16.2 431
Coleman Benson 24.1 432 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
Coleman Benson 23.1 433
Eric Nantel 17.1 434 **Open / Close**
Eric Nantel 16.2 435
Coleman Benson 24.1 436 These are shortcut buttons to either fully open or fully close the gripper.
Eric Nantel 16.4 437
Coleman Benson 24.1 438 **Sequencer**
439
440 The sequencer displays the gripper position as joint 7 (J7).
441
442 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only J7 moves.
443
Coleman Benson 23.1 444 == 3D Model ==
Eric Nantel 16.4 445
Coleman Benson 23.1 446 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
447
448 **View Controls**
449
Coleman Benson 24.1 450 Zoom: Shift + Middle Scroll
Coleman Benson 23.1 451
Coleman Benson 24.1 452 Rotate: Shift + Middle Mouse
453
454 Pan: None
455
Coleman Benson 23.1 456 == Manual Move ==
457
458 **Angular Control**
459
460 In angular mode, the user can control the angle of each joint
461
Eric Nantel 16.4 462 **Coordinates Control**
463
Coleman Benson 23.1 464 In coordinate control the user can control the cartesian position of the end effector
465
466 **End Effector Lock**
467
468 The orientation of the end effector can be locked.
469
Eric Nantel 15.2 470 == Direct Command ==
Eric Nantel 15.1 471
Eric Nantel 15.2 472 This section allow the user to send commands using the [[doc:ses-pro.lss-pro.lss-p-communication-protocol.WebHome]] directly if required.
Eric Nantel 15.1 473
Eric Nantel 15.2 474 A few things to keep in mind when using this:
Eric Nantel 15.1 475
Eric Nantel 15.2 476 * Make sure you know what you are doing as you can make the arm move in __dangerous__ ways.
477 * Sending commands does not require ‘#’ and ‘\r’ chars.
478 ** example for #2\r you should enter 2Q and press the "SEND" button
Eric Nantel 12.1 479 * The commands are validated, and it shows a notification in case of error.
Eric Nantel 15.2 480 * The replies of queries are shown in the text field below.
Eric Nantel 12.1 481
Coleman Benson 23.1 482 == Command Output ==
483
484 //{Coming Soon}//
485
Eric Nantel 16.3 486 == Telemetry ==
487
Eric Nantel 17.1 488 **Data to Display**
Eric Nantel 16.3 489
Coleman Benson 23.1 490 //{Coming Soon}//
491
Eric Nantel 17.1 492 **Display / Hide Actuator**
Eric Nantel 16.3 493
Coleman Benson 23.1 494 //{Coming Soon}//
495
Coleman Benson 24.1 496 == Sequencer ==
Coleman Benson 23.1 497
498 **Frames**
499
500 //{Coming Soon}//
501
502 **Record **
503
504 //{Coming Soon}//
505
506 **Edit **
507
508 Time, angles, gripper
509
Coleman Benson 24.1 510 //Alt + Left Click = Drag time//
Coleman Benson 23.1 511
512 **Reorder**
513
514 //{Coming Soon}//
515
516 **Play**
517
518 //{Coming Soon}//
519
520 **Errors**
521
522 //{Coming Soon}//
Eric Nantel 27.1 523 {{/comment}}
Copyright RobotShop 2018