Wiki source code of LSS-P - Communication Protocol

Version 37.1 by Coleman Benson on 2023/07/26 13:40

Show last authors
1 {{warningBox warningText="More information coming soon"/}}
2
3
4
5 (% class="wikigeneratedid" id="HTableofContents" %)
6 **Page Contents**
7
8 {{toc depth="3"/}}
9
10 = Serial Protocol =
11
12 The Lynxmotion Smart Servo (LSS) PRO serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's Smart Servo (LSS) protocol, which itself was based on the SSC-32 & SSC-32U RC servo controllers. The LSS PRO series and normal LSS share many of the same commands, but because of higher angular precision, slightly different operation and different features, the two protocols do not fully overlap.
13
14 In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol.
15
16 = Action Commands =
17
18 Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]] (described below). Action commands are sent serially to the servo and must be sent in the following format:
19
20 1. Start with a number sign **#** (Unicode Character: U+0023)
21 1. Servo ID number as an integer (assigning an ID described below)
22 1. Action command (one or more letters, no whitespace, capital or lowercase from the list below)
23 1. Action value in the correct units with no decimal
24 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
25
26 (((
27 Ex: #5D130000<cr>
28
29 This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (13000 in hundredths of degrees) of 130.00 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
30
31 == Modifiers ==
32
33 Modifiers can only be used with certain **action commands**. The format to include a modifier is:
34
35 1. Start with a number sign **#** (Unicode Character: U+0023)
36 1. Servo ID number as an integer
37 1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
38 1. Action value in the correct units with no decimal
39 1. Modifier command (one or two letters from the list of modifiers below)
40 1. Modifier value in the correct units with no decimal
41 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
42
43 Ex: #5D13000T1500<cr>This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 130.00 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).
44
45 == Queries ==
46
47 Query commands request information from the servo. Query commands are also similar to action and configuration commands and must use the following format:
48
49 1. Start with a number sign **#** (Unicode Character: U+0023)
50 1. Servo ID number as an integer
51 1. Query command (one to four letters, no spaces, capital or lower case)
52 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
53
54 Ex: #5QD<cr> Query the position in (hundredths of) degrees for servo with ID #5The query will return a serial string (almost instantaneously) via the servo's Tx in the following format:
55
56 1. Start with an asterisk * (Unicode Character: U+0023)
57 1. Servo ID number as an integer
58 1. Query command (one to four letters, no spaces, capital letters)
59 1. The reported value in the units described, no decimals.
60 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
61
62 There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:
63
64 Ex: *5QD13000<cr>
65
66 This indicates that servo #5 is currently at 130.00 degrees (13000 tenths of degrees).
67
68 == Configurations ==
69
70 Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. Configuration commands are not cumulative; this means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.
71
72 The format to send a configuration command is identical to that of an action command:
73
74 1. Start with a number sign **#** (Unicode Character: U+0023)
75 1. Servo ID number as an integer
76 1. Configuration command (two to four letters, no spaces, capital or lower case)
77 1. Configuration value in the correct units with no decimal
78 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
79
80 Ex: #5CO-500<cr>
81
82 This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.00 degrees (500 hundredths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.00 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).
83
84 **Session vs Configuration Query**
85
86 By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
87
88 Ex: #5CSR10<cr> immediately sets the maximum speed for servo #5 to 10rpm (explained below) and changes the value in memory.
89
90 After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
91
92 #5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas
93
94 #5QSR1<cr> would return *5QSR10<cr> which represents the value in EEPROM
95
96 The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.00 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 153350 (or 1533.50 degrees), taking the modulus would give 93.5 degrees (36000 * 4 + 9350 = 153350) as the absolute position (assuming no origin offset).
97
98 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]
99
100 In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
101
102 #1D-3000<cr> This causes the servo to move to -30.00 degrees (green arrow)
103
104 #1D21000<cr> This second position command is sent to the servo, which moves it to 210.00 degrees (orange arrow)
105
106 #1D-42000<cr> This next command rotates the servo counterclockwise to a position of -420.00 degrees (red arrow), which means one full rotation of 360 degrees plus 60.00 degrees (420.00 - 360.00), with a virtual position of -420.0 degrees.
107
108 Although the final physical position would be the same as if the servo were commanded to move to -60.00 degrees, the servo is in fact at -420.00 degrees.
109
110 #1D48000<cr> This new command is sent which would then cause the servo to rotate from -420.00 degrees to 480.00 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
111
112 #1D33000<cr> would cause the servo to rotate from 480.0 degrees to 330.00 degrees (yellow arrow).
113
114 If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.00 degrees before power is cycled, upon power up the servo's position will be read as +120.00 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.00°, 180.00°].
115 )))
116
117 = Command List =
118
119 **Latest firmware version currently : v0.0.780**
120
121 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]]
122 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
123 | |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Soft reset. See command for details.
124 | |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Revert to firmware default values. See command for details
125 | |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Update firmware. See command for details.
126 | |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) | | |
127 | |[[**E**nable CAN **T**erminal>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QET|(% style="text-align:center" %)CET| |0 or 1|0: Disable  1: Enable
128 | |[[**ID** Number >>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
129 | |[[**U**SB **C**onnection State>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QUC|(% style="text-align:center" %) | |0 or 1|0: Not connected 1: Connected
130 | |**Q**uery **F**irmware **R**elease|(% style="text-align:center" %) |(% style="text-align:center" %)QFR|(% style="text-align:center" %) | | |
131
132 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]]
133 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
134 | |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) | |1/100°|
135 | |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) | |1/100°|
136 | |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) | |°/s|A.K.A. "Speed mode" or "Continuous rotation"
137 | |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM28WR29"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) | |RPM|A.K.A. "Speed mode" or "Continuous rotation"
138 | |[[**Q**uery Motion Status>>||anchor="HQueryStatus28Q29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) | |1 to 8 integer|See command description for details
139 | |[[**L**imp>>||anchor="HLimp28L29"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Removes power from stepper coils
140 | |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) | | |Stops (halts) motion profile and holds last position
141
142 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]]
143 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
144 | |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|1| |EM1: trapezoidal motion profile / EM0: no motion profile
145 | |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|5| |Affects motion only when motion profile is disabled (EM0)
146 | |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|0|1/10°|
147 | |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|1800|1/10°|
148 | |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|0|-4 to +4 integer|Suggested values are between 0 to +4
149 | |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|4|-10 to +10 integer|
150 | |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
151 | |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
152 | |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
153 | |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|No value|1/10°|Reset required after change.
154 | |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |1023|255 to 1023 integer|
155 | |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
156 | |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
157
158 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]]
159 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
160 | |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) | |1°/s|For D and MD action commands
161 | |[[**T**imed move>>||anchor="HTimedmove28T29modifier"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) | |ms|Time associated with D, MD commands
162
163 |(% colspan="8" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]]
164 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
165 | |[[**Q**uery PCB **T**emperature>>||anchor="HQueryTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) | |°C|
166 | |[[**Q**uery **C**urrent>>||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) | |mA|Nominal RMS value to stepper motor driver IC.
167 | |[[**Q**uery **M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) | | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
168 | |[[**Q**uery **F**irmware Version>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) | | |
169 | |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) | | |Returns the unique serial number for the servo
170 | |**Q**uery **T**emperature **P**robe|(% style="text-align:center" %) |(% style="text-align:center" %)QTP|(% style="text-align:center" %) | | |Queries temperature probe fixed to stepper motor
171 | |**Q**uery **T**emp of **C**ontroller|(% style="text-align:center" %) |(% style="text-align:center" %)QTCW, QTCE|(% style="text-align:center" %) | | |(((
172 QTCW: Queries the temperature status of the motor controller (pre-warning)
173
174 QTCE: Queries the temperature status of the motor controller (over-temp error)
175 )))
176 | |**Q**uery **C**urrent **S**peed |(% style="text-align:center" %) |(% style="text-align:center" %)QCS|(% style="text-align:center" %) | | |Queries the motor controller's calculated speed
177 | |**Q**uery **I**MU Linear **X**|(% style="text-align:center" %) |(% style="text-align:center" %)QIX|(% style="text-align:center" %) | |mm/s^2|
178 | |**Q**uery **I**MU Linear **Y**|(% style="text-align:center" %) |(% style="text-align:center" %)QIY|(% style="text-align:center" %) | |mm/s^2|
179 | |**Q**uery **I**MU Linear **Z**|(% style="text-align:center" %) |(% style="text-align:center" %)QIZ|(% style="text-align:center" %) | |mm/s^2|
180 | |**Q**uery **I**MU Angular Accel **α** |(% style="text-align:center" %) |(% style="text-align:center" %)QIA|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel α (Alpha)
181 | |**Q**uery **I**MU Angular Accel **β**|(% style="text-align:center" %) |(% style="text-align:center" %)QIB|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel β (Beta)
182 | |**Q**uery **I**MU Angular Accel **γ**|(% style="text-align:center" %) |(% style="text-align:center" %)QIC / QIG|(% style="text-align:center" %) | |°/s^2|Query IMU Angular Accel γ (Gamma)
183
184 |(% colspan="8" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]]
185 |(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
186 | |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
187 | |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB| |0 to 63 integer|Reset required after change. See command for details.
188
189 = (% style="color:inherit; font-family:inherit" %)Details(%%) =
190
191 == (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
192
193 ====== (% style="color:inherit; font-family:inherit" %)__Reset__(%%) ======
194
195 (% style="color:inherit; font-family:inherit" %)Ex: #5RESET<cr>
196 This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See Session, note #2 for more details.
197
198 ====== (% style="color:inherit; font-family:inherit" %)__Default & confirm__(%%) ======
199
200 (% style="color:inherit; font-family:inherit" %)Ex: #5DEFAULT<cr>
201
202 (% style="color:inherit; font-family:inherit" %)This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
203
204 (% style="color:inherit; font-family:inherit" %)EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
205
206 (% style="color:inherit; font-family:inherit" %)Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
207
208 (% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
209
210 ====== (% style="color:inherit; font-family:inherit" %)__Update & confirm__(%%) ======
211
212 (% style="color:inherit; font-family:inherit" %)Ex: #5UPDATE<cr>
213
214 (% style="color:inherit; font-family:inherit" %)This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
215
216 (% style="color:inherit; font-family:inherit" %)EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
217
218 (% style="color:inherit; font-family:inherit" %)Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
219
220 (% style="color:inherit; font-family:inherit" %)Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
221
222 ====== (% style="color:inherit; font-family:inherit" %)__Confirm__(%%) ======
223
224 (% style="color:inherit; font-family:inherit" %)Ex: #5CONFIRM<cr>
225
226 (% style="color:inherit; font-family:inherit" %)This command is used to confirm changes after a Default or Update command.
227 Note: After the CONFIRM command is sent, the servo will automatically perform a RESET.
228
229 ====== (% style="color:inherit; font-family:inherit" %)__Enable CAN Terminal Resistor (**ET**)__(%%) ======
230
231 Query Enable CAN Terminal Resistor (**QET**)
232
233 Ex: #5QET<cr> might return *QET0<cr>
234
235 This means that servo with ID 5 is NOT configured as the last servo in the CAN bus.
236
237 Configure Enable CAN Terminal Resistor (**CET**)
238
239 (% style="color:inherit; font-family:inherit" %)Ex: #5CET1<cr>
240
241 (% style="color:inherit; font-family:inherit" %)This commands sets servo with ID 5 as being the last in the CAN Bus. The last servo in a CAN bus must be configured this way.
242
243 ====== __USB Connection Status (**UC**)__ ======
244
245 Query USB Connection Status (**QUC**)
246
247 Ex: #5QUC<cr> might return *5QUC1<cr> meaning the servo is connected via USB
248
249 == Motion ==
250
251 ====== __Position in Degrees (**D**)__ ======
252
253 Example: #5D1456<cr>
254
255 This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction.
256
257 Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above).
258
259 Query Position in Degrees (**QD**)
260
261 Example: #5QD<cr> might return *5QD132<cr>
262
263 This means the servo is located at 13.2 degrees.
264
265 Query Target Position in Degrees (**QDT**)
266
267 Ex: #5QDT<cr> might return *5QDT6783<cr>
268
269 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
270
271 ====== __(Relative) Move in Degrees (**MD**)__ ======
272
273
274 Example: #5MD123<cr>
275
276 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
277
278 ====== __Wheel Mode in Degrees (**WD**)__ ======
279
280 Ex: #5WD90<cr>
281
282 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
283
284 Query Wheel Mode in Degrees (**QWD**)
285
286 Ex: #5QWD<cr> might return *5QWD90<cr>
287
288 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
289
290 ====== __Wheel Mode in RPM (**WR**)__ ======
291
292 Ex: #5WR40<cr>
293
294 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
295
296 Query Wheel Mode in RPM (**QWR**)
297
298 Ex: #5QWR<cr> might return *5QWR40<cr>
299
300 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
301
302 ====== __(Relative) Move in Degrees (**MD**)__ ======
303
304 (% class="wikigeneratedid" id="HExample:235M15003Ccr3E" %)
305 Example: #5M1500<cr>
306
307 (% class="wikigeneratedid" id="HTherelativemoveinPWMcommandcausestheservotoreaditscurrentpositionandmovebythespecifiednumberofPWMsignal.ForexampleiftheservoissettorotateCW28default29andanMcommandof1500issenttotheservo2Citwillcausetheservotorotateclockwiseby90degrees.NegativePWMvaluewouldcausetheservotorotateintheoppositeconfigureddirection." %)
308 The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
309
310 ====== __Query Status (**Q**)__ ======
311
312 The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.
313
314 Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
315
316 |(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description**
317 | |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
318 | |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
319 | |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command
320 | |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
321 | |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
322 | |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
323 | |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding)
324 | |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
325 | |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
326 | |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
327 | |ex: *5Q10<cr>|10: Safe Mode|(((
328 A safety limit has been exceeded (temperature, peak current or extended high current draw).
329
330 Send a Q1 command to know which limit has been reached (described below).
331 )))
332
333 If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
334
335 |(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
336 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
337 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
338 | |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
339 | |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
340
341 ====== __Limp (**L**)__ ======
342
343 Example: #5L<cr>
344
345 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
346
347 ====== __Halt & Hold (**H**)__ ======
348
349 Example: #5H<cr>
350
351 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
352
353 == Motion Setup ==
354
355 ====== __Origin Offset (**O**)__ ======
356
357 Example: #5O2400<cr>This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
358
359 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
360
361
362 In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
363
364 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]
365
366
367 Origin Offset Query (**QO**)
368
369 Example: #5QO<cr> might return *5QO-13
370
371 This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
372
373 Configure Origin Offset (**CO**)
374
375 Example: #5CO-24<cr>
376
377 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
378
379 ====== __Angular Range (**AR**)__ ======
380
381 Example: #5AR1800<cr>
382
383 This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
384
385 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
386
387 Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
388
389 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]
390
391
392 Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
393
394 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/lynxmotion-smart-servo-pro/lss-p-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]
395
396
397 Query Angular Range (**QAR**)
398
399 Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
400
401 Configure Angular Range (**CAR**)
402
403 This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
404
405 ====== __Angular Acceleration (**AA**)__ ======
406
407 The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
408
409 Ex: #5AA30<cr>
410
411 This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
412
413 Query Angular Acceleration (**QAA**)
414
415 Ex: #5QAA<cr> might return *5QAA30<cr>
416
417 This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).
418
419 Configure Angular Acceleration (**CAA**)
420
421 Ex: #5CAA30<cr>
422
423 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
424
425 ====== __Angular Deceleration (**AD**)__ ======
426
427 The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
428
429 Ex: #5AD30<cr>
430
431 This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
432
433 Query Angular Deceleration (**QAD**)
434
435 Ex: #5QAD<cr> might return *5QAD30<cr>
436
437 This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).
438
439 Configure Angular Deceleration (**CAD**)
440
441 Ex: #5CAD30<cr>
442
443 This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
444
445 ====== __Gyre Direction (**G**)__ ======
446
447 "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.
448
449 Ex: #5G-1<cr>
450
451 This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
452
453 Query Gyre Direction (**QG**)Ex: #5QG<cr> might return *5QG-1<cr>
454
455 The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.
456
457 Configure Gyre (**CG**)
458
459 Ex: #5CG-1<cr>
460
461 This changes the gyre direction as described above and also writes to EEPROM.
462
463 ====== __First Position__ ======
464
465 In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.Query First Position in Degrees (**QFD**)Ex: #5QFD<cr> might return *5QFD900<cr>The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.Configure First Position in Degrees (**CFD**)Ex: #5CFD900<cr>This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
466
467 ====== __Maximum Speed in Degrees (**SD**)__ ======
468
469 Ex: #5SD1800<cr>This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in Degrees (**QSD**)Ex: #5QSD<cr> might return *5QSD1800<cr>By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
470
471 |**Command sent**|**Returned value (1/10 °)**
472 |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
473 |ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
474 |ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
475 |ex: #5QSD3<cr>|Target travel speed
476
477 Configure Speed in Degrees (**CSD**)Ex: #5CSD1800<cr>Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
478
479 ====== __Maximum Speed in RPM (**SR**)__ ======
480
481 Ex: #5SR45<cr>This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.Query Speed in RPM (**QSR**)Ex: #5QSR<cr> might return *5QSR45<cr>By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
482
483 |**Command sent**|**Returned value (1/10 °)**
484 |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
485 |ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
486 |ex: #5QSR2<cr>|Instantaneous speed (same as QWD)
487 |ex: #5QSR3<cr>|Target travel speed
488
489 Configure Speed in RPM (**CSR**)Ex: #5CSR45<cr>Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
490
491 == Modifiers ==
492
493 ====== __Speed (**SD**) modifier__ ======
494
495 (% class="wikigeneratedid" id="HTimedmove28T29modifier" %)
496 Example: #5D0SD180<cr>
497
498 (% class="wikigeneratedid" %)
499 Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.
500
501 (% class="wikigeneratedid" %)
502 Query Speed (**QS**)
503
504 (% class="wikigeneratedid" %)
505 Example: #5QS<cr> might return *5QS300<cr>
506
507 (% class="wikigeneratedid" %)
508 This command queries the current speed in microseconds per second.
509
510 ====== __Timed move (**T**) modifier__ ======
511
512 Example: #5D15000T2500<cr>
513
514 Timed move can be used only as a modifier for a position (D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
515
516 **Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested
517
518 ====== ======
519
520 == Telemetry ==
521
522 ====== __Query Voltage (**QV**)__ ======
523
524 Ex: #5QV<cr> might return *5QV11200<cr>
525
526 The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.
527
528 ====== __Query Temperature (**QT**)__ ======
529
530 Ex: #5QT<cr> might return *5QT564<cr>
531
532 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
533
534 ====== __Query Motor Driver Current (**QC**)__ ======
535
536 Ex: #5QC<cr> might return *5QC140<cr>
537
538 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. It represents the RMS value.
539
540 ====== __Query Model String (**QMS**)__ ======
541
542 Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
543
544 This reply means that the servo model is LSS-HS1: a high speed servo, first revision.
545
546 ====== __Query Firmware (**QF**)__ ======
547
548 Ex: #5QF<cr> might return *5QF368<cr>
549
550 The number in the reply represents the firmware version, in this example being 368.The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14
551
552 ====== __Query Serial Number (**QN**)__ ======
553
554 Ex: #5QN<cr> might return *5QN12345678<cr>
555
556 The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
Copyright RobotShop 2018