Wiki source code of SES-PRO Robotic Arm UI

Version 48.1 by Eric Nantel on 2024/10/16 12:29

Hide last authors
Eric Nantel 34.1 1 {{lightbox image="https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/ses-pro-software/ses-pro-arm-ui/WebHome/SES-PRO-Robotic-Arm-UI.png" width="350"/}}
Eric Nantel 5.1 2
Eric Nantel 38.1 3 [[[[image:[email protected]]]>>https://lynxmotion.com/tools/ses-pro-app/lynxmotion_ses_pro_robotic_arm_ui_stable.exe]]
Eric Nantel 5.1 4
5 **Table of Contents**
6
7 {{toc/}}
8
9 = Description =
10
Eric Nantel 30.1 11 The Lynxmotion Servo Erector Set Professional (SES PRO) Robotic Arm User Interface (UI) is a simple software which allows a user to control any of the Lynxmotion Professional Modular robotic arms in their default configuration. The two compatible gripper kits which are compatible with the SES PRO system (based on the DH Robotics PGE-50-40 and CGE-10-10 DC grillers) can also be controlled via this interface in each of their possible configurations. The included manual jog feature can be used to either position each joint angle, or move to specific cartesian coordinates. Arm (and gripper) positions can then be recorded as part of the built-in sequencer. A 3D display of the arm shows the position of the arm, and a graph can be used to show various information to the user. In order to get a better understanding of the protocol, commands sent to the arm are shown in the interface, and a user input field are standard.
Eric Nantel 5.1 12
13 = Features =
14
Coleman Benson 23.1 15 * Angular and cartesian positioning of the end effector
16 * 3D graphical display of the appropriate robotic arm and end effector
17 * Sequencer to record and play back frames (single, looped or infinite)
18 * Error checking (speed, temperature etc.)
19 * Command output and user input
20 * Safety (Software E-Stop, Halt&Hold & Limp)
Eric Nantel 12.1 21
Eric Nantel 29.1 22 __Compatibility: Windows 7 Operating System or above__
23
Eric Nantel 48.1 24
25 |(% colspan="3" %)(((
26 = User Guide =
27 )))
28 |(% style="width:25px" %) |(% style="text-align:center; vertical-align:middle; width:100px" %)[[image:ses-pro-robotic-arm-ui-info.png]]|Pressing the i "Information" icon in the software will bring you to this page.
29 | |(% style="text-align:center; vertical-align:middle" %) |(((
30 Before proceeding with the guide, it is important to note the following:
31
32 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
33 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
34 )))
35 | |(% colspan="2" rowspan="1" %)(((
36 == IMPORTANT ==
37 )))
38 | |(% colspan="2" rowspan="1" %)(((
39 === Payload Considerations ===
40 )))
41 | |(% style="text-align:center; vertical-align:middle" %) |(((
42 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
43 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
44 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
45 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
46 )))
47 | |(% colspan="2" rowspan="1" %)(((
48 === Emergency ===
49 )))
50 | |(% style="text-align:center; vertical-align:middle" %) |Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. 
51 The following emergency options are available based on severity:
52 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-halt.png]]|(((
53 **Halt (and hold)**
54
55 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
56 )))
57 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-limp.png]]|(((
58 **Limp**
59
60 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
61 )))
62 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-emergency.png]]|(((
63 **Software E-Stop**
64
65 The E-stop button within the software sets all joints to limp, this can possibly cause the arm to fall.
66 )))
67 | |(% style="text-align:center; vertical-align:middle" %) |(((
68 **Power Supply E-Stop**
69
70 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
71 )))
72 | |(% style="text-align:center; vertical-align:middle" %) |
73 | |(% style="text-align:center; vertical-align:middle" %) |
74 | |(% style="text-align:center; vertical-align:middle" %) |
75 | |(% style="text-align:center; vertical-align:middle" %) |
76 | |(% style="text-align:center; vertical-align:middle" %) |
77 | |(% style="text-align:center; vertical-align:middle" %) |
78 | |(% style="text-align:center; vertical-align:middle" %) |
79 | |(% style="text-align:center; vertical-align:middle" %) |
80 | |(% style="text-align:center; vertical-align:middle" %) |
81 | |(% style="text-align:center; vertical-align:middle" %) |
82 | |(% style="text-align:center; vertical-align:middle" %) |
83 | |(% style="text-align:center; vertical-align:middle" %) |
84 | |(% style="text-align:center; vertical-align:middle" %) |
85 | |(% style="text-align:center; vertical-align:middle" %) |
86 | |(% style="text-align:center; vertical-align:middle" %) |
87 | |(% style="text-align:center; vertical-align:middle" %) |
88 | |(% style="text-align:center; vertical-align:middle" %) |
89 | |(% style="text-align:center; vertical-align:middle" %) |
90 | |(% style="text-align:center; vertical-align:middle" %) |
91 | |(% style="text-align:center; vertical-align:middle" %) |
92 | |(% style="text-align:center; vertical-align:middle" %) |
93 | |(% style="text-align:center; vertical-align:middle" %) |
94 | |(% style="text-align:center; vertical-align:middle" %) |
95 | |(% style="text-align:center; vertical-align:middle" %) |
96 | |(% style="text-align:center; vertical-align:middle" %) |
97 | |(% style="text-align:center; vertical-align:middle" %) |
98 | |(% style="text-align:center; vertical-align:middle" %) |
99 | |(% style="text-align:center; vertical-align:middle" %) |
100 | |(% style="text-align:center; vertical-align:middle" %) |
101 | |(% style="text-align:center; vertical-align:middle" %) |
102 | |(% style="text-align:center; vertical-align:middle" %) |
103 | |(% style="text-align:center; vertical-align:middle" %) |
104 | |(% style="text-align:center; vertical-align:middle" %) |
105 | |(% style="text-align:center; vertical-align:middle" %) |
106 | |(% style="text-align:center; vertical-align:middle" %) |
107 | |(% style="text-align:center; vertical-align:middle" %) |
108 | |(% style="text-align:center; vertical-align:middle" %) |
109 | |(% style="text-align:center; vertical-align:middle" %) |
110 | |(% style="text-align:center; vertical-align:middle" %) |
111
112
Eric Nantel 25.1 113 |(% colspan="2" %)(((
Eric Nantel 25.2 114 = User Guide =
Eric Nantel 25.1 115 )))
Eric Nantel 26.1 116 |(% style="width:26px" %) |(% style="width:1452px" %)(((
Eric Nantel 47.1 117 Before proceeding with the guide, it is important to note the following:
Eric Nantel 25.1 118
119 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
120 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
Eric Nantel 47.1 121
122 Pressing the i "Information" icon in the software will bring you to this page.
123
124 [[image:ses-pro-robotic-arm-ui-info.png]]
Eric Nantel 25.1 125 )))
Eric Nantel 25.2 126 |(% colspan="2" %)(((
127 == IMPORTANT ==
128 )))
Eric Nantel 26.1 129 |(% style="width:26px" %) |(% style="width:1452px" %)(((
Eric Nantel 25.2 130 === Payload Considerations ===
131
132 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
133 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
134 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
135 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
136 )))
Eric Nantel 26.1 137 |(% style="width:26px" %) |(% style="width:1452px" %)(((
Eric Nantel 25.2 138 === Emergency ===
139
140 Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. The following emergency options are available based on severity:
141
Eric Nantel 47.1 142 **Halt (and hold)**
Eric Nantel 25.2 143
Eric Nantel 47.1 144 **[[image:ses-pro-robotic-arm-ui-halt.png]]**
145
Eric Nantel 25.2 146 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
147
148 **Limp**
149
Eric Nantel 47.1 150 **[[image:ses-pro-robotic-arm-ui-limp.png]]**
151
Eric Nantel 25.2 152 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
153
Eric Nantel 47.1 154 **Software E-Stop**
Eric Nantel 25.2 155
Eric Nantel 47.1 156 **[[image:ses-pro-robotic-arm-ui-arm-emergency.png]]**
Eric Nantel 25.2 157
Eric Nantel 47.1 158 The E-stop button within the software sets all joints to limp, this can possibly cause the arm to fall.
159
160 **Power Supply E-Stop**
Eric Nantel 25.2 161 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
162 )))
163 |(% colspan="2" %)(((
164 == Arm Connection ==
165 )))
Eric Nantel 26.1 166 |(% style="width:26px" %) |(% style="width:1452px" %)(((
Eric Nantel 25.2 167 **Model**
168
Eric Nantel 47.1 169 **[[image:ses-pro-robotic-arm-ui-arm-version.png]]**
170
Eric Nantel 25.2 171 The software currently supports the following Lynxmotion PRO Arms:
172
173 * 550mm 5DoF
174 * 550mm 6DoF
175 * 900mm 5DoF
176 * 900mm 6DoF
177
178 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
179
180 **COM Port**
181
Eric Nantel 47.1 182 **[[image:ses-pro-robotic-arm-ui-com.png]]**
183
Eric Nantel 25.2 184 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues. 
185
Eric Nantel 47.1 186 **Connect / Disconnect**
Eric Nantel 25.2 187
Eric Nantel 47.1 188 [[image:ses-pro-robotic-arm-ui-connect.png]]
189
190 [[image:ses-pro-robotic-arm-ui-disconnect.png]]
191
Eric Nantel 25.2 192 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
193 )))
194 |(% colspan="2" %)(((
195 == Gripper Controls ==
196 )))
Eric Nantel 26.1 197 |(% style="width:26px" %) |(% style="width:1452px" %)(((
Eric Nantel 25.2 198 **Model**
199
200 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as J7.
201
202 * PGE-50-40 (40mm default configuration)
203 * PGE-50-40 (60mm configuration)
204 * PGE-50-40 (80mm configuration)
205 * CGE-10-10 (20mm configuration)
206 * CGE-10-10 (40mm configuration)
207 * CGE-10-10 (60mm configuration)
208
209 **COM Port**
210
211 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
212
213 **Baudrate**
214
Eric Nantel 27.2 215 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in the software.
Eric Nantel 25.2 216
217 **Initialize**
218
219 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
220
221 **Connect**
222
223 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
224
225 **Speed**
226
227 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
228
229 **Force**
230
231 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
232
233 **Open / Close**
234
235 These are shortcut buttons to either fully open or fully close the gripper.
236
237 **Sequencer**
238
239 The sequencer displays the gripper position as joint 7 (J7).
240
241 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only J7 moves.
242 )))
Eric Nantel 25.3 243 |(% colspan="2" %)(((
244 == 3D Model ==
245 )))
Eric Nantel 26.1 246 |(% style="width:26px" %) |(% style="width:1452px" %)(((
Eric Nantel 25.3 247 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
248
249 **View Controls**
250
251 Zoom: Shift + Middle Scroll
252
253 Rotate: Shift + Middle Mouse
254
255 Pan: None
256 )))
257 |(% colspan="2" %)(((
258 == Manual Move ==
259 )))
Eric Nantel 26.1 260 |(% style="width:26px" %) |(% style="width:1452px" %)(((
Eric Nantel 25.3 261 **Angular Control**
262
263 In angular mode, the user can control the angle of each joint
264
265 **Coordinates Control**
266
267 In coordinate control the user can control the cartesian position of the end effector
268
269 **End Effector Lock**
270
271 The orientation of the end effector can be locked.
272 )))
273 |(% colspan="2" %)(((
274 == Direct Command ==
275 )))
Eric Nantel 26.1 276 |(% style="width:26px" %) |(% style="width:1452px" %)(((
Eric Nantel 25.3 277 This section allow the user to send commands using the [[LSS-PRO Communication Protocol>>path:/info/wiki/lynxmotion/view/ses-pro/lss-pro/lss-p-communication-protocol/]] directly if required.
278
279 A few things to keep in mind when using this:
280
281 * Make sure you know what you are doing as you can make the arm move in __dangerous__ ways.
282 * Sending commands does not require ‘#’ and ‘\r’ chars.
283 ** example for #2\r you should enter 2Q and press the "SEND" button
284 * The commands are validated, and it shows a notification in case of error.
285 * The replies of queries are shown in the text field below.
286 )))
Eric Nantel 26.1 287 |(% colspan="2" %)(((
288 == Command Output ==
289 )))
290 |(% style="width:26px" %) |(% style="width:1452px" %)(((
291 //{Coming Soon}//
292 )))
293 |(% colspan="2" %)(((
294 == Telemetry ==
295 )))
296 |(% style="width:26px" %) |(% style="width:1452px" %)(((
297 **Data to Display**
Eric Nantel 25.1 298
Eric Nantel 27.3 299 Various telemetry data can be retrieved from each actuators / joints, here is what the software support:
300
Eric Nantel 27.2 301 * Position
302 * Current
303 * Linear Accel X
304 * Linear Accel Y
305 * Linear Accel Z
306 * Angular Accel α
307 * Angular Accel β
308 * Angular Accel γ
309 * MCU Temperature
310 * PCB Temperature
311 * Probe Temperature
Eric Nantel 26.1 312
Eric Nantel 27.3 313 **Display / Hide **
Eric Nantel 26.1 314
Eric Nantel 27.3 315 At the bottom of the graphics you will find squares to activate / deactivate the desired actuator / joint to be displayed in the graph.
Eric Nantel 26.1 316 )))
317 |(% colspan="2" style="width:26px" %)(((
318 == Sequencer ==
319 )))
320 |(% style="width:26px" %) |(% style="width:1452px" %)(((
Eric Nantel 28.1 321 **Sequence**
Eric Nantel 26.1 322
Eric Nantel 28.1 323 Add
Eric Nantel 26.1 324
Eric Nantel 28.1 325 Substract
Eric Nantel 26.1 326
Eric Nantel 28.1 327 Copy
328
329 Save
330
331 Open
332
333 Delete
334
Eric Nantel 26.1 335 //{Coming Soon}//
336
Eric Nantel 28.1 337 **Frames**
Eric Nantel 26.1 338
Eric Nantel 28.1 339 Add
Eric Nantel 26.1 340
Eric Nantel 28.1 341 Sequence Selector
Eric Nantel 26.1 342
Eric Nantel 28.1 343 Record
Eric Nantel 26.1 344
Eric Nantel 28.1 345 Delete
Eric Nantel 26.1 346
Eric Nantel 28.1 347 Copy
Eric Nantel 26.1 348
Eric Nantel 28.1 349 Paste
350
351 Swap
352
353 Manual Edit
354
355 Time, angles, gripper
356
357 Moving Frames
358
359 //Alt + Left Click = Drag time//
360
Eric Nantel 26.1 361 //{Coming Soon}//
362
363 **Errors**
364
365 //{Coming Soon}//
366 )))
367 |(% style="width:26px" %) |(% style="width:1452px" %)
368 |(% style="width:26px" %) |(% style="width:1452px" %)
369 |(% style="width:26px" %) |(% style="width:1452px" %)
370 |(% style="width:26px" %) |(% style="width:1452px" %)
371 |(% style="width:26px" %) |(% style="width:1452px" %)
372 |(% style="width:26px" %) |(% style="width:1452px" %)
373 |(% style="width:26px" %) |(% style="width:1452px" %)
374 |(% style="width:26px" %) |(% style="width:1452px" %)
375 |(% style="width:26px" %) |(% style="width:1452px" %)
376 |(% style="width:26px" %) |(% style="width:1452px" %)
377 |(% style="width:26px" %) |(% style="width:1452px" %)
378 |(% style="width:26px" %) |(% style="width:1452px" %)
379 |(% style="width:26px" %) |(% style="width:1452px" %)
380 |(% style="width:26px" %) |(% style="width:1452px" %)
381 |(% style="width:26px" %) |(% style="width:1452px" %)
382 |(% style="width:26px" %) |(% style="width:1452px" %)
383 |(% style="width:26px" %) |(% style="width:1452px" %)
384 |(% style="width:26px" %) |(% style="width:1452px" %)
385 |(% style="width:26px" %) |(% style="width:1452px" %)
386 |(% style="width:26px" %) |(% style="width:1452px" %)
387 |(% style="width:26px" %) |(% style="width:1452px" %)
388 |(% style="width:26px" %) |(% style="width:1452px" %)
389 |(% style="width:26px" %) |(% style="width:1452px" %)
390 |(% style="width:26px" %) |(% style="width:1452px" %)
391 |(% style="width:26px" %) |(% style="width:1452px" %)
392 |(% style="width:26px" %) |(% style="width:1452px" %)
393 |(% style="width:26px" %) |(% style="width:1452px" %)
394 |(% style="width:26px" %) |(% style="width:1452px" %)
395 |(% style="width:26px" %) |(% style="width:1452px" %)
396 |(% style="width:26px" %) |(% style="width:1452px" %)
397 |(% style="width:26px" %) |(% style="width:1452px" %)
398 |(% style="width:26px" %) |(% style="width:1452px" %)
399 |(% style="width:26px" %) |(% style="width:1452px" %)
400 |(% style="width:26px" %) |(% style="width:1452px" %)
401 |(% style="width:26px" %) |(% style="width:1452px" %)
402 |(% style="width:26px" %) |(% style="width:1452px" %)
403 |(% style="width:26px" %) |(% style="width:1452px" %)
404 |(% style="width:26px" %) |(% style="width:1452px" %)
405 |(% style="width:26px" %) |(% style="width:1452px" %)
406 |(% style="width:26px" %) |(% style="width:1452px" %)
407 |(% style="width:26px" %) |(% style="width:1452px" %)
408 |(% style="width:26px" %) |(% style="width:1452px" %)
409 |(% style="width:26px" %) |(% style="width:1452px" %)
410 |(% style="width:26px" %) |(% style="width:1452px" %)
411 |(% style="width:26px" %) |(% style="width:1452px" %)
412 |(% style="width:26px" %) |(% style="width:1452px" %)
413 |(% style="width:26px" %) |(% style="width:1452px" %)
414 |(% style="width:26px" %) |(% style="width:1452px" %)
415 |(% style="width:26px" %) |(% style="width:1452px" %)
416 |(% style="width:26px" %) |(% style="width:1452px" %)
417 |(% style="width:26px" %) |(% style="width:1452px" %)
418 |(% style="width:26px" %) |(% style="width:1452px" %)
419 |(% style="width:26px" %) |(% style="width:1452px" %)
420 |(% style="width:26px" %) |(% style="width:1452px" %)
421
Eric Nantel 27.1 422 {{comment}}
Eric Nantel 25.1 423 = =
424
Eric Nantel 15.1 425 = User Guide =
426
Coleman Benson 24.1 427 Pressing the i "Information" icon in the software will bring you to this page. Before proceeding with the guide, it is important to note the following:
Eric Nantel 16.1 428
Coleman Benson 23.1 429 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
430 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
Eric Nantel 16.1 431
Coleman Benson 23.1 432 == IMPORTANT: Payload Considerations ==
Eric Nantel 16.1 433
Coleman Benson 23.1 434 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
435 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
436 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
437 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
Eric Nantel 16.1 438
Coleman Benson 23.1 439 == IMPORTANT: Emergency ==
Eric Nantel 16.1 440
Coleman Benson 23.1 441 Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. The following emergency options are available based on severity:
Eric Nantel 16.3 442
Coleman Benson 23.1 443 **Halt & Hold**
Coleman Benson 24.1 444
Coleman Benson 23.1 445 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
Eric Nantel 16.3 446
Coleman Benson 23.1 447 **Limp**
Coleman Benson 24.1 448
Coleman Benson 23.1 449 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
Eric Nantel 15.1 450
Coleman Benson 23.1 451 **Software Stop**
452
453 The E-stop button within the software sets all joints to limp.
454
455 **Hardware E-Stop**
456 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
457
458 == Arm Connection ==
459
Eric Nantel 17.1 460 **Model**
Eric Nantel 15.1 461
Coleman Benson 24.1 462 The software currently supports the following Lynxmotion PRO Arms:
Coleman Benson 23.1 463
Coleman Benson 24.1 464 * 550mm 5DoF
465 * 550mm 6DoF
466 * 900mm 5DoF
467 * 900mm 6DoF
Eric Nantel 16.2 468
Coleman Benson 24.1 469 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
470
471 **COM Port**
472
Coleman Benson 23.1 473 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues. 
474
Eric Nantel 17.1 475 **Connect**
Eric Nantel 16.2 476
Coleman Benson 24.1 477 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
Eric Nantel 15.1 478
Coleman Benson 24.1 479 == Gripper Controls ==
480
Eric Nantel 17.1 481 **Model**
Eric Nantel 15.1 482
Coleman Benson 23.1 483 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as J7.
484
Coleman Benson 24.1 485 * PGE-50-40 (40mm default configuration)
486 * PGE-50-40 (60mm configuration)
487 * PGE-50-40 (80mm configuration)
488 * CGE-10-10 (20mm configuration)
489 * CGE-10-10 (40mm configuration)
490 * CGE-10-10 (60mm configuration)
Eric Nantel 16.2 491
Coleman Benson 24.1 492 **COM Port**
Coleman Benson 23.1 493
Coleman Benson 24.1 494 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
495
Eric Nantel 17.1 496 **Baudrate**
Eric Nantel 16.2 497
Coleman Benson 24.1 498 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in teh software.
Coleman Benson 23.1 499
Coleman Benson 24.1 500 **Initialize**
Eric Nantel 16.2 501
Coleman Benson 24.1 502 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
Coleman Benson 23.1 503
Coleman Benson 24.1 504 **Connect**
Eric Nantel 16.2 505
Coleman Benson 24.1 506 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
Coleman Benson 23.1 507
Eric Nantel 17.1 508 **Speed**
Eric Nantel 16.2 509
Coleman Benson 24.1 510 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
Coleman Benson 23.1 511
Eric Nantel 17.1 512 **Force**
Eric Nantel 16.2 513
Coleman Benson 24.1 514 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
Coleman Benson 23.1 515
Eric Nantel 17.1 516 **Open / Close**
Eric Nantel 16.2 517
Coleman Benson 24.1 518 These are shortcut buttons to either fully open or fully close the gripper.
Eric Nantel 16.4 519
Coleman Benson 24.1 520 **Sequencer**
521
522 The sequencer displays the gripper position as joint 7 (J7).
523
524 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only J7 moves.
525
Coleman Benson 23.1 526 == 3D Model ==
Eric Nantel 16.4 527
Coleman Benson 23.1 528 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
529
530 **View Controls**
531
Coleman Benson 24.1 532 Zoom: Shift + Middle Scroll
Coleman Benson 23.1 533
Coleman Benson 24.1 534 Rotate: Shift + Middle Mouse
535
536 Pan: None
537
Coleman Benson 23.1 538 == Manual Move ==
539
540 **Angular Control**
541
542 In angular mode, the user can control the angle of each joint
543
Eric Nantel 16.4 544 **Coordinates Control**
545
Coleman Benson 23.1 546 In coordinate control the user can control the cartesian position of the end effector
547
548 **End Effector Lock**
549
550 The orientation of the end effector can be locked.
551
Eric Nantel 15.2 552 == Direct Command ==
Eric Nantel 15.1 553
Eric Nantel 15.2 554 This section allow the user to send commands using the [[doc:ses-pro.lss-pro.lss-p-communication-protocol.WebHome]] directly if required.
Eric Nantel 15.1 555
Eric Nantel 15.2 556 A few things to keep in mind when using this:
Eric Nantel 15.1 557
Eric Nantel 15.2 558 * Make sure you know what you are doing as you can make the arm move in __dangerous__ ways.
559 * Sending commands does not require ‘#’ and ‘\r’ chars.
560 ** example for #2\r you should enter 2Q and press the "SEND" button
Eric Nantel 12.1 561 * The commands are validated, and it shows a notification in case of error.
Eric Nantel 15.2 562 * The replies of queries are shown in the text field below.
Eric Nantel 12.1 563
Coleman Benson 23.1 564 == Command Output ==
565
566 //{Coming Soon}//
567
Eric Nantel 16.3 568 == Telemetry ==
569
Eric Nantel 17.1 570 **Data to Display**
Eric Nantel 16.3 571
Coleman Benson 23.1 572 //{Coming Soon}//
573
Eric Nantel 17.1 574 **Display / Hide Actuator**
Eric Nantel 16.3 575
Coleman Benson 23.1 576 //{Coming Soon}//
577
Coleman Benson 24.1 578 == Sequencer ==
Coleman Benson 23.1 579
580 **Frames**
581
582 //{Coming Soon}//
583
584 **Record **
585
586 //{Coming Soon}//
587
588 **Edit **
589
590 Time, angles, gripper
591
Coleman Benson 24.1 592 //Alt + Left Click = Drag time//
Coleman Benson 23.1 593
594 **Reorder**
595
596 //{Coming Soon}//
597
598 **Play**
599
600 //{Coming Soon}//
601
602 **Errors**
603
604 //{Coming Soon}//
Eric Nantel 27.1 605 {{/comment}}
Copyright RobotShop 2018