Wiki source code of SES-PRO Robotic Arm UI

Version 75.1 by Eric Nantel on 2024/10/16 14:29

Hide last authors
Eric Nantel 34.1 1 {{lightbox image="https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/ses-pro-software/ses-pro-arm-ui/WebHome/SES-PRO-Robotic-Arm-UI.png" width="350"/}}
Eric Nantel 5.1 2
Eric Nantel 38.1 3 [[[[image:[email protected]]]>>https://lynxmotion.com/tools/ses-pro-app/lynxmotion_ses_pro_robotic_arm_ui_stable.exe]]
Eric Nantel 5.1 4
5 **Table of Contents**
6
7 {{toc/}}
8
9 = Description =
10
Eric Nantel 30.1 11 The Lynxmotion Servo Erector Set Professional (SES PRO) Robotic Arm User Interface (UI) is a simple software which allows a user to control any of the Lynxmotion Professional Modular robotic arms in their default configuration. The two compatible gripper kits which are compatible with the SES PRO system (based on the DH Robotics PGE-50-40 and CGE-10-10 DC grillers) can also be controlled via this interface in each of their possible configurations. The included manual jog feature can be used to either position each joint angle, or move to specific cartesian coordinates. Arm (and gripper) positions can then be recorded as part of the built-in sequencer. A 3D display of the arm shows the position of the arm, and a graph can be used to show various information to the user. In order to get a better understanding of the protocol, commands sent to the arm are shown in the interface, and a user input field are standard.
Eric Nantel 5.1 12
13 = Features =
14
Coleman Benson 23.1 15 * Angular and cartesian positioning of the end effector
16 * 3D graphical display of the appropriate robotic arm and end effector
17 * Sequencer to record and play back frames (single, looped or infinite)
18 * Error checking (speed, temperature etc.)
19 * Command output and user input
20 * Safety (Software E-Stop, Halt&Hold & Limp)
Eric Nantel 12.1 21
Eric Nantel 29.1 22 __Compatibility: Windows 7 Operating System or above__
23
Eric Nantel 75.1 24 {{comment}}
Eric Nantel 48.1 25 |(% colspan="3" %)(((
26 = User Guide =
27 )))
Eric Nantel 48.2 28 |(% style="width:25px" %) |(% colspan="2" rowspan="1" style="width:100px" %)(((
Eric Nantel 48.1 29 Before proceeding with the guide, it is important to note the following:
30
31 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
32 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
33 )))
Eric Nantel 70.2 34 | |(% style="text-align:center; vertical-align:middle; width:150px" %)[[image:ses-pro-robotic-arm-ui-info.png]]|Pressing the i "Information" icon in the software will bring you to this page.
Eric Nantel 48.1 35 | |(% colspan="2" rowspan="1" %)(((
36 == IMPORTANT ==
37 )))
38 | |(% colspan="2" rowspan="1" %)(((
39 === Payload Considerations ===
40 )))
Eric Nantel 50.1 41 | |(% colspan="2" rowspan="1" %)(((
Eric Nantel 48.1 42 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
43 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
44 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
45 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
46 )))
47 | |(% colspan="2" rowspan="1" %)(((
48 === Emergency ===
49 )))
Eric Nantel 49.1 50 | |(% colspan="2" rowspan="1" %)Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. 
Eric Nantel 48.1 51 The following emergency options are available based on severity:
52 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-halt.png]]|(((
53 **Halt (and hold)**
54
55 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
56 )))
57 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-limp.png]]|(((
58 **Limp**
59
60 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
61 )))
62 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-emergency.png]]|(((
63 **Software E-Stop**
64
65 The E-stop button within the software sets all joints to limp, this can possibly cause the arm to fall.
66 )))
67 | |(% style="text-align:center; vertical-align:middle" %) |(((
68 **Power Supply E-Stop**
69
70 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
71 )))
Eric Nantel 49.1 72 | |(% colspan="2" rowspan="1" %)(((
73 == Arm Connection ==
74 )))
75 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-version.png]]|(((
76 **Model**
77
78 The software currently supports the following Lynxmotion PRO Arms:
79
80 * 550mm 5DoF
81 * 550mm 6DoF
82 * 900mm 5DoF
83 * 900mm 6DoF
84
85 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
86 )))
87 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-com.png]]|(((
88 **COM Port**
89
90 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues.
91 )))
92 | |(% style="text-align:center; vertical-align:middle" %)(((
93 [[image:ses-pro-robotic-arm-ui-connect.png]]
94
95 [[image:ses-pro-robotic-arm-ui-disconnect.png]]
96 )))|(((
97 **Connect / Disconnect**
98
99 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
100 )))
101 | |(% colspan="2" rowspan="1" %)(((
102 == Gripper Controls ==
103 )))
Eric Nantel 52.2 104 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-version-drop.png]]|(((
105 **Model**
106
Eric Nantel 54.1 107 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as G.
Eric Nantel 52.2 108 )))
Eric Nantel 61.1 109 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-gripper-version.png]]|(((
Eric Nantel 52.2 110 * PGE-50-40 (40mm default configuration)
111 * PGE-50-40 (60mm configuration)
112 * PGE-50-40 (80mm configuration)
113 * CGE-10-10 (20mm configuration)
114 * CGE-10-10 (40mm configuration)
115 * CGE-10-10 (60mm configuration)
116 )))
Eric Nantel 61.1 117 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-gripper-com.png]]|(((
Eric Nantel 52.2 118 **COM Port**
119
120 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
121 )))
Eric Nantel 61.1 122 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-gripper-baud.png]]|(((
Eric Nantel 52.2 123 **Baudrate**
124
125 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in the software.
126 )))
Eric Nantel 61.1 127 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-gripper-connect.png]]|(((
128 **Connect**
129
130 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
131 )))
132 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-gripper-init.png]]|(((
Eric Nantel 52.2 133 **Initialize**
134
135 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
Eric Nantel 65.2 136
137 (((
138
Eric Nantel 52.2 139 )))
Eric Nantel 65.2 140 )))
141 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-gripper-position.png]]|(((
142 **Position**
143
144
145 )))
146 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-gripper-speed.png]]|(((
Eric Nantel 52.2 147 **Speed**
148
149 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
150 )))
Eric Nantel 65.2 151 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-gripper-force.png]]|(((
Eric Nantel 52.2 152 **Force**
153
154 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
155 )))
Eric Nantel 65.2 156 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-gripper-open-close.png]]|(((
Eric Nantel 52.2 157 **Open / Close**
158
159 These are shortcut buttons to either fully open or fully close the gripper.
160 )))
161 | |(% style="text-align:center; vertical-align:middle" %) |(((
162 **Sequencer**
163
Eric Nantel 54.1 164 The sequencer displays the gripper position as joint G.
Eric Nantel 52.2 165
Eric Nantel 65.2 166 Ex: #GP1000
167 This command would be open the **G**ripper to **P**osition 100.0%
168
Eric Nantel 54.1 169 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only G moves.
Eric Nantel 52.2 170 )))
Eric Nantel 52.3 171 | |(% colspan="2" rowspan="1" %)(((
172 == 3D Model ==
173 )))
174 | |(% colspan="2" rowspan="1" %)(((
175 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
176 )))
Eric Nantel 70.2 177 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-3d.png]]|(((
Eric Nantel 52.3 178 **View Controls**
179
180 Zoom: Shift + Middle Scroll
181
182 Rotate: Shift + Middle Mouse
183
184 Pan: None
185 )))
Eric Nantel 53.1 186 | |(% colspan="2" rowspan="1" %)(((
187 == Manual Move ==
188 )))
Eric Nantel 70.2 189 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-joints.png]]|(((
190 **Joints Control (angular)**
Eric Nantel 53.1 191
Eric Nantel 70.2 192 In Joints mode, the user can control the angle of each joint.
193
194 * The field can be clicked and changed using a keyboard.
195 * Using the + and - sings will move by the amount specified in the drop down menu.
196 * The RESET button will send the arm to Zero on all joints
Eric Nantel 53.1 197 )))
Eric Nantel 70.2 198 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-coordinates.png]]|(((
Eric Nantel 53.1 199 **Coordinates Control**
200
201 In coordinate control the user can control the cartesian position of the end effector
202 )))
Eric Nantel 70.2 203 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-coordinates-lock.png]]|(((
Eric Nantel 53.1 204 **End Effector Lock**
205
Eric Nantel 70.2 206 The orientation of the end effector can be locked with the "ENABLED" button.
Eric Nantel 53.1 207 )))
208 | |(% colspan="2" rowspan="1" %)(((
209 == Direct Command ==
210 )))
211 | |(% colspan="2" rowspan="1" %)(((
212 This section allow the user to send commands using the [[LSS-PRO Communication Protocol>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-pro/lss-pro/lss-p-communication-protocol/]] directly if required.
213
214 A few things to keep in mind when using this:
215
216 * Make sure you know what you are doing as you can make the arm move in __dangerous__ ways.
217 * Sending commands does not require ‘#’ and ‘\r’ chars.
218 ** example for #2\r you should enter 2Q and press the "SEND" button
219 * The commands are validated, and it shows a notification in case of error.
220 * The replies of queries are shown in the text field below.
221 )))
Eric Nantel 54.1 222 | |(% colspan="2" rowspan="1" %)(((
Eric Nantel 26.1 223 == Telemetry ==
224 )))
Eric Nantel 74.1 225 | |(% colspan="2" %)[[image:ses-pro-robotic-arm-ui-telemetry.png]]
226 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-telemetry-drop.png]]|(((
Eric Nantel 26.1 227 **Data to Display**
Eric Nantel 25.1 228
Eric Nantel 27.3 229 Various telemetry data can be retrieved from each actuators / joints, here is what the software support:
230
Eric Nantel 27.2 231 * Position
232 * Current
233 * Linear Accel X
234 * Linear Accel Y
235 * Linear Accel Z
236 * Angular Accel α
237 * Angular Accel β
238 * Angular Accel γ
239 * MCU Temperature
240 * PCB Temperature
241 * Probe Temperature
Eric Nantel 54.1 242 )))
Eric Nantel 74.1 243 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-telemetry-hide.png]]|(((
Eric Nantel 27.3 244 **Display / Hide **
Eric Nantel 26.1 245
Eric Nantel 27.3 246 At the bottom of the graphics you will find squares to activate / deactivate the desired actuator / joint to be displayed in the graph.
Eric Nantel 26.1 247 )))
Eric Nantel 54.1 248 | |(% colspan="2" rowspan="1" %)(((
Eric Nantel 26.1 249 == Sequencer ==
250 )))
Eric Nantel 54.1 251 | |(% colspan="2" rowspan="1" %)**Sequence**
252 | |(% style="text-align:center; vertical-align:middle" %) |(((
253 **Sequence Selector**
Eric Nantel 26.1 254
Eric Nantel 54.1 255
256 )))
257 | |(% style="text-align:center; vertical-align:middle" %) |(((
258 **Add**
Eric Nantel 26.1 259
Eric Nantel 54.1 260
261 )))
262 | |(% style="text-align:center; vertical-align:middle" %) |(((
263 **Substract**
Eric Nantel 26.1 264
Eric Nantel 54.1 265
266 )))
267 | |(% style="text-align:center; vertical-align:middle" %) |(((
268 **Copy**
Eric Nantel 28.1 269
Eric Nantel 54.1 270
271 )))
272 | |(% style="text-align:center; vertical-align:middle" %) |(((
273 **Save**
Eric Nantel 28.1 274
Eric Nantel 54.1 275
276 )))
277 | |(% style="text-align:center; vertical-align:middle" %) |(((
278 **Open**
Eric Nantel 28.1 279
Eric Nantel 54.1 280
281 )))
282 | |(% style="text-align:center; vertical-align:middle" %) |(((
283 **Delete**
Eric Nantel 28.1 284
Eric Nantel 54.1 285
286 )))
287 | |(% colspan="2" rowspan="1" %)**Frames**
288 | |(% style="text-align:center; vertical-align:middle" %) |(((
289 **Add**
Eric Nantel 26.1 290
Eric Nantel 54.1 291
292 )))
293 | |(% style="text-align:center; vertical-align:middle" %) |(((
294 **Sequence Selector**
Eric Nantel 26.1 295
Eric Nantel 54.1 296
297 )))
298 | |(% style="text-align:center; vertical-align:middle" %) |(((
299 **Record**
Eric Nantel 26.1 300
Eric Nantel 54.1 301
302 )))
303 | |(% style="text-align:center; vertical-align:middle" %) |(((
304 **Delete**
Eric Nantel 26.1 305
Eric Nantel 54.1 306
307 )))
308 | |(% style="text-align:center; vertical-align:middle" %) |(((
309 **Copy**
Eric Nantel 26.1 310
Eric Nantel 54.1 311
312 )))
313 | |(% style="text-align:center; vertical-align:middle" %) |(((
314 **Paste**
Eric Nantel 26.1 315
Eric Nantel 54.1 316
317 )))
318 | |(% style="text-align:center; vertical-align:middle" %) |(((
319 **Swap**
Eric Nantel 26.1 320
Eric Nantel 54.1 321
322 )))
323 | |(% style="text-align:center; vertical-align:middle" %) |(((
324 **Frame Name**
Eric Nantel 28.1 325
Eric Nantel 54.1 326
327 )))
328 | |(% style="text-align:center; vertical-align:middle" %) |(((
329 **Frame length**
Eric Nantel 28.1 330
331 //Alt + Left Click = Drag time//
Eric Nantel 54.1 332 )))
333 | |(% style="text-align:center; vertical-align:middle" %) |(((
334 **Frame Move**
Eric Nantel 28.1 335
Eric Nantel 54.1 336
337 )))
338 | |(% style="text-align:center; vertical-align:middle" %) |(((
339 **Loop**
Eric Nantel 26.1 340
Eric Nantel 54.1 341
342 )))
343 | |(% style="text-align:center; vertical-align:middle" %) |(((
344 **Manual Edit**
Eric Nantel 26.1 345
Eric Nantel 54.1 346 Time, angles, gripper
Eric Nantel 26.1 347 )))
Eric Nantel 54.1 348 | |(% style="text-align:center; vertical-align:middle" %) |(((
349 **Zoom**
Eric Nantel 26.1 350
Eric Nantel 54.1 351
352 )))
353 | |(% colspan="2" rowspan="1" %)**Errors**
354 | |(% style="text-align:center; vertical-align:middle" %) |
355 | |(% style="text-align:center; vertical-align:middle" %) |
356
Eric Nantel 75.1 357
Eric Nantel 25.1 358 = =
359
Eric Nantel 15.1 360 = User Guide =
361
Coleman Benson 24.1 362 Pressing the i "Information" icon in the software will bring you to this page. Before proceeding with the guide, it is important to note the following:
Eric Nantel 16.1 363
Coleman Benson 23.1 364 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
365 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
Eric Nantel 16.1 366
Coleman Benson 23.1 367 == IMPORTANT: Payload Considerations ==
Eric Nantel 16.1 368
Coleman Benson 23.1 369 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
370 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
371 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
372 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
Eric Nantel 16.1 373
Coleman Benson 23.1 374 == IMPORTANT: Emergency ==
Eric Nantel 16.1 375
Coleman Benson 23.1 376 Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. The following emergency options are available based on severity:
Eric Nantel 16.3 377
Coleman Benson 23.1 378 **Halt & Hold**
Coleman Benson 24.1 379
Coleman Benson 23.1 380 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
Eric Nantel 16.3 381
Coleman Benson 23.1 382 **Limp**
Coleman Benson 24.1 383
Coleman Benson 23.1 384 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
Eric Nantel 15.1 385
Coleman Benson 23.1 386 **Software Stop**
387
388 The E-stop button within the software sets all joints to limp.
389
390 **Hardware E-Stop**
391 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
392
393 == Arm Connection ==
394
Eric Nantel 17.1 395 **Model**
Eric Nantel 15.1 396
Coleman Benson 24.1 397 The software currently supports the following Lynxmotion PRO Arms:
Coleman Benson 23.1 398
Coleman Benson 24.1 399 * 550mm 5DoF
400 * 550mm 6DoF
401 * 900mm 5DoF
402 * 900mm 6DoF
Eric Nantel 16.2 403
Coleman Benson 24.1 404 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
405
406 **COM Port**
407
Coleman Benson 23.1 408 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues. 
409
Eric Nantel 17.1 410 **Connect**
Eric Nantel 16.2 411
Coleman Benson 24.1 412 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
Eric Nantel 15.1 413
Coleman Benson 24.1 414 == Gripper Controls ==
415
Eric Nantel 17.1 416 **Model**
Eric Nantel 15.1 417
Coleman Benson 23.1 418 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as J7.
419
Coleman Benson 24.1 420 * PGE-50-40 (40mm default configuration)
421 * PGE-50-40 (60mm configuration)
422 * PGE-50-40 (80mm configuration)
423 * CGE-10-10 (20mm configuration)
424 * CGE-10-10 (40mm configuration)
425 * CGE-10-10 (60mm configuration)
Eric Nantel 16.2 426
Coleman Benson 24.1 427 **COM Port**
Coleman Benson 23.1 428
Coleman Benson 24.1 429 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
430
Eric Nantel 17.1 431 **Baudrate**
Eric Nantel 16.2 432
Coleman Benson 24.1 433 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in teh software.
Coleman Benson 23.1 434
Coleman Benson 24.1 435 **Initialize**
Eric Nantel 16.2 436
Coleman Benson 24.1 437 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
Coleman Benson 23.1 438
Coleman Benson 24.1 439 **Connect**
Eric Nantel 16.2 440
Coleman Benson 24.1 441 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
Coleman Benson 23.1 442
Eric Nantel 17.1 443 **Speed**
Eric Nantel 16.2 444
Coleman Benson 24.1 445 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
Coleman Benson 23.1 446
Eric Nantel 17.1 447 **Force**
Eric Nantel 16.2 448
Coleman Benson 24.1 449 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
Coleman Benson 23.1 450
Eric Nantel 17.1 451 **Open / Close**
Eric Nantel 16.2 452
Coleman Benson 24.1 453 These are shortcut buttons to either fully open or fully close the gripper.
Eric Nantel 16.4 454
Coleman Benson 24.1 455 **Sequencer**
456
457 The sequencer displays the gripper position as joint 7 (J7).
458
459 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only J7 moves.
460
Coleman Benson 23.1 461 == 3D Model ==
Eric Nantel 16.4 462
Coleman Benson 23.1 463 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
464
465 **View Controls**
466
Coleman Benson 24.1 467 Zoom: Shift + Middle Scroll
Coleman Benson 23.1 468
Coleman Benson 24.1 469 Rotate: Shift + Middle Mouse
470
471 Pan: None
472
Coleman Benson 23.1 473 == Manual Move ==
474
475 **Angular Control**
476
477 In angular mode, the user can control the angle of each joint
478
Eric Nantel 16.4 479 **Coordinates Control**
480
Coleman Benson 23.1 481 In coordinate control the user can control the cartesian position of the end effector
482
483 **End Effector Lock**
484
485 The orientation of the end effector can be locked.
486
Eric Nantel 15.2 487 == Direct Command ==
Eric Nantel 15.1 488
Eric Nantel 15.2 489 This section allow the user to send commands using the [[doc:ses-pro.lss-pro.lss-p-communication-protocol.WebHome]] directly if required.
Eric Nantel 15.1 490
Eric Nantel 15.2 491 A few things to keep in mind when using this:
Eric Nantel 15.1 492
Eric Nantel 15.2 493 * Make sure you know what you are doing as you can make the arm move in __dangerous__ ways.
494 * Sending commands does not require ‘#’ and ‘\r’ chars.
495 ** example for #2\r you should enter 2Q and press the "SEND" button
Eric Nantel 12.1 496 * The commands are validated, and it shows a notification in case of error.
Eric Nantel 15.2 497 * The replies of queries are shown in the text field below.
Eric Nantel 12.1 498
Coleman Benson 23.1 499 == Command Output ==
500
501 //{Coming Soon}//
502
Eric Nantel 16.3 503 == Telemetry ==
504
Eric Nantel 17.1 505 **Data to Display**
Eric Nantel 16.3 506
Coleman Benson 23.1 507 //{Coming Soon}//
508
Eric Nantel 17.1 509 **Display / Hide Actuator**
Eric Nantel 16.3 510
Coleman Benson 23.1 511 //{Coming Soon}//
512
Coleman Benson 24.1 513 == Sequencer ==
Coleman Benson 23.1 514
515 **Frames**
516
517 //{Coming Soon}//
518
519 **Record **
520
521 //{Coming Soon}//
522
523 **Edit **
524
525 Time, angles, gripper
526
Coleman Benson 24.1 527 //Alt + Left Click = Drag time//
Coleman Benson 23.1 528
529 **Reorder**
530
531 //{Coming Soon}//
532
533 **Play**
534
535 //{Coming Soon}//
536
537 **Errors**
538
539 //{Coming Soon}//
Eric Nantel 27.1 540 {{/comment}}
Copyright RobotShop 2018