Wiki source code of SES-PRO Robotic Arm UI

Version 48.2 by Eric Nantel on 2024/10/16 12:31

Show last authors
1 {{lightbox image="https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/ses-pro-software/ses-pro-arm-ui/WebHome/SES-PRO-Robotic-Arm-UI.png" width="350"/}}
2
3 [[[[image:[email protected]]]>>https://lynxmotion.com/tools/ses-pro-app/lynxmotion_ses_pro_robotic_arm_ui_stable.exe]]
4
5 **Table of Contents**
6
7 {{toc/}}
8
9 = Description =
10
11 The Lynxmotion Servo Erector Set Professional (SES PRO) Robotic Arm User Interface (UI) is a simple software which allows a user to control any of the Lynxmotion Professional Modular robotic arms in their default configuration. The two compatible gripper kits which are compatible with the SES PRO system (based on the DH Robotics PGE-50-40 and CGE-10-10 DC grillers) can also be controlled via this interface in each of their possible configurations. The included manual jog feature can be used to either position each joint angle, or move to specific cartesian coordinates. Arm (and gripper) positions can then be recorded as part of the built-in sequencer. A 3D display of the arm shows the position of the arm, and a graph can be used to show various information to the user. In order to get a better understanding of the protocol, commands sent to the arm are shown in the interface, and a user input field are standard.
12
13 = Features =
14
15 * Angular and cartesian positioning of the end effector
16 * 3D graphical display of the appropriate robotic arm and end effector
17 * Sequencer to record and play back frames (single, looped or infinite)
18 * Error checking (speed, temperature etc.)
19 * Command output and user input
20 * Safety (Software E-Stop, Halt&Hold & Limp)
21
22 __Compatibility: Windows 7 Operating System or above__
23
24
25 |(% colspan="3" %)(((
26 = User Guide =
27 )))
28 |(% style="width:25px" %) |(% colspan="2" rowspan="1" style="width:100px" %)(((
29 Before proceeding with the guide, it is important to note the following:
30
31 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
32 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
33 )))
34 | |(% style="text-align:center; vertical-align:middle; width:100px" %)[[image:ses-pro-robotic-arm-ui-info.png]]|Pressing the i "Information" icon in the software will bring you to this page.
35 | |(% colspan="2" rowspan="1" %)(((
36 == IMPORTANT ==
37 )))
38 | |(% colspan="2" rowspan="1" %)(((
39 === Payload Considerations ===
40 )))
41 | |(% style="text-align:center; vertical-align:middle" %) |(((
42 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
43 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
44 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
45 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
46 )))
47 | |(% colspan="2" rowspan="1" %)(((
48 === Emergency ===
49 )))
50 | |(% style="text-align:center; vertical-align:middle" %) |Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. 
51 The following emergency options are available based on severity:
52 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-halt.png]]|(((
53 **Halt (and hold)**
54
55 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
56 )))
57 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-limp.png]]|(((
58 **Limp**
59
60 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
61 )))
62 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-emergency.png]]|(((
63 **Software E-Stop**
64
65 The E-stop button within the software sets all joints to limp, this can possibly cause the arm to fall.
66 )))
67 | |(% style="text-align:center; vertical-align:middle" %) |(((
68 **Power Supply E-Stop**
69
70 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
71 )))
72 | |(% style="text-align:center; vertical-align:middle" %) |
73 | |(% style="text-align:center; vertical-align:middle" %) |
74 | |(% style="text-align:center; vertical-align:middle" %) |
75 | |(% style="text-align:center; vertical-align:middle" %) |
76 | |(% style="text-align:center; vertical-align:middle" %) |
77 | |(% style="text-align:center; vertical-align:middle" %) |
78 | |(% style="text-align:center; vertical-align:middle" %) |
79 | |(% style="text-align:center; vertical-align:middle" %) |
80 | |(% style="text-align:center; vertical-align:middle" %) |
81 | |(% style="text-align:center; vertical-align:middle" %) |
82 | |(% style="text-align:center; vertical-align:middle" %) |
83 | |(% style="text-align:center; vertical-align:middle" %) |
84 | |(% style="text-align:center; vertical-align:middle" %) |
85 | |(% style="text-align:center; vertical-align:middle" %) |
86 | |(% style="text-align:center; vertical-align:middle" %) |
87 | |(% style="text-align:center; vertical-align:middle" %) |
88 | |(% style="text-align:center; vertical-align:middle" %) |
89 | |(% style="text-align:center; vertical-align:middle" %) |
90 | |(% style="text-align:center; vertical-align:middle" %) |
91 | |(% style="text-align:center; vertical-align:middle" %) |
92 | |(% style="text-align:center; vertical-align:middle" %) |
93 | |(% style="text-align:center; vertical-align:middle" %) |
94 | |(% style="text-align:center; vertical-align:middle" %) |
95 | |(% style="text-align:center; vertical-align:middle" %) |
96 | |(% style="text-align:center; vertical-align:middle" %) |
97 | |(% style="text-align:center; vertical-align:middle" %) |
98 | |(% style="text-align:center; vertical-align:middle" %) |
99 | |(% style="text-align:center; vertical-align:middle" %) |
100 | |(% style="text-align:center; vertical-align:middle" %) |
101 | |(% style="text-align:center; vertical-align:middle" %) |
102 | |(% style="text-align:center; vertical-align:middle" %) |
103 | |(% style="text-align:center; vertical-align:middle" %) |
104 | |(% style="text-align:center; vertical-align:middle" %) |
105 | |(% style="text-align:center; vertical-align:middle" %) |
106 | |(% style="text-align:center; vertical-align:middle" %) |
107 | |(% style="text-align:center; vertical-align:middle" %) |
108 | |(% style="text-align:center; vertical-align:middle" %) |
109 | |(% style="text-align:center; vertical-align:middle" %) |
110 | |(% style="text-align:center; vertical-align:middle" %) |
111
112 |(% colspan="2" %)(((
113 = User Guide =
114 )))
115 |(% style="width:26px" %) |(% style="width:1452px" %)(((
116 Before proceeding with the guide, it is important to note the following:
117
118 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
119 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
120
121 Pressing the i "Information" icon in the software will bring you to this page.
122
123 [[image:ses-pro-robotic-arm-ui-info.png]]
124 )))
125 |(% colspan="2" %)(((
126 == IMPORTANT ==
127 )))
128 |(% style="width:26px" %) |(% style="width:1452px" %)(((
129 === Payload Considerations ===
130
131 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
132 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
133 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
134 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
135 )))
136 |(% style="width:26px" %) |(% style="width:1452px" %)(((
137 === Emergency ===
138
139 Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. The following emergency options are available based on severity:
140
141 **Halt (and hold)**
142
143 **[[image:ses-pro-robotic-arm-ui-halt.png]]**
144
145 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
146
147 **Limp**
148
149 **[[image:ses-pro-robotic-arm-ui-limp.png]]**
150
151 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
152
153 **Software E-Stop**
154
155 **[[image:ses-pro-robotic-arm-ui-arm-emergency.png]]**
156
157 The E-stop button within the software sets all joints to limp, this can possibly cause the arm to fall.
158
159 **Power Supply E-Stop**
160 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
161 )))
162 |(% colspan="2" %)(((
163 == Arm Connection ==
164 )))
165 |(% style="width:26px" %) |(% style="width:1452px" %)(((
166 **Model**
167
168 **[[image:ses-pro-robotic-arm-ui-arm-version.png]]**
169
170 The software currently supports the following Lynxmotion PRO Arms:
171
172 * 550mm 5DoF
173 * 550mm 6DoF
174 * 900mm 5DoF
175 * 900mm 6DoF
176
177 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
178
179 **COM Port**
180
181 **[[image:ses-pro-robotic-arm-ui-com.png]]**
182
183 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues. 
184
185 **Connect / Disconnect**
186
187 [[image:ses-pro-robotic-arm-ui-connect.png]]
188
189 [[image:ses-pro-robotic-arm-ui-disconnect.png]]
190
191 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
192 )))
193 |(% colspan="2" %)(((
194 == Gripper Controls ==
195 )))
196 |(% style="width:26px" %) |(% style="width:1452px" %)(((
197 **Model**
198
199 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as J7.
200
201 * PGE-50-40 (40mm default configuration)
202 * PGE-50-40 (60mm configuration)
203 * PGE-50-40 (80mm configuration)
204 * CGE-10-10 (20mm configuration)
205 * CGE-10-10 (40mm configuration)
206 * CGE-10-10 (60mm configuration)
207
208 **COM Port**
209
210 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
211
212 **Baudrate**
213
214 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in the software.
215
216 **Initialize**
217
218 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
219
220 **Connect**
221
222 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
223
224 **Speed**
225
226 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
227
228 **Force**
229
230 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
231
232 **Open / Close**
233
234 These are shortcut buttons to either fully open or fully close the gripper.
235
236 **Sequencer**
237
238 The sequencer displays the gripper position as joint 7 (J7).
239
240 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only J7 moves.
241 )))
242 |(% colspan="2" %)(((
243 == 3D Model ==
244 )))
245 |(% style="width:26px" %) |(% style="width:1452px" %)(((
246 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
247
248 **View Controls**
249
250 Zoom: Shift + Middle Scroll
251
252 Rotate: Shift + Middle Mouse
253
254 Pan: None
255 )))
256 |(% colspan="2" %)(((
257 == Manual Move ==
258 )))
259 |(% style="width:26px" %) |(% style="width:1452px" %)(((
260 **Angular Control**
261
262 In angular mode, the user can control the angle of each joint
263
264 **Coordinates Control**
265
266 In coordinate control the user can control the cartesian position of the end effector
267
268 **End Effector Lock**
269
270 The orientation of the end effector can be locked.
271 )))
272 |(% colspan="2" %)(((
273 == Direct Command ==
274 )))
275 |(% style="width:26px" %) |(% style="width:1452px" %)(((
276 This section allow the user to send commands using the [[LSS-PRO Communication Protocol>>path:/info/wiki/lynxmotion/view/ses-pro/lss-pro/lss-p-communication-protocol/]] directly if required.
277
278 A few things to keep in mind when using this:
279
280 * Make sure you know what you are doing as you can make the arm move in __dangerous__ ways.
281 * Sending commands does not require ‘#’ and ‘\r’ chars.
282 ** example for #2\r you should enter 2Q and press the "SEND" button
283 * The commands are validated, and it shows a notification in case of error.
284 * The replies of queries are shown in the text field below.
285 )))
286 |(% colspan="2" %)(((
287 == Command Output ==
288 )))
289 |(% style="width:26px" %) |(% style="width:1452px" %)(((
290 //{Coming Soon}//
291 )))
292 |(% colspan="2" %)(((
293 == Telemetry ==
294 )))
295 |(% style="width:26px" %) |(% style="width:1452px" %)(((
296 **Data to Display**
297
298 Various telemetry data can be retrieved from each actuators / joints, here is what the software support:
299
300 * Position
301 * Current
302 * Linear Accel X
303 * Linear Accel Y
304 * Linear Accel Z
305 * Angular Accel α
306 * Angular Accel β
307 * Angular Accel γ
308 * MCU Temperature
309 * PCB Temperature
310 * Probe Temperature
311
312 **Display / Hide **
313
314 At the bottom of the graphics you will find squares to activate / deactivate the desired actuator / joint to be displayed in the graph.
315 )))
316 |(% colspan="2" style="width:26px" %)(((
317 == Sequencer ==
318 )))
319 |(% style="width:26px" %) |(% style="width:1452px" %)(((
320 **Sequence**
321
322 Add
323
324 Substract
325
326 Copy
327
328 Save
329
330 Open
331
332 Delete
333
334 //{Coming Soon}//
335
336 **Frames**
337
338 Add
339
340 Sequence Selector
341
342 Record
343
344 Delete
345
346 Copy
347
348 Paste
349
350 Swap
351
352 Manual Edit
353
354 Time, angles, gripper
355
356 Moving Frames
357
358 //Alt + Left Click = Drag time//
359
360 //{Coming Soon}//
361
362 **Errors**
363
364 //{Coming Soon}//
365 )))
366 |(% style="width:26px" %) |(% style="width:1452px" %)
367 |(% style="width:26px" %) |(% style="width:1452px" %)
368 |(% style="width:26px" %) |(% style="width:1452px" %)
369 |(% style="width:26px" %) |(% style="width:1452px" %)
370 |(% style="width:26px" %) |(% style="width:1452px" %)
371 |(% style="width:26px" %) |(% style="width:1452px" %)
372 |(% style="width:26px" %) |(% style="width:1452px" %)
373 |(% style="width:26px" %) |(% style="width:1452px" %)
374 |(% style="width:26px" %) |(% style="width:1452px" %)
375 |(% style="width:26px" %) |(% style="width:1452px" %)
376 |(% style="width:26px" %) |(% style="width:1452px" %)
377 |(% style="width:26px" %) |(% style="width:1452px" %)
378 |(% style="width:26px" %) |(% style="width:1452px" %)
379 |(% style="width:26px" %) |(% style="width:1452px" %)
380 |(% style="width:26px" %) |(% style="width:1452px" %)
381 |(% style="width:26px" %) |(% style="width:1452px" %)
382 |(% style="width:26px" %) |(% style="width:1452px" %)
383 |(% style="width:26px" %) |(% style="width:1452px" %)
384 |(% style="width:26px" %) |(% style="width:1452px" %)
385 |(% style="width:26px" %) |(% style="width:1452px" %)
386 |(% style="width:26px" %) |(% style="width:1452px" %)
387 |(% style="width:26px" %) |(% style="width:1452px" %)
388 |(% style="width:26px" %) |(% style="width:1452px" %)
389 |(% style="width:26px" %) |(% style="width:1452px" %)
390 |(% style="width:26px" %) |(% style="width:1452px" %)
391 |(% style="width:26px" %) |(% style="width:1452px" %)
392 |(% style="width:26px" %) |(% style="width:1452px" %)
393 |(% style="width:26px" %) |(% style="width:1452px" %)
394 |(% style="width:26px" %) |(% style="width:1452px" %)
395 |(% style="width:26px" %) |(% style="width:1452px" %)
396 |(% style="width:26px" %) |(% style="width:1452px" %)
397 |(% style="width:26px" %) |(% style="width:1452px" %)
398 |(% style="width:26px" %) |(% style="width:1452px" %)
399 |(% style="width:26px" %) |(% style="width:1452px" %)
400 |(% style="width:26px" %) |(% style="width:1452px" %)
401 |(% style="width:26px" %) |(% style="width:1452px" %)
402 |(% style="width:26px" %) |(% style="width:1452px" %)
403 |(% style="width:26px" %) |(% style="width:1452px" %)
404 |(% style="width:26px" %) |(% style="width:1452px" %)
405 |(% style="width:26px" %) |(% style="width:1452px" %)
406 |(% style="width:26px" %) |(% style="width:1452px" %)
407 |(% style="width:26px" %) |(% style="width:1452px" %)
408 |(% style="width:26px" %) |(% style="width:1452px" %)
409 |(% style="width:26px" %) |(% style="width:1452px" %)
410 |(% style="width:26px" %) |(% style="width:1452px" %)
411 |(% style="width:26px" %) |(% style="width:1452px" %)
412 |(% style="width:26px" %) |(% style="width:1452px" %)
413 |(% style="width:26px" %) |(% style="width:1452px" %)
414 |(% style="width:26px" %) |(% style="width:1452px" %)
415 |(% style="width:26px" %) |(% style="width:1452px" %)
416 |(% style="width:26px" %) |(% style="width:1452px" %)
417 |(% style="width:26px" %) |(% style="width:1452px" %)
418 |(% style="width:26px" %) |(% style="width:1452px" %)
419 |(% style="width:26px" %) |(% style="width:1452px" %)
420
421 {{comment}}
422 = =
423
424 = User Guide =
425
426 Pressing the i "Information" icon in the software will bring you to this page. Before proceeding with the guide, it is important to note the following:
427
428 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
429 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
430
431 == IMPORTANT: Payload Considerations ==
432
433 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
434 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
435 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
436 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
437
438 == IMPORTANT: Emergency ==
439
440 Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. The following emergency options are available based on severity:
441
442 **Halt & Hold**
443
444 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
445
446 **Limp**
447
448 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
449
450 **Software Stop**
451
452 The E-stop button within the software sets all joints to limp.
453
454 **Hardware E-Stop**
455 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
456
457 == Arm Connection ==
458
459 **Model**
460
461 The software currently supports the following Lynxmotion PRO Arms:
462
463 * 550mm 5DoF
464 * 550mm 6DoF
465 * 900mm 5DoF
466 * 900mm 6DoF
467
468 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
469
470 **COM Port**
471
472 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues. 
473
474 **Connect**
475
476 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
477
478 == Gripper Controls ==
479
480 **Model**
481
482 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as J7.
483
484 * PGE-50-40 (40mm default configuration)
485 * PGE-50-40 (60mm configuration)
486 * PGE-50-40 (80mm configuration)
487 * CGE-10-10 (20mm configuration)
488 * CGE-10-10 (40mm configuration)
489 * CGE-10-10 (60mm configuration)
490
491 **COM Port**
492
493 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
494
495 **Baudrate**
496
497 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in teh software.
498
499 **Initialize**
500
501 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
502
503 **Connect**
504
505 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
506
507 **Speed**
508
509 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
510
511 **Force**
512
513 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
514
515 **Open / Close**
516
517 These are shortcut buttons to either fully open or fully close the gripper.
518
519 **Sequencer**
520
521 The sequencer displays the gripper position as joint 7 (J7).
522
523 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only J7 moves.
524
525 == 3D Model ==
526
527 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
528
529 **View Controls**
530
531 Zoom: Shift + Middle Scroll
532
533 Rotate: Shift + Middle Mouse
534
535 Pan: None
536
537 == Manual Move ==
538
539 **Angular Control**
540
541 In angular mode, the user can control the angle of each joint
542
543 **Coordinates Control**
544
545 In coordinate control the user can control the cartesian position of the end effector
546
547 **End Effector Lock**
548
549 The orientation of the end effector can be locked.
550
551 == Direct Command ==
552
553 This section allow the user to send commands using the [[doc:ses-pro.lss-pro.lss-p-communication-protocol.WebHome]] directly if required.
554
555 A few things to keep in mind when using this:
556
557 * Make sure you know what you are doing as you can make the arm move in __dangerous__ ways.
558 * Sending commands does not require ‘#’ and ‘\r’ chars.
559 ** example for #2\r you should enter 2Q and press the "SEND" button
560 * The commands are validated, and it shows a notification in case of error.
561 * The replies of queries are shown in the text field below.
562
563 == Command Output ==
564
565 //{Coming Soon}//
566
567 == Telemetry ==
568
569 **Data to Display**
570
571 //{Coming Soon}//
572
573 **Display / Hide Actuator**
574
575 //{Coming Soon}//
576
577 == Sequencer ==
578
579 **Frames**
580
581 //{Coming Soon}//
582
583 **Record **
584
585 //{Coming Soon}//
586
587 **Edit **
588
589 Time, angles, gripper
590
591 //Alt + Left Click = Drag time//
592
593 **Reorder**
594
595 //{Coming Soon}//
596
597 **Play**
598
599 //{Coming Soon}//
600
601 **Errors**
602
603 //{Coming Soon}//
604 {{/comment}}
Copyright RobotShop 2018