Wiki source code of SES-PRO Robotic Arm UI

Last modified by Eric Nantel on 2024/10/16 14:33

Hide last authors
Eric Nantel 34.1 1 {{lightbox image="https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/ses-pro-software/ses-pro-arm-ui/WebHome/SES-PRO-Robotic-Arm-UI.png" width="350"/}}
Eric Nantel 5.1 2
Eric Nantel 38.1 3 [[[[image:[email protected]]]>>https://lynxmotion.com/tools/ses-pro-app/lynxmotion_ses_pro_robotic_arm_ui_stable.exe]]
Eric Nantel 5.1 4
5 **Table of Contents**
6
7 {{toc/}}
8
9 = Description =
10
Eric Nantel 30.1 11 The Lynxmotion Servo Erector Set Professional (SES PRO) Robotic Arm User Interface (UI) is a simple software which allows a user to control any of the Lynxmotion Professional Modular robotic arms in their default configuration. The two compatible gripper kits which are compatible with the SES PRO system (based on the DH Robotics PGE-50-40 and CGE-10-10 DC grillers) can also be controlled via this interface in each of their possible configurations. The included manual jog feature can be used to either position each joint angle, or move to specific cartesian coordinates. Arm (and gripper) positions can then be recorded as part of the built-in sequencer. A 3D display of the arm shows the position of the arm, and a graph can be used to show various information to the user. In order to get a better understanding of the protocol, commands sent to the arm are shown in the interface, and a user input field are standard.
Eric Nantel 5.1 12
13 = Features =
14
Coleman Benson 23.1 15 * Angular and cartesian positioning of the end effector
16 * 3D graphical display of the appropriate robotic arm and end effector
17 * Sequencer to record and play back frames (single, looped or infinite)
18 * Error checking (speed, temperature etc.)
19 * Command output and user input
20 * Safety (Software E-Stop, Halt&Hold & Limp)
Eric Nantel 12.1 21
Eric Nantel 29.1 22 __Compatibility: Windows 7 Operating System or above__
23
Eric Nantel 76.1 24 = User Guide =
25
26 * [[doc:.ses-pro-arm-ui-guide.WebHome]]
27
Eric Nantel 75.1 28 {{comment}}
Eric Nantel 48.1 29 |(% colspan="3" %)(((
30 = User Guide =
31 )))
Eric Nantel 48.2 32 |(% style="width:25px" %) |(% colspan="2" rowspan="1" style="width:100px" %)(((
Eric Nantel 48.1 33 Before proceeding with the guide, it is important to note the following:
34
35 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
36 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
37 )))
Eric Nantel 70.2 38 | |(% style="text-align:center; vertical-align:middle; width:150px" %)[[image:ses-pro-robotic-arm-ui-info.png]]|Pressing the i "Information" icon in the software will bring you to this page.
Eric Nantel 48.1 39 | |(% colspan="2" rowspan="1" %)(((
40 == IMPORTANT ==
41 )))
42 | |(% colspan="2" rowspan="1" %)(((
43 === Payload Considerations ===
44 )))
Eric Nantel 50.1 45 | |(% colspan="2" rowspan="1" %)(((
Eric Nantel 48.1 46 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
47 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
48 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
49 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
50 )))
51 | |(% colspan="2" rowspan="1" %)(((
52 === Emergency ===
53 )))
Eric Nantel 49.1 54 | |(% colspan="2" rowspan="1" %)Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. 
Eric Nantel 48.1 55 The following emergency options are available based on severity:
56 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-halt.png]]|(((
57 **Halt (and hold)**
58
59 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
60 )))
61 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-limp.png]]|(((
62 **Limp**
63
64 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
65 )))
66 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-emergency.png]]|(((
67 **Software E-Stop**
68
69 The E-stop button within the software sets all joints to limp, this can possibly cause the arm to fall.
70 )))
71 | |(% style="text-align:center; vertical-align:middle" %) |(((
72 **Power Supply E-Stop**
73
74 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
75 )))
Eric Nantel 49.1 76 | |(% colspan="2" rowspan="1" %)(((
77 == Arm Connection ==
78 )))
79 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-version.png]]|(((
80 **Model**
81
82 The software currently supports the following Lynxmotion PRO Arms:
83
84 * 550mm 5DoF
85 * 550mm 6DoF
86 * 900mm 5DoF
87 * 900mm 6DoF
88
89 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
90 )))
91 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-com.png]]|(((
92 **COM Port**
93
94 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues.
95 )))
96 | |(% style="text-align:center; vertical-align:middle" %)(((
97 [[image:ses-pro-robotic-arm-ui-connect.png]]
98
99 [[image:ses-pro-robotic-arm-ui-disconnect.png]]
100 )))|(((
101 **Connect / Disconnect**
102
103 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
104 )))
105 | |(% colspan="2" rowspan="1" %)(((
106 == Gripper Controls ==
107 )))
Eric Nantel 52.2 108 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-version-drop.png]]|(((
109 **Model**
110
Eric Nantel 54.1 111 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as G.
Eric Nantel 52.2 112 )))
Eric Nantel 61.1 113 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-gripper-version.png]]|(((
Eric Nantel 52.2 114 * PGE-50-40 (40mm default configuration)
115 * PGE-50-40 (60mm configuration)
116 * PGE-50-40 (80mm configuration)
117 * CGE-10-10 (20mm configuration)
118 * CGE-10-10 (40mm configuration)
119 * CGE-10-10 (60mm configuration)
120 )))
Eric Nantel 61.1 121 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-gripper-com.png]]|(((
Eric Nantel 52.2 122 **COM Port**
123
124 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
125 )))
Eric Nantel 61.1 126 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-gripper-baud.png]]|(((
Eric Nantel 52.2 127 **Baudrate**
128
129 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in the software.
130 )))
Eric Nantel 61.1 131 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-gripper-connect.png]]|(((
132 **Connect**
133
134 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
135 )))
136 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-gripper-init.png]]|(((
Eric Nantel 52.2 137 **Initialize**
138
139 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
Eric Nantel 65.2 140
141 (((
142
Eric Nantel 52.2 143 )))
Eric Nantel 65.2 144 )))
145 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-gripper-position.png]]|(((
146 **Position**
147
148
149 )))
150 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-gripper-speed.png]]|(((
Eric Nantel 52.2 151 **Speed**
152
153 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
154 )))
Eric Nantel 65.2 155 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-gripper-force.png]]|(((
Eric Nantel 52.2 156 **Force**
157
158 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
159 )))
Eric Nantel 65.2 160 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-gripper-open-close.png]]|(((
Eric Nantel 52.2 161 **Open / Close**
162
163 These are shortcut buttons to either fully open or fully close the gripper.
164 )))
165 | |(% style="text-align:center; vertical-align:middle" %) |(((
166 **Sequencer**
167
Eric Nantel 54.1 168 The sequencer displays the gripper position as joint G.
Eric Nantel 52.2 169
Eric Nantel 65.2 170 Ex: #GP1000
171 This command would be open the **G**ripper to **P**osition 100.0%
172
Eric Nantel 54.1 173 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only G moves.
Eric Nantel 52.2 174 )))
Eric Nantel 52.3 175 | |(% colspan="2" rowspan="1" %)(((
176 == 3D Model ==
177 )))
178 | |(% colspan="2" rowspan="1" %)(((
179 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
180 )))
Eric Nantel 70.2 181 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-3d.png]]|(((
Eric Nantel 52.3 182 **View Controls**
183
184 Zoom: Shift + Middle Scroll
185
186 Rotate: Shift + Middle Mouse
187
188 Pan: None
189 )))
Eric Nantel 53.1 190 | |(% colspan="2" rowspan="1" %)(((
191 == Manual Move ==
192 )))
Eric Nantel 70.2 193 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-joints.png]]|(((
194 **Joints Control (angular)**
Eric Nantel 53.1 195
Eric Nantel 70.2 196 In Joints mode, the user can control the angle of each joint.
197
198 * The field can be clicked and changed using a keyboard.
199 * Using the + and - sings will move by the amount specified in the drop down menu.
200 * The RESET button will send the arm to Zero on all joints
Eric Nantel 53.1 201 )))
Eric Nantel 70.2 202 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-coordinates.png]]|(((
Eric Nantel 53.1 203 **Coordinates Control**
204
205 In coordinate control the user can control the cartesian position of the end effector
206 )))
Eric Nantel 70.2 207 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-coordinates-lock.png]]|(((
Eric Nantel 53.1 208 **End Effector Lock**
209
Eric Nantel 70.2 210 The orientation of the end effector can be locked with the "ENABLED" button.
Eric Nantel 53.1 211 )))
212 | |(% colspan="2" rowspan="1" %)(((
213 == Direct Command ==
214 )))
215 | |(% colspan="2" rowspan="1" %)(((
216 This section allow the user to send commands using the [[LSS-PRO Communication Protocol>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-pro/lss-pro/lss-p-communication-protocol/]] directly if required.
217
218 A few things to keep in mind when using this:
219
220 * Make sure you know what you are doing as you can make the arm move in __dangerous__ ways.
221 * Sending commands does not require ‘#’ and ‘\r’ chars.
222 ** example for #2\r you should enter 2Q and press the "SEND" button
223 * The commands are validated, and it shows a notification in case of error.
224 * The replies of queries are shown in the text field below.
225 )))
Eric Nantel 54.1 226 | |(% colspan="2" rowspan="1" %)(((
Eric Nantel 26.1 227 == Telemetry ==
228 )))
Eric Nantel 74.1 229 | |(% colspan="2" %)[[image:ses-pro-robotic-arm-ui-telemetry.png]]
230 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-telemetry-drop.png]]|(((
Eric Nantel 26.1 231 **Data to Display**
Eric Nantel 25.1 232
Eric Nantel 27.3 233 Various telemetry data can be retrieved from each actuators / joints, here is what the software support:
234
Eric Nantel 27.2 235 * Position
236 * Current
237 * Linear Accel X
238 * Linear Accel Y
239 * Linear Accel Z
240 * Angular Accel α
241 * Angular Accel β
242 * Angular Accel γ
243 * MCU Temperature
244 * PCB Temperature
245 * Probe Temperature
Eric Nantel 54.1 246 )))
Eric Nantel 74.1 247 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-telemetry-hide.png]]|(((
Eric Nantel 27.3 248 **Display / Hide **
Eric Nantel 26.1 249
Eric Nantel 27.3 250 At the bottom of the graphics you will find squares to activate / deactivate the desired actuator / joint to be displayed in the graph.
Eric Nantel 26.1 251 )))
Eric Nantel 54.1 252 | |(% colspan="2" rowspan="1" %)(((
Eric Nantel 26.1 253 == Sequencer ==
254 )))
Eric Nantel 54.1 255 | |(% colspan="2" rowspan="1" %)**Sequence**
256 | |(% style="text-align:center; vertical-align:middle" %) |(((
257 **Sequence Selector**
Eric Nantel 26.1 258
Eric Nantel 54.1 259
260 )))
261 | |(% style="text-align:center; vertical-align:middle" %) |(((
262 **Add**
Eric Nantel 26.1 263
Eric Nantel 54.1 264
265 )))
266 | |(% style="text-align:center; vertical-align:middle" %) |(((
267 **Substract**
Eric Nantel 26.1 268
Eric Nantel 54.1 269
270 )))
271 | |(% style="text-align:center; vertical-align:middle" %) |(((
272 **Copy**
Eric Nantel 28.1 273
Eric Nantel 54.1 274
275 )))
276 | |(% style="text-align:center; vertical-align:middle" %) |(((
277 **Save**
Eric Nantel 28.1 278
Eric Nantel 54.1 279
280 )))
281 | |(% style="text-align:center; vertical-align:middle" %) |(((
282 **Open**
Eric Nantel 28.1 283
Eric Nantel 54.1 284
285 )))
286 | |(% style="text-align:center; vertical-align:middle" %) |(((
287 **Delete**
Eric Nantel 28.1 288
Eric Nantel 54.1 289
290 )))
291 | |(% colspan="2" rowspan="1" %)**Frames**
292 | |(% style="text-align:center; vertical-align:middle" %) |(((
293 **Add**
Eric Nantel 26.1 294
Eric Nantel 54.1 295
296 )))
297 | |(% style="text-align:center; vertical-align:middle" %) |(((
298 **Sequence Selector**
Eric Nantel 26.1 299
Eric Nantel 54.1 300
301 )))
302 | |(% style="text-align:center; vertical-align:middle" %) |(((
303 **Record**
Eric Nantel 26.1 304
Eric Nantel 54.1 305
306 )))
307 | |(% style="text-align:center; vertical-align:middle" %) |(((
308 **Delete**
Eric Nantel 26.1 309
Eric Nantel 54.1 310
311 )))
312 | |(% style="text-align:center; vertical-align:middle" %) |(((
313 **Copy**
Eric Nantel 26.1 314
Eric Nantel 54.1 315
316 )))
317 | |(% style="text-align:center; vertical-align:middle" %) |(((
318 **Paste**
Eric Nantel 26.1 319
Eric Nantel 54.1 320
321 )))
322 | |(% style="text-align:center; vertical-align:middle" %) |(((
323 **Swap**
Eric Nantel 26.1 324
Eric Nantel 54.1 325
326 )))
327 | |(% style="text-align:center; vertical-align:middle" %) |(((
328 **Frame Name**
Eric Nantel 28.1 329
Eric Nantel 54.1 330
331 )))
332 | |(% style="text-align:center; vertical-align:middle" %) |(((
333 **Frame length**
Eric Nantel 28.1 334
335 //Alt + Left Click = Drag time//
Eric Nantel 54.1 336 )))
337 | |(% style="text-align:center; vertical-align:middle" %) |(((
338 **Frame Move**
Eric Nantel 28.1 339
Eric Nantel 54.1 340
341 )))
342 | |(% style="text-align:center; vertical-align:middle" %) |(((
343 **Loop**
Eric Nantel 26.1 344
Eric Nantel 54.1 345
346 )))
347 | |(% style="text-align:center; vertical-align:middle" %) |(((
348 **Manual Edit**
Eric Nantel 26.1 349
Eric Nantel 54.1 350 Time, angles, gripper
Eric Nantel 26.1 351 )))
Eric Nantel 54.1 352 | |(% style="text-align:center; vertical-align:middle" %) |(((
353 **Zoom**
Eric Nantel 26.1 354
Eric Nantel 54.1 355
356 )))
357 | |(% colspan="2" rowspan="1" %)**Errors**
358 | |(% style="text-align:center; vertical-align:middle" %) |
359 | |(% style="text-align:center; vertical-align:middle" %) |
360
Eric Nantel 75.1 361
Eric Nantel 25.1 362 = =
363
Eric Nantel 15.1 364 = User Guide =
365
Coleman Benson 24.1 366 Pressing the i "Information" icon in the software will bring you to this page. Before proceeding with the guide, it is important to note the following:
Eric Nantel 16.1 367
Coleman Benson 23.1 368 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
369 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
Eric Nantel 16.1 370
Coleman Benson 23.1 371 == IMPORTANT: Payload Considerations ==
Eric Nantel 16.1 372
Coleman Benson 23.1 373 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
374 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
375 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
376 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
Eric Nantel 16.1 377
Coleman Benson 23.1 378 == IMPORTANT: Emergency ==
Eric Nantel 16.1 379
Coleman Benson 23.1 380 Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. The following emergency options are available based on severity:
Eric Nantel 16.3 381
Coleman Benson 23.1 382 **Halt & Hold**
Coleman Benson 24.1 383
Coleman Benson 23.1 384 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
Eric Nantel 16.3 385
Coleman Benson 23.1 386 **Limp**
Coleman Benson 24.1 387
Coleman Benson 23.1 388 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
Eric Nantel 15.1 389
Coleman Benson 23.1 390 **Software Stop**
391
392 The E-stop button within the software sets all joints to limp.
393
394 **Hardware E-Stop**
395 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
396
397 == Arm Connection ==
398
Eric Nantel 17.1 399 **Model**
Eric Nantel 15.1 400
Coleman Benson 24.1 401 The software currently supports the following Lynxmotion PRO Arms:
Coleman Benson 23.1 402
Coleman Benson 24.1 403 * 550mm 5DoF
404 * 550mm 6DoF
405 * 900mm 5DoF
406 * 900mm 6DoF
Eric Nantel 16.2 407
Coleman Benson 24.1 408 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
409
410 **COM Port**
411
Coleman Benson 23.1 412 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues. 
413
Eric Nantel 17.1 414 **Connect**
Eric Nantel 16.2 415
Coleman Benson 24.1 416 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
Eric Nantel 15.1 417
Coleman Benson 24.1 418 == Gripper Controls ==
419
Eric Nantel 17.1 420 **Model**
Eric Nantel 15.1 421
Coleman Benson 23.1 422 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as J7.
423
Coleman Benson 24.1 424 * PGE-50-40 (40mm default configuration)
425 * PGE-50-40 (60mm configuration)
426 * PGE-50-40 (80mm configuration)
427 * CGE-10-10 (20mm configuration)
428 * CGE-10-10 (40mm configuration)
429 * CGE-10-10 (60mm configuration)
Eric Nantel 16.2 430
Coleman Benson 24.1 431 **COM Port**
Coleman Benson 23.1 432
Coleman Benson 24.1 433 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
434
Eric Nantel 17.1 435 **Baudrate**
Eric Nantel 16.2 436
Coleman Benson 24.1 437 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in teh software.
Coleman Benson 23.1 438
Coleman Benson 24.1 439 **Initialize**
Eric Nantel 16.2 440
Coleman Benson 24.1 441 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
Coleman Benson 23.1 442
Coleman Benson 24.1 443 **Connect**
Eric Nantel 16.2 444
Coleman Benson 24.1 445 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
Coleman Benson 23.1 446
Eric Nantel 17.1 447 **Speed**
Eric Nantel 16.2 448
Coleman Benson 24.1 449 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
Coleman Benson 23.1 450
Eric Nantel 17.1 451 **Force**
Eric Nantel 16.2 452
Coleman Benson 24.1 453 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
Coleman Benson 23.1 454
Eric Nantel 17.1 455 **Open / Close**
Eric Nantel 16.2 456
Coleman Benson 24.1 457 These are shortcut buttons to either fully open or fully close the gripper.
Eric Nantel 16.4 458
Coleman Benson 24.1 459 **Sequencer**
460
461 The sequencer displays the gripper position as joint 7 (J7).
462
463 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only J7 moves.
464
Coleman Benson 23.1 465 == 3D Model ==
Eric Nantel 16.4 466
Coleman Benson 23.1 467 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
468
469 **View Controls**
470
Coleman Benson 24.1 471 Zoom: Shift + Middle Scroll
Coleman Benson 23.1 472
Coleman Benson 24.1 473 Rotate: Shift + Middle Mouse
474
475 Pan: None
476
Coleman Benson 23.1 477 == Manual Move ==
478
479 **Angular Control**
480
481 In angular mode, the user can control the angle of each joint
482
Eric Nantel 16.4 483 **Coordinates Control**
484
Coleman Benson 23.1 485 In coordinate control the user can control the cartesian position of the end effector
486
487 **End Effector Lock**
488
489 The orientation of the end effector can be locked.
490
Eric Nantel 15.2 491 == Direct Command ==
Eric Nantel 15.1 492
Eric Nantel 15.2 493 This section allow the user to send commands using the [[doc:ses-pro.lss-pro.lss-p-communication-protocol.WebHome]] directly if required.
Eric Nantel 15.1 494
Eric Nantel 15.2 495 A few things to keep in mind when using this:
Eric Nantel 15.1 496
Eric Nantel 15.2 497 * Make sure you know what you are doing as you can make the arm move in __dangerous__ ways.
498 * Sending commands does not require ‘#’ and ‘\r’ chars.
499 ** example for #2\r you should enter 2Q and press the "SEND" button
Eric Nantel 12.1 500 * The commands are validated, and it shows a notification in case of error.
Eric Nantel 15.2 501 * The replies of queries are shown in the text field below.
Eric Nantel 12.1 502
Coleman Benson 23.1 503 == Command Output ==
504
505 //{Coming Soon}//
506
Eric Nantel 16.3 507 == Telemetry ==
508
Eric Nantel 17.1 509 **Data to Display**
Eric Nantel 16.3 510
Coleman Benson 23.1 511 //{Coming Soon}//
512
Eric Nantel 17.1 513 **Display / Hide Actuator**
Eric Nantel 16.3 514
Coleman Benson 23.1 515 //{Coming Soon}//
516
Coleman Benson 24.1 517 == Sequencer ==
Coleman Benson 23.1 518
519 **Frames**
520
521 //{Coming Soon}//
522
523 **Record **
524
525 //{Coming Soon}//
526
527 **Edit **
528
529 Time, angles, gripper
530
Coleman Benson 24.1 531 //Alt + Left Click = Drag time//
Coleman Benson 23.1 532
533 **Reorder**
534
535 //{Coming Soon}//
536
537 **Play**
538
539 //{Coming Soon}//
540
541 **Errors**
542
543 //{Coming Soon}//
Eric Nantel 27.1 544 {{/comment}}
Copyright RobotShop 2018