Wiki source code of LSS - Communication Protocol

Version 171.1 by Eric Nantel on 2020/05/01 09:24

Hide last authors
Eric Nantel 79.1 1 (% class="wikigeneratedid" id="HTableofContents" %)
Coleman Benson 100.1 2 **Page Contents**
Coleman Benson 67.1 3
RB1 64.5 4 {{toc depth="3"/}}
5
Coleman Benson 139.1 6 = Serial Protocol =
RB1 64.19 7
Eric Nantel 171.1 8 The custom Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servo motor is available.
Coleman Benson 1.1 9
Eric Nantel 171.1 10 In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC / checksum implemented as part of the protocol.
Coleman Benson 93.1 11
RB1 64.2 12 == Session ==
Coleman Benson 1.1 13
Eric Nantel 171.1 14 A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.
Coleman Benson 1.1 15
Eric Nantel 171.1 16 Note #1: For a given session, the action related to a specific commands overrides the stored value in EEPROM.
17 Note #2: During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).
18 You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended.
Coleman Benson 96.1 19
Coleman Benson 1.1 20 == Action Commands ==
21
Eric Nantel 171.1 22 Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
Coleman Benson 1.1 23
Eric Nantel 171.1 24 1. Start with a number sign # (U+0023)
Coleman Benson 1.1 25 1. Servo ID number as an integer
Eric Nantel 171.1 26 1. Action command (one to three letters, no spaces, capital or lower case)
Coleman Benson 1.1 27 1. Action value in the correct units with no decimal
Eric Nantel 171.1 28 1. End with a control / carriage return '<cr>'
Coleman Benson 1.1 29
30 (((
Eric Nantel 171.1 31 Ex: #5PD1443<cr>
Coleman Benson 1.1 32
Eric Nantel 171.1 33 This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
Coleman Benson 1.1 34
Eric Nantel 171.1 35 == Action Modifiers ==
Coleman Benson 1.1 36
Eric Nantel 171.1 37 Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is:
Coleman Benson 1.1 38
Eric Nantel 171.1 39 1. Start with a number sign # (U+0023)
Coleman Benson 1.1 40 1. Servo ID number as an integer
41 1. Action command (one to three letters, no spaces, capital or lower case)
42 1. Action value in the correct units with no decimal
Eric Nantel 171.1 43 1. Modifier command (one letter)
Coleman Benson 1.1 44 1. Modifier value in the correct units with no decimal
Eric Nantel 171.1 45 1. End with a control / carriage return '<cr>'
Coleman Benson 1.1 46
Eric Nantel 171.1 47 Ex: #5P1456T1263<cr>
Coleman Benson 1.1 48
Eric Nantel 171.1 49 This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds.
50 )))
Coleman Benson 1.1 51
52 == Query Commands ==
53
Eric Nantel 171.1 54 Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:
Coleman Benson 1.1 55
Eric Nantel 171.1 56 1. Start with a number sign # (U+0023)
Coleman Benson 1.1 57 1. Servo ID number as an integer
Eric Nantel 171.1 58 1. Query command (one to three letters, no spaces, capital or lower case)
59 1. End with a control / carriage return '<cr>'
Coleman Benson 1.1 60
Eric Nantel 171.1 61 (((
62 Ex: #5QD<cr>Query position in degrees for servo #5
63 )))
Coleman Benson 1.1 64
Eric Nantel 171.1 65 (((
Coleman Benson 93.1 66 The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format:
Coleman Benson 1.1 67
Eric Nantel 171.1 68 1. Start with an asterisk * (U+002A)
Coleman Benson 1.1 69 1. Servo ID number as an integer
Eric Nantel 171.1 70 1. Query command (one to three letters, no spaces, capital letters)
Coleman Benson 1.1 71 1. The reported value in the units described, no decimals.
Eric Nantel 171.1 72 1. End with a control / carriage return '<cr>'
Coleman Benson 1.1 73
Eric Nantel 171.1 74 There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be:
Coleman Benson 93.1 75
Eric Nantel 171.1 76 (((
77 Ex: *5QD1443<cr>
78 )))
Coleman Benson 1.1 79
Eric Nantel 171.1 80 This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees).
Coleman Benson 1.1 81
Coleman Benson 96.1 82 == Configuration Commands ==
83
Eric Nantel 171.1 84 Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
Coleman Benson 96.1 85
Eric Nantel 171.1 86 1. Start with a number sign # (U+0023)
Coleman Benson 96.1 87 1. Servo ID number as an integer
Eric Nantel 171.1 88 1. Configuration command (two to three letters, no spaces, capital or lower case)
Coleman Benson 96.1 89 1. Configuration value in the correct units with no decimal
Eric Nantel 171.1 90 1. End with a control / carriage return '<cr>'
Coleman Benson 96.1 91
Eric Nantel 171.1 92 Ex: #5CO-50<cr>
Coleman Benson 96.1 93
Eric Nantel 171.1 94 This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below.
Coleman Benson 96.1 95
Eric Nantel 171.1 96 **Session vs Configuration Query**
Coleman Benson 1.1 97
Eric Nantel 171.1 98 By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
Coleman Benson 1.1 99
Eric Nantel 171.1 100 Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.
Coleman Benson 1.1 101
Eric Nantel 171.1 102 After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
Coleman Benson 1.1 103
Eric Nantel 171.1 104 #5QSR<cr> would return *5QSR4<cr> which represents the value for that session, whereas
Coleman Benson 1.1 105
Eric Nantel 171.1 106 #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM
RB1 56.1 107
Coleman Benson 65.2 108 == Virtual Angular Position ==
RB1 56.1 109
Eric Nantel 171.1 110 The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).
RB1 56.1 111
Eric Nantel 171.1 112 [[image:LSS-servo-positions.jpg]]
RB1 56.1 113
Eric Nantel 171.1 114 In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
RB1 56.1 115
Eric Nantel 171.1 116 #1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)
RB1 56.1 117
Eric Nantel 171.1 118 #1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)
RB1 56.1 119
Eric Nantel 171.1 120 #1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.
RB1 56.1 121
Eric Nantel 171.1 122 Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.
RB1 56.1 123
Eric Nantel 171.1 124 #1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
RB1 56.1 125
Eric Nantel 171.1 126 #1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).
RB1 56.1 127
Eric Nantel 171.1 128 If / once the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified).
129 )))
Coleman Benson 1.1 130
131 = Command List =
132
Eric Nantel 171.1 133 == Regular ==
Coleman Benson 99.1 134
Eric Nantel 171.1 135 |= #|=Description|=Mod|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
136 | 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| | L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
137 | 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| | H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
138 | 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]|T| | | | | | ✓|milliseconds|(% style="width:510px" %)Modifier only for {P, D, MD}. Time is estimated and can change based on load|(% style="text-align:center; width:113px" %)
139 | 4|[[**S**peed>>||anchor="H4.Speed28S2CSD29modifier"]]|S/SD| |QS| | | | ✓|microseconds per second / degrees per second|(% style="width:510px" %)S modifier only for {P}. SD modifier only for {D, MD}.|(% style="text-align:center; width:113px" %)
140 | 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| | MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
141 | 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| | O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
142 0
143 )))
144 | 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| | AR| QAR| CAR|✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
145 1800
146 )))
147 | 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| | P| QP| | | | ✓|microseconds|(% style="width:510px" %)(((
148 Inherited from SSC-32 serial protocol
149 )))|(% style="text-align:center; width:113px" %)
150 | 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| | D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
151 | 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| | WD| QWD| | | | ✓|degrees per second|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
152 | 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| | WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
153 | 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| | SD| QSD|CSD|✓| ✓| ✓|degrees per second (°/s)|(% style="width:510px" %)(((
154 QSD: Add modifier "2" for instantaneous speed.
Coleman Benson 94.1 155
Eric Nantel 171.1 156 SD overwrites SR / CSD overwrites CSR and vice-versa.
157 )))|(% style="text-align:center; width:113px" %)Max per servo
158 | 13|[[Max **S**peed in **R**PM>>||anchor="H13.MaxSpeedinRPM28SR29"]]| | SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((
159 QSR: Add modifier "2" for instantaneous speed
Coleman Benson 94.1 160
Eric Nantel 171.1 161 SR overwrites SD / CSR overwrites CSD and vice-versa.
162 )))|(% style="text-align:center; width:113px" %)Max per servo
163 | 14|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| | LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 7)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)0 (OFF)
164 | 15|[[**G**yre direction (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| | G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
165 | 16|[[**ID** #>>||anchor="H16.IdentificationNumber28ID29"]]| | | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0
166 | 17|[[**B**aud rate>>||anchor="H17.BaudRate"]]| | | QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)115200
167 | 18|//{coming soon}//| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
168
169 )))
170 | 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstA0Position28Degrees29"]]| | | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)No Value
171 | 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)|(% style="text-align:center; width:113px" %)
172 | 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %)
173 | 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
174 | 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
175 | 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
176 | 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
177 | 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
178 | 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | | |CRC|✓| | ✓|none|(% style="width:510px" %)(((
179 Change to RC mode 1 (position) or 2 (wheel).
180 )))|(% style="text-align:center; width:113px" %)Serial
181 | 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
182 | 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
183 | 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
Coleman Benson 1.1 184
Eric Nantel 171.1 185 == Advanced ==
Coleman Benson 93.1 186
Eric Nantel 171.1 187 |= #|=(% style="width: 182px;" %)Description|=(% style="width: 56px;" %)Mod|=(% style="width: 70px;" %) Action|=(% style="width: 71px;" %) Query|=(% style="width: 77px;" %) Config|=(% style="width: 77px;" %)Session|=(% style="width: 56px;" %) RC|=(% style="width: 151px;" %) Serial|= Units|=(% style="width: 510px;" %) Notes
188 | A1|(% style="width:182px" %)[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]|(% style="width:56px" %) |(% style="width:70px" %)AS|(% style="width:71px" %)QAS|(% style="width:77px" %)CAS|(% style="width:77px" %)✓|(% style="width:56px" %) ✓|(% style="width:151px" %) ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4
189 | A2|(% style="width:182px" %)[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|(% style="width:56px" %) |(% style="width:70px" %)AH|(% style="width:71px" %)QAH|(% style="width:77px" %)CAH|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|none (integer -10 to +10)|(% style="width:510px" %)Effect is different between serial and RC
190 | A3|(% style="width:182px" %)[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|(% style="width:56px" %) |(% style="width:70px" %)AA|(% style="width:71px" %)QAA|(% style="width:77px" %)CAA|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared
191 | A4|(% style="width:182px" %)[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|(% style="width:56px" %) |(% style="width:70px" %)AD|(% style="width:71px" %)QAD|(% style="width:77px" %)CAD|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared
192 | A5|(% style="width:182px" %)[[**E**nable **M**otion Control>>||anchor="HA5:MotionControl28EM29"]]|(% style="width:56px" %) |(% style="width:70px" %)EM|(% style="width:71px" %)QEM|(% style="width:77px" %) |(% style="width:77px" %) |(% style="width:56px" %) |(% style="width:151px" %) ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable
193 | A6|(% style="width:182px" %)[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]|(% style="width:56px" %) |(% style="width:70px" %) |(% style="width:71px" %)QLB|(% style="width:77px" %) CLB|(% style="width:77px" %) |(% style="width:56px" %) ✓|(% style="width:151px" %) ✓|none (integer from 0 to 63)|(% style="width:510px" %)(((
194 0=No blinking, 63=Always blink;
Coleman Benson 93.1 195
Eric Nantel 171.1 196 Blink while: 1=Limp; 2=Holding; 4=Accel; 8=Decel; 16=Free 32=Travel;
197 )))
198 | A7|(% style="width:182px" %)[[**C**urrent **H**alt & **H**old>>||anchor="HA7.CurrentHalt26Hold28CH29"]]|(% style="width:56px" %)CH|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR
199 | A8|(% style="width:182px" %)[[**C**urrent **L**imp>>||anchor="HA8.CurrentLimp28CL29"]]|(% style="width:56px" %)CL|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR
Coleman Benson 96.1 200
Eric Nantel 171.1 201 == Details - Basic ==
Coleman Benson 1.1 202
Eric Nantel 171.1 203 ====== __1. Limp (**L**)__ ======
Coleman Benson 1.1 204
Eric Nantel 171.1 205 Example: #5L<cr>
Coleman Benson 1.1 206
Eric Nantel 171.1 207 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
Coleman Benson 1.1 208
Eric Nantel 171.1 209 ====== __2. Halt & Hold (**H**)__ ======
Coleman Benson 1.1 210
Eric Nantel 171.1 211 Example: #5H<cr>
Coleman Benson 1.1 212
Eric Nantel 171.1 213 This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position.
Coleman Benson 1.1 214
Eric Nantel 171.1 215 ====== __3. Timed move (**T**) modifier__ ======
Coleman Benson 1.1 216
Eric Nantel 171.1 217 Example: #5P1500T2500<cr>
Coleman Benson 1.1 218
Eric Nantel 171.1 219 Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
Coleman Benson 1.1 220
Eric Nantel 171.1 221 Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
Coleman Benson 72.1 222
Eric Nantel 171.1 223 ====== __4. Speed (**S**, **SD**) modifier__ ======
Coleman Benson 1.1 224
Eric Nantel 171.1 225 Example: #5P1500S750<cr>
226 Example: #5D0SD180<cr>
Coleman Benson 1.1 227
Eric Nantel 171.1 228 Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
Coleman Benson 1.1 229
Eric Nantel 171.1 230 Modifer (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 180 degrees per second.
RB1 161.1 231
Eric Nantel 171.1 232 Query Speed (**QS**)
Coleman Benson 129.1 233
Eric Nantel 171.1 234 Example: #5QS<cr> might return *5QS300<cr>
Coleman Benson 129.1 235
Eric Nantel 171.1 236 This command queries the current speed in microseconds per second.
Coleman Benson 129.1 237
Eric Nantel 171.1 238 ====== __5. (Relative) Move in Degrees (**MD**)__ ======
Coleman Benson 1.1 239
Eric Nantel 171.1 240 Example: #5MD123<cr>
Coleman Benson 1.1 241
Eric Nantel 171.1 242 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
Coleman Benson 1.1 243
Eric Nantel 171.1 244 ====== __6. Origin Offset Action (**O**)__ ======
Coleman Benson 1.1 245
Eric Nantel 171.1 246 Example: #5O2400<cr>
Coleman Benson 1.1 247
Eric Nantel 171.1 248 This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
Coleman Benson 1.1 249
Eric Nantel 171.1 250 [[image:LSS-servo-default.jpg]]
Coleman Benson 1.1 251
Eric Nantel 171.1 252 In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
Coleman Benson 1.1 253
Eric Nantel 171.1 254 [[image:LSS-servo-origin.jpg]]
Coleman Benson 1.1 255
Eric Nantel 171.1 256 Origin Offset Query (**QO**)
Coleman Benson 1.1 257
Eric Nantel 171.1 258 Example: #5QO<cr> Returns: *5QO-13
Coleman Benson 1.1 259
Eric Nantel 171.1 260 This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
Coleman Benson 1.1 261
Eric Nantel 171.1 262 Configure Origin Offset (**CO**)
Coleman Benson 1.1 263
Eric Nantel 171.1 264 Example: #5CO-24<cr>
Coleman Benson 1.1 265
Eric Nantel 171.1 266 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
Coleman Benson 1.1 267
Eric Nantel 171.1 268 ====== __7. Angular Range (**AR**)__ ======
Coleman Benson 1.1 269
Eric Nantel 171.1 270 Example: #5AR1800<cr>
Coleman Benson 1.1 271
Eric Nantel 171.1 272 This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
Coleman Benson 1.1 273
Eric Nantel 171.1 274 [[image:LSS-servo-default.jpg]]
Coleman Benson 1.1 275
Eric Nantel 171.1 276 Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
Coleman Benson 1.1 277
Eric Nantel 171.1 278 [[image:LSS-servo-ar.jpg]]
Coleman Benson 1.1 279
Eric Nantel 171.1 280 Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
Coleman Benson 1.1 281
Eric Nantel 171.1 282 [[image:LSS-servo-ar-o-1.jpg]]
Coleman Benson 1.1 283
Eric Nantel 171.1 284 Query Angular Range (**QAR**)
Coleman Benson 1.1 285
Eric Nantel 171.1 286 Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
Coleman Benson 1.1 287
Eric Nantel 171.1 288 Configure Angular Range (**CAR**)
Coleman Benson 1.1 289
Eric Nantel 171.1 290 This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
Coleman Benson 1.1 291
Eric Nantel 171.1 292 ====== __8. Position in Pulse (**P**)__ ======
Coleman Benson 1.1 293
Eric Nantel 171.1 294 Example: #5P2334<cr>
Coleman Benson 1.1 295
Eric Nantel 171.1 296 The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.
Coleman Benson 1.1 297
Eric Nantel 171.1 298 Query Position in Pulse (**QP**)
Coleman Benson 1.1 299
Eric Nantel 171.1 300 Example: #5QP<cr> might return *5QP2334
Coleman Benson 1.1 301
Eric Nantel 171.1 302 This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 
303 Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
Coleman Benson 1.1 304
Eric Nantel 171.1 305 ====== __9. Position in Degrees (**D**)__ ======
Coleman Benson 1.1 306
Eric Nantel 171.1 307 Example: #5D1456<cr>
Coleman Benson 1.1 308
Eric Nantel 171.1 309 This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction.
Coleman Benson 1.1 310
Eric Nantel 171.1 311 Larger values are permitted and allow for multi-turn functionality using the concept of virtual position.
Coleman Benson 1.1 312
Eric Nantel 171.1 313 Query Position in Degrees (**QD**)
Coleman Benson 1.1 314
Eric Nantel 171.1 315 Example: #5QD<cr> might return *5QD132<cr>
Coleman Benson 1.1 316
Eric Nantel 171.1 317 This means the servo is located at 13.2 degrees.
Coleman Benson 37.1 318
Eric Nantel 171.1 319 (% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %)
320 Query Target Position in Degrees (**QDT**)
Coleman Benson 98.5 321
Eric Nantel 171.1 322 Ex: #5QDT<cr> might return *5QDT6783<cr>
Coleman Benson 98.5 323
Eric Nantel 171.1 324 The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
Coleman Benson 98.5 325
Eric Nantel 171.1 326 ====== __10. Wheel Mode in Degrees (**WD**)__ ======
Coleman Benson 1.1 327
Eric Nantel 171.1 328 Ex: #5WD90<cr>
Coleman Benson 1.1 329
Eric Nantel 171.1 330 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
Coleman Benson 1.1 331
Eric Nantel 171.1 332 Query Wheel Mode in Degrees (**QWD**)
Coleman Benson 1.1 333
Eric Nantel 171.1 334 Ex: #5QWD<cr> might return *5QWD90<cr>
Coleman Benson 1.1 335
Eric Nantel 171.1 336 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
Coleman Benson 1.1 337
Eric Nantel 171.1 338 ====== __11. Wheel Mode in RPM (**WR**)__ ======
Coleman Benson 1.1 339
Eric Nantel 171.1 340 Ex: #5WR40<cr>
Coleman Benson 1.1 341
Eric Nantel 171.1 342 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
Coleman Benson 1.1 343
Eric Nantel 171.1 344 Query Wheel Mode in RPM (**QWR**)
Coleman Benson 1.1 345
Eric Nantel 171.1 346 Ex: #5QWR<cr> might return *5QWR40<cr>
Coleman Benson 1.1 347
Eric Nantel 171.1 348 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
Coleman Benson 1.1 349
Eric Nantel 171.1 350 ====== __12. Max Speed in Degrees (**SD**)__ ======
Coleman Benson 1.1 351
Eric Nantel 171.1 352 Ex: #5SD1800<cr>
Coleman Benson 1.1 353
Eric Nantel 171.1 354 This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
Coleman Benson 1.1 355
Eric Nantel 171.1 356 Query Speed in Degrees (**QSD**)
Coleman Benson 1.1 357
Eric Nantel 171.1 358 Ex: #5QSD<cr> might return *5QSD1800<cr>
Coleman Benson 1.1 359
Eric Nantel 171.1 360 By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed.
361 If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
Coleman Benson 1.1 362
Eric Nantel 171.1 363 |**Command sent**|**Returned value (1/10 °)**
364 |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
365 |ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
366 |ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
367 |ex: #5QSD3<cr>|Target travel speed
RB1 23.1 368
Eric Nantel 171.1 369 Configure Speed in Degrees (**CSD**)
Coleman Benson 1.1 370
Eric Nantel 171.1 371 Ex: #5CSD1800<cr>
Coleman Benson 1.1 372
Eric Nantel 171.1 373 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
Coleman Benson 1.1 374
Eric Nantel 171.1 375 ====== __13. Max Speed in RPM (**SR**)__ ======
Coleman Benson 1.1 376
Eric Nantel 171.1 377 Ex: #5SD45<cr>
Coleman Benson 1.1 378
Eric Nantel 171.1 379 This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
Coleman Benson 1.1 380
Eric Nantel 171.1 381 Query Speed in Degrees (**QSR**)
Coleman Benson 1.1 382
Eric Nantel 171.1 383 Ex: #5QSR<cr> might return *5QSR45<cr>
Coleman Benson 1.1 384
Eric Nantel 171.1 385 By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed.
386 If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
Coleman Benson 1.1 387
Eric Nantel 171.1 388 |**Command sent**|**Returned value (1/10 °)**
389 |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
390 |ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
391 |ex: #5QSR2<cr>|Instantaneous speed (same as QWR)
392 |ex: #5QSR3<cr>|Target travel speed
Coleman Benson 1.1 393
Eric Nantel 171.1 394 Configure Speed in RPM (**CSR**)
RB1 25.1 395
Eric Nantel 171.1 396 Ex: #5CSR45<cr>
Coleman Benson 1.1 397
Eric Nantel 171.1 398 Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
Coleman Benson 1.1 399
Eric Nantel 171.1 400 ====== __14. LED Color (**LED**)__ ======
Coleman Benson 15.1 401
Eric Nantel 171.1 402 Ex: #5LED3<cr>
Coleman Benson 1.1 403
Eric Nantel 171.1 404 This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
Coleman Benson 1.1 405
Eric Nantel 171.1 406 0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;
Coleman Benson 1.1 407
Eric Nantel 171.1 408 Query LED Color (**QLED**)
Coleman Benson 1.1 409
Eric Nantel 171.1 410 Ex: #5QLED<cr> might return *5QLED5<cr>
Coleman Benson 1.1 411
Eric Nantel 171.1 412 This simple query returns the indicated servo's LED color.
Coleman Benson 1.1 413
Eric Nantel 171.1 414 Configure LED Color (**CLED**)
Coleman Benson 1.1 415
Eric Nantel 171.1 416 Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
Coleman Benson 1.1 417
Eric Nantel 171.1 418 ====== __15. Gyre Rotation Direction (**G**)__ ======
Coleman Benson 1.1 419
Eric Nantel 171.1 420 "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
Coleman Benson 98.4 421
Eric Nantel 171.1 422 Ex: #5G-1<cr>
Coleman Benson 98.4 423
Eric Nantel 171.1 424 This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
Coleman Benson 98.4 425
Eric Nantel 171.1 426 Query Gyre Direction (**QG**)
Coleman Benson 98.4 427
Eric Nantel 171.1 428 Ex: #5QG<cr> might return *5QG-1<cr>
Coleman Benson 98.4 429
Eric Nantel 171.1 430 The value returned above means the servo is in a counter-clockwise gyration.
Coleman Benson 98.4 431
Eric Nantel 171.1 432 Configure Gyre (**CG**)
Coleman Benson 98.4 433
Eric Nantel 171.1 434 Ex: #5CG-1<cr>
Coleman Benson 98.4 435
Eric Nantel 171.1 436 This changes the gyre direction as described above and also writes to EEPROM.
Coleman Benson 98.4 437
Eric Nantel 171.1 438 ====== __16. Identification Number (**ID**)__ ======
Coleman Benson 98.4 439
Eric Nantel 171.1 440 A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate).
Coleman Benson 1.1 441
Eric Nantel 171.1 442 Query Identification (**QID**)
Coleman Benson 1.1 443
Eric Nantel 171.1 444 EX: #254QID<cr> might return *QID5<cr>
Coleman Benson 1.1 445
Eric Nantel 171.1 446 When using the query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number (assuming the query is sent . Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
Coleman Benson 1.1 447
Eric Nantel 171.1 448 Configure ID (**CID**)
Coleman Benson 1.1 449
Eric Nantel 171.1 450 Ex: #4CID5<cr>
Coleman Benson 1.1 451
Eric Nantel 171.1 452 Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.
Coleman Benson 1.1 453
Eric Nantel 171.1 454 ====== __17. Baud Rate__ ======
Coleman Benson 1.1 455
Eric Nantel 171.1 456 A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200. The baud rates are currently restricted to those above.
Coleman Benson 1.1 457
Eric Nantel 171.1 458 Query Baud Rate (**QB**)
Coleman Benson 1.1 459
Eric Nantel 171.1 460 Ex: #5QB<cr> might return *5QB115200<cr>
Coleman Benson 1.1 461
Eric Nantel 171.1 462 Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.
Coleman Benson 1.1 463
Eric Nantel 171.1 464 Configure Baud Rate (**CB**)
Coleman Benson 1.1 465
Eric Nantel 171.1 466 Important Note: the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.
Coleman Benson 93.1 467
Eric Nantel 171.1 468 Ex: #5CB9600<cr>
Coleman Benson 1.1 469
Eric Nantel 171.1 470 Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
Coleman Benson 1.1 471
Eric Nantel 171.1 472 ====== __18. {//Coming soon//}__ ======
Coleman Benson 1.1 473
Eric Nantel 171.1 474 Command coming soon....
Coleman Benson 1.1 475
Eric Nantel 171.1 476 ====== __19. First Position (Degrees)__ ======
Coleman Benson 1.1 477
Eric Nantel 171.1 478 In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.
Coleman Benson 1.1 479
Eric Nantel 171.1 480 Query First Position in Degrees (**QFD**)
Coleman Benson 1.1 481
Eric Nantel 171.1 482 Ex: #5QFD<cr> might return *5QFD64<cr>
Coleman Benson 1.1 483
Eric Nantel 171.1 484 The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If there is no first position value stored, the reply will be DIS
Coleman Benson 1.1 485
Eric Nantel 171.1 486 Configure First Position in Degrees (**CFD**)
Coleman Benson 1.1 487
Eric Nantel 171.1 488 Ex: #5CD64<cr>
Coleman Benson 1.1 489
Eric Nantel 171.1 490 This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
Coleman Benson 1.1 491
Eric Nantel 171.1 492 ====== __20. Query Model String (**QMS**)__ ======
Coleman Benson 1.1 493
Eric Nantel 171.1 494 Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
Coleman Benson 1.1 495
Eric Nantel 171.1 496 This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
Coleman Benson 1.1 497
Eric Nantel 171.1 498 ====== __21. Query Serial Number (**QN**)__ ======
RB1 64.1 499
Eric Nantel 171.1 500 Ex: #5QN<cr> might return *5QN12345678<cr>
Coleman Benson 1.1 501
Eric Nantel 171.1 502 The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
Coleman Benson 1.1 503
Eric Nantel 171.1 504 ====== __22. Query Firmware (**QF**)__ ======
Coleman Benson 1.1 505
Eric Nantel 171.1 506 Ex: #5QF<cr> might return *5QF411<cr>
Coleman Benson 1.1 507
Eric Nantel 171.1 508 The number in the reply represents the firmware version, in this example being 411.
Coleman Benson 1.1 509
Eric Nantel 171.1 510 ====== __23. Query Status (**Q**)__ ======
Coleman Benson 1.1 511
Eric Nantel 171.1 512 The status query described what the servo is currently doing. The query returns an integer which must be looked up in the table below. Use the CLB advanced command to have the LED blink for certain statuses.
Coleman Benson 98.37 513
Eric Nantel 171.1 514 Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
Coleman Benson 1.1 515
Eric Nantel 171.1 516 |***Value returned (Q)**|**Status**|**Detailed description**
517 |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
518 |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
519 |ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely
520 |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
521 |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
522 |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
523 |ex: *5Q6<cr>|6: Holding|Keeping current position
524 |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
525 |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
526 |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
527 |ex: *5Q10<cr>|10: Safe Mode|(((
528 A safety limit has been exceeded (temperature, peak current or extended high current draw).
Coleman Benson 1.1 529
Eric Nantel 171.1 530 Send a Q1 command to know which limit has been reached (described below).
531 )))
Coleman Benson 110.1 532
Eric Nantel 171.1 533 (% class="wikigeneratedid" %)
534 If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
Coleman Benson 109.1 535
Eric Nantel 171.1 536 |***Value returned (Q1)**|**Status**|**Detailed description**
537 |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
538 |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
539 |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
540 |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
Coleman Benson 109.1 541
Eric Nantel 171.1 542 ====== __24. Query Voltage (**QV**)__ ======
Coleman Benson 1.1 543
Eric Nantel 171.1 544 Ex: #5QV<cr> might return *5QV11200<cr>
Coleman Benson 1.1 545
Eric Nantel 171.1 546 The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
Coleman Benson 1.1 547
Eric Nantel 171.1 548 ====== __25. Query Temperature (**QT**)__ ======
Coleman Benson 1.1 549
Eric Nantel 171.1 550 Ex: #5QT<cr> might return *5QT564<cr>
Coleman Benson 1.1 551
Eric Nantel 171.1 552 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
Coleman Benson 1.1 553
Eric Nantel 171.1 554 ====== __26. Query Current (**QC**)__ ======
Coleman Benson 1.1 555
Eric Nantel 171.1 556 Ex: #5QC<cr> might return *5QC140<cr>
Coleman Benson 1.1 557
Eric Nantel 171.1 558 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
Coleman Benson 1.1 559
Eric Nantel 171.1 560 ====== __27. Configure RC Mode (**CRC**)__ ======
Coleman Benson 42.1 561
Eric Nantel 171.1 562 This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
Coleman Benson 42.1 563
Eric Nantel 171.1 564 |**Command sent**|**Note**
565 |ex: #5CRC1<cr>|Change to RC position mode.
566 |ex: #5CRC2<cr>|Change to RC continuous (wheel) mode.
567 |ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode.
RB1 50.1 568
Eric Nantel 171.1 569 EX: #5CRC2<cr>
Coleman Benson 42.1 570
Eric Nantel 171.1 571 This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.
Coleman Benson 1.1 572
Eric Nantel 171.1 573 Important note:** **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), ensuring a common GND and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.
Coleman Benson 102.1 574
Eric Nantel 171.1 575 ====== __28. **RESET**__ ======
Coleman Benson 98.36 576
Eric Nantel 171.1 577 Ex: #5RESET<cr> or #5RS<cr>
Coleman Benson 1.1 578
Eric Nantel 171.1 579 This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
580 Note: after a RESET command is received the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.
Coleman Benson 1.1 581
Eric Nantel 171.1 582 ====== __29. **DEFAULT** & CONFIRM__ ======
Coleman Benson 1.1 583
Eric Nantel 171.1 584 Ex: #5DEFAULT<cr>
Coleman Benson 1.1 585
Eric Nantel 171.1 586 This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
Coleman Benson 1.1 587
Eric Nantel 171.1 588 EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
Coleman Benson 1.1 589
Eric Nantel 171.1 590 Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
Coleman Benson 1.1 591
Eric Nantel 171.1 592 Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
Coleman Benson 13.1 593
Eric Nantel 171.1 594 ====== __30. **UPDATE** & CONFIRM__ ======
Coleman Benson 1.1 595
Eric Nantel 171.1 596 Ex: #5UPDATE<cr>
Coleman Benson 1.1 597
Eric Nantel 171.1 598 This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
Coleman Benson 1.1 599
Eric Nantel 171.1 600 EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
Coleman Benson 1.1 601
Eric Nantel 171.1 602 Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
Coleman Benson 12.1 603
Eric Nantel 171.1 604 Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
Coleman Benson 98.2 605
Eric Nantel 171.1 606 == Details - Advanced ==
Coleman Benson 98.37 607
Eric Nantel 171.1 608 The motion controller used in serial mode is not the same as the motion controller use in RC mode. RC mode is intended to add functionality to what would be considered "normal" RC behavior based on PWM input.
Coleman Benson 113.1 609
Eric Nantel 171.1 610 ====== __A1. Angular Stiffness (**AS**)__ ======
Coleman Benson 98.2 611
Eric Nantel 171.1 612 The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.
Coleman Benson 98.2 613
Eric Nantel 171.1 614 A positive value of "angular stiffness":
Coleman Benson 98.2 615
Eric Nantel 171.1 616 * The more torque will be applied to try to keep the desired position against external input / changes
617 * The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
Coleman Benson 98.2 618
Eric Nantel 171.1 619 A negative value on the other hand:
Coleman Benson 98.2 620
Eric Nantel 171.1 621 * Causes a slower acceleration to the travel speed, and a slower deceleration
622 * Allows the target position to deviate more from its position before additional torque is applied to bring it back
Coleman Benson 98.2 623
Eric Nantel 171.1 624 The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
Coleman Benson 98.2 625
Eric Nantel 171.1 626 Ex: #5AS-2<cr>
Coleman Benson 98.2 627
Eric Nantel 171.1 628 This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
Coleman Benson 98.2 629
Eric Nantel 171.1 630 Ex: #5QAS<cr>
Coleman Benson 98.2 631
Eric Nantel 171.1 632 Queries the value being used.
Coleman Benson 98.2 633
Eric Nantel 171.1 634 Ex: #5CAS<cr>
Coleman Benson 98.2 635
Eric Nantel 171.1 636 Writes the desired angular stiffness value to memory.
Coleman Benson 98.2 637
Eric Nantel 171.1 638 ====== __A2. Angular Holding Stiffness (**AH**)__ ======
Coleman Benson 98.2 639
Eric Nantel 171.1 640 The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. Note that when  considering altering a stiffness value, the end effect depends on the mode being tested.
Coleman Benson 98.2 641
Eric Nantel 171.1 642 Ex: #5AH3<cr>
Coleman Benson 98.2 643
Eric Nantel 171.1 644 This sets the holding stiffness for servo #5 to 3 for that session.
Coleman Benson 98.2 645
Eric Nantel 171.1 646 Query Angular Hold Stiffness (**QAH**)
Coleman Benson 98.2 647
Eric Nantel 171.1 648 Ex: #5QAH<cr> might return *5QAH3<cr>
Coleman Benson 98.2 649
Eric Nantel 171.1 650 This returns the servo's angular holding stiffness value.
Coleman Benson 98.2 651
Eric Nantel 171.1 652 Configure Angular Hold Stiffness (**CAH**)
Coleman Benson 98.2 653
Eric Nantel 171.1 654 Ex: #5CAH2<cr>
Coleman Benson 98.2 655
Eric Nantel 171.1 656 This writes the angular holding stiffness of servo #5 to 2 to EEPROM. Note that when  considering altering a stiffness value, the end effect depends on the mode being tested.
Coleman Benson 98.2 657
Eric Nantel 171.1 658 ====== __A3: Angular Acceleration (**AA**)__ ======
Coleman Benson 98.2 659
Eric Nantel 171.1 660 The default value for angular acceleration is 100, which is the same as the maximum deceleration. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
Coleman Benson 98.2 661
Eric Nantel 171.1 662 Ex: #5AA30<cr>
Coleman Benson 111.1 663
Eric Nantel 171.1 664 Query Angular Acceleration (**QAD**)
Coleman Benson 111.1 665
Eric Nantel 171.1 666 Ex: #5QA<cr> might return *5QA30<cr>
Coleman Benson 111.1 667
Eric Nantel 171.1 668 Configure Angular Acceleration (**CAD**)
Coleman Benson 111.1 669
Eric Nantel 171.1 670 Ex: #5CA30<cr>
Coleman Benson 111.1 671
Eric Nantel 171.1 672 ====== __A4: Angular Deceleration (**AD**)__ ======
Coleman Benson 98.2 673
Eric Nantel 171.1 674 The default value for angular deceleration is 100, which is the same as the maximum acceleration. Values between 1 and 15 have the greatest impact.
Coleman Benson 98.2 675
Eric Nantel 171.1 676 Ex: #5AD8<cr>
Coleman Benson 111.1 677
Eric Nantel 171.1 678 Query Angular Deceleration (**QAD**)
Coleman Benson 111.1 679
Eric Nantel 171.1 680 Ex: #5QD<cr> might return *5QD8<cr>
Coleman Benson 111.1 681
Eric Nantel 171.1 682 Configure Angular Deceleration (**CAD**)
Coleman Benson 111.1 683
Eric Nantel 171.1 684 Ex: #5CD8<cr>
Coleman Benson 111.1 685
Eric Nantel 171.1 686 ====== __A5: Motion Control (**EM**)__ ======
Coleman Benson 98.2 687
Eric Nantel 171.1 688 The command EM0 disables use of the motion controller (acceleration, velocity / travel, deceleration). As such, the servo will move at full speed for all motion commands. The command EM1 enables use of the motion controller.
Coleman Benson 98.2 689
Eric Nantel 171.1 690 Note that if the modifiers S or T are used, it is assumed that motion control is desired, and for that command, EM1 will be used.
Coleman Benson 115.1 691
Eric Nantel 171.1 692 ====== __A6. Configure LED Blinking (**CLB**)__ ======
Coleman Benson 98.2 693
Eric Nantel 171.1 694 This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:
Coleman Benson 98.2 695
Eric Nantel 171.1 696 (% style="width:195px" %)
697 |(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
698 |(% style="width:134px" %)No blinking|(% style="width:58px" %)0
699 |(% style="width:134px" %)Limp|(% style="width:58px" %)1
700 |(% style="width:134px" %)Holding|(% style="width:58px" %)2
701 |(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
702 |(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
703 |(% style="width:134px" %)Free|(% style="width:58px" %)16
704 |(% style="width:134px" %)Travelling|(% style="width:58px" %)32
705 |(% style="width:134px" %)Always blink|(% style="width:58px" %)63
Coleman Benson 98.37 706
Eric Nantel 171.1 707 To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
Coleman Benson 98.2 708
Eric Nantel 171.1 709 Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
710 Ex: #5CLB1<cr> only blink when limp (1)
711 Ex: #5CLB2<cr> only blink when holding (2)
712 Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)
713 Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)
714 Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)
Coleman Benson 108.1 715
Eric Nantel 171.1 716 RESETTING the servo is needed.
RB1 140.1 717
Eric Nantel 171.1 718 ====== __A7. Current Halt & Hold (**CH**)__ ======
Coleman Benson 148.1 719
Eric Nantel 171.1 720 This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR.
Coleman Benson 148.1 721
Eric Nantel 171.1 722 Ex: #5D1423CH400<cr>
Coleman Benson 148.1 723
Eric Nantel 171.1 724 This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.
Coleman Benson 148.1 725
Eric Nantel 171.1 726 ====== __A8. Current Limp (**CL**)__ ======
Coleman Benson 148.1 727
Eric Nantel 171.1 728 This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR.
Coleman Benson 148.1 729
Eric Nantel 171.1 730 Ex: #5D1423CH400<cr>
Coleman Benson 148.1 731
Eric Nantel 171.1 732 This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.
Coleman Benson 148.1 733
Coleman Benson 143.1 734 = RGB LED Patterns =
RB1 140.1 735
Coleman Benson 143.1 736 The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]]
737
RB1 141.2 738 [[image:LSS - LED Patterns.png]]
Copyright RobotShop 2018