Wiki source code of SES-PRO Robotic Arm UI

Version 52.2 by Eric Nantel on 2024/10/16 12:42

Show last authors
1 {{lightbox image="https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-pro/ses-pro-software/ses-pro-arm-ui/WebHome/SES-PRO-Robotic-Arm-UI.png" width="350"/}}
2
3 [[[[image:[email protected]]]>>https://lynxmotion.com/tools/ses-pro-app/lynxmotion_ses_pro_robotic_arm_ui_stable.exe]]
4
5 **Table of Contents**
6
7 {{toc/}}
8
9 = Description =
10
11 The Lynxmotion Servo Erector Set Professional (SES PRO) Robotic Arm User Interface (UI) is a simple software which allows a user to control any of the Lynxmotion Professional Modular robotic arms in their default configuration. The two compatible gripper kits which are compatible with the SES PRO system (based on the DH Robotics PGE-50-40 and CGE-10-10 DC grillers) can also be controlled via this interface in each of their possible configurations. The included manual jog feature can be used to either position each joint angle, or move to specific cartesian coordinates. Arm (and gripper) positions can then be recorded as part of the built-in sequencer. A 3D display of the arm shows the position of the arm, and a graph can be used to show various information to the user. In order to get a better understanding of the protocol, commands sent to the arm are shown in the interface, and a user input field are standard.
12
13 = Features =
14
15 * Angular and cartesian positioning of the end effector
16 * 3D graphical display of the appropriate robotic arm and end effector
17 * Sequencer to record and play back frames (single, looped or infinite)
18 * Error checking (speed, temperature etc.)
19 * Command output and user input
20 * Safety (Software E-Stop, Halt&Hold & Limp)
21
22 __Compatibility: Windows 7 Operating System or above__
23
24
25 |(% colspan="3" %)(((
26 = User Guide =
27 )))
28 |(% style="width:25px" %) |(% colspan="2" rowspan="1" style="width:100px" %)(((
29 Before proceeding with the guide, it is important to note the following:
30
31 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
32 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
33 )))
34 | |(% style="text-align:center; vertical-align:middle; width:125px" %)[[image:ses-pro-robotic-arm-ui-info.png]]|Pressing the i "Information" icon in the software will bring you to this page.
35 | |(% colspan="2" rowspan="1" %)(((
36 == IMPORTANT ==
37 )))
38 | |(% colspan="2" rowspan="1" %)(((
39 === Payload Considerations ===
40 )))
41 | |(% colspan="2" rowspan="1" %)(((
42 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
43 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
44 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
45 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
46 )))
47 | |(% colspan="2" rowspan="1" %)(((
48 === Emergency ===
49 )))
50 | |(% colspan="2" rowspan="1" %)Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. 
51 The following emergency options are available based on severity:
52 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-halt.png]]|(((
53 **Halt (and hold)**
54
55 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
56 )))
57 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-limp.png]]|(((
58 **Limp**
59
60 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
61 )))
62 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-emergency.png]]|(((
63 **Software E-Stop**
64
65 The E-stop button within the software sets all joints to limp, this can possibly cause the arm to fall.
66 )))
67 | |(% style="text-align:center; vertical-align:middle" %) |(((
68 **Power Supply E-Stop**
69
70 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
71 )))
72 | |(% colspan="2" rowspan="1" %)(((
73 == Arm Connection ==
74 )))
75 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-version.png]]|(((
76 **Model**
77
78 The software currently supports the following Lynxmotion PRO Arms:
79
80 * 550mm 5DoF
81 * 550mm 6DoF
82 * 900mm 5DoF
83 * 900mm 6DoF
84
85 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
86 )))
87 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-com.png]]|(((
88 **COM Port**
89
90 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues.
91 )))
92 | |(% style="text-align:center; vertical-align:middle" %)(((
93 [[image:ses-pro-robotic-arm-ui-connect.png]]
94
95 [[image:ses-pro-robotic-arm-ui-disconnect.png]]
96 )))|(((
97 **Connect / Disconnect**
98
99 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
100 )))
101 | |(% colspan="2" rowspan="1" %)(((
102 == Gripper Controls ==
103 )))
104 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-version-drop.png]]|(((
105 **Model**
106
107 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as J7.
108 )))
109 | |(% style="text-align:center; vertical-align:middle" %)[[image:ses-pro-robotic-arm-ui-arm-version.png]]|(((
110 * PGE-50-40 (40mm default configuration)
111 * PGE-50-40 (60mm configuration)
112 * PGE-50-40 (80mm configuration)
113 * CGE-10-10 (20mm configuration)
114 * CGE-10-10 (40mm configuration)
115 * CGE-10-10 (60mm configuration)
116 )))
117 | |(% style="text-align:center; vertical-align:middle" %) |(((
118 **COM Port**
119
120 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
121 )))
122 | |(% style="text-align:center; vertical-align:middle" %) |(((
123 **Baudrate**
124
125 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in the software.
126 )))
127 | |(% style="text-align:center; vertical-align:middle" %) |(((
128 **Initialize**
129
130 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
131 )))
132 | |(% style="text-align:center; vertical-align:middle" %) |(((
133 **Connect**
134
135 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
136 )))
137 | |(% style="text-align:center; vertical-align:middle" %) |(((
138 **Speed**
139
140 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
141 )))
142 | |(% style="text-align:center; vertical-align:middle" %) |(((
143 **Force**
144
145 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
146 )))
147 | |(% style="text-align:center; vertical-align:middle" %) |(((
148 **Open / Close**
149
150 These are shortcut buttons to either fully open or fully close the gripper.
151 )))
152 | |(% style="text-align:center; vertical-align:middle" %) |(((
153 **Sequencer**
154
155 The sequencer displays the gripper position as joint 7 (J7).
156
157 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only J7 moves.
158 )))
159 | |(% style="text-align:center; vertical-align:middle" %) |
160 | |(% style="text-align:center; vertical-align:middle" %) |
161 | |(% style="text-align:center; vertical-align:middle" %) |
162 | |(% style="text-align:center; vertical-align:middle" %) |
163 | |(% style="text-align:center; vertical-align:middle" %) |
164 | |(% style="text-align:center; vertical-align:middle" %) |
165 | |(% style="text-align:center; vertical-align:middle" %) |
166 | |(% style="text-align:center; vertical-align:middle" %) |
167 | |(% style="text-align:center; vertical-align:middle" %) |
168 | |(% style="text-align:center; vertical-align:middle" %) |
169 | |(% style="text-align:center; vertical-align:middle" %) |
170 | |(% style="text-align:center; vertical-align:middle" %) |
171 | |(% style="text-align:center; vertical-align:middle" %) |
172 | |(% style="text-align:center; vertical-align:middle" %) |
173 | |(% style="text-align:center; vertical-align:middle" %) |
174 | |(% style="text-align:center; vertical-align:middle" %) |
175 | |(% style="text-align:center; vertical-align:middle" %) |
176 | |(% style="text-align:center; vertical-align:middle" %) |
177 | |(% style="text-align:center; vertical-align:middle" %) |
178 | |(% style="text-align:center; vertical-align:middle" %) |
179 | |(% style="text-align:center; vertical-align:middle" %) |
180 | |(% style="text-align:center; vertical-align:middle" %) |
181 | |(% style="text-align:center; vertical-align:middle" %) |
182 | |(% style="text-align:center; vertical-align:middle" %) |
183
184 |(% colspan="2" %)(((
185 = User Guide =
186 )))
187 |(% style="width:26px" %) |(% style="width:1452px" %)(((
188 Before proceeding with the guide, it is important to note the following:
189
190 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
191 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
192
193 Pressing the i "Information" icon in the software will bring you to this page.
194
195 [[image:ses-pro-robotic-arm-ui-info.png]]
196 )))
197 |(% colspan="2" %)(((
198 == IMPORTANT ==
199 )))
200 |(% style="width:26px" %) |(% style="width:1452px" %)(((
201 === Payload Considerations ===
202
203 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
204 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
205 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
206 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
207 )))
208 |(% style="width:26px" %) |(% style="width:1452px" %)(((
209 === Emergency ===
210
211 Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. The following emergency options are available based on severity:
212
213 **Halt (and hold)**
214
215 **[[image:ses-pro-robotic-arm-ui-halt.png]]**
216
217 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
218
219 **Limp**
220
221 **[[image:ses-pro-robotic-arm-ui-limp.png]]**
222
223 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
224
225 **Software E-Stop**
226
227 **[[image:ses-pro-robotic-arm-ui-arm-emergency.png]]**
228
229 The E-stop button within the software sets all joints to limp, this can possibly cause the arm to fall.
230
231 **Power Supply E-Stop**
232 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
233 )))
234 |(% colspan="2" %)(((
235 == Arm Connection ==
236 )))
237 |(% style="width:26px" %) |(% style="width:1452px" %)(((
238 **Model**
239
240 **[[image:ses-pro-robotic-arm-ui-arm-version.png]]**
241
242 The software currently supports the following Lynxmotion PRO Arms:
243
244 * 550mm 5DoF
245 * 550mm 6DoF
246 * 900mm 5DoF
247 * 900mm 6DoF
248
249 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
250
251 **COM Port**
252
253 **[[image:ses-pro-robotic-arm-ui-com.png]]**
254
255 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues. 
256
257 **Connect / Disconnect**
258
259 [[image:ses-pro-robotic-arm-ui-connect.png]]
260
261 [[image:ses-pro-robotic-arm-ui-disconnect.png]]
262
263 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
264 )))
265 |(% colspan="2" %)(((
266 == Gripper Controls ==
267 )))
268 |(% style="width:26px" %) |(% style="width:1452px" %)(((
269 **Model**
270
271 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as J7.
272
273 * PGE-50-40 (40mm default configuration)
274 * PGE-50-40 (60mm configuration)
275 * PGE-50-40 (80mm configuration)
276 * CGE-10-10 (20mm configuration)
277 * CGE-10-10 (40mm configuration)
278 * CGE-10-10 (60mm configuration)
279
280 **COM Port**
281
282 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
283
284 **Baudrate**
285
286 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in the software.
287
288 **Initialize**
289
290 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
291
292 **Connect**
293
294 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
295
296 **Speed**
297
298 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
299
300 **Force**
301
302 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
303
304 **Open / Close**
305
306 These are shortcut buttons to either fully open or fully close the gripper.
307
308 **Sequencer**
309
310 The sequencer displays the gripper position as joint 7 (J7).
311
312 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only J7 moves.
313 )))
314 |(% colspan="2" %)(((
315 == 3D Model ==
316 )))
317 |(% style="width:26px" %) |(% style="width:1452px" %)(((
318 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
319
320 **View Controls**
321
322 Zoom: Shift + Middle Scroll
323
324 Rotate: Shift + Middle Mouse
325
326 Pan: None
327 )))
328 |(% colspan="2" %)(((
329 == Manual Move ==
330 )))
331 |(% style="width:26px" %) |(% style="width:1452px" %)(((
332 **Angular Control**
333
334 In angular mode, the user can control the angle of each joint
335
336 **Coordinates Control**
337
338 In coordinate control the user can control the cartesian position of the end effector
339
340 **End Effector Lock**
341
342 The orientation of the end effector can be locked.
343 )))
344 |(% colspan="2" %)(((
345 == Direct Command ==
346 )))
347 |(% style="width:26px" %) |(% style="width:1452px" %)(((
348 This section allow the user to send commands using the [[LSS-PRO Communication Protocol>>path:/info/wiki/lynxmotion/view/ses-pro/lss-pro/lss-p-communication-protocol/]] directly if required.
349
350 A few things to keep in mind when using this:
351
352 * Make sure you know what you are doing as you can make the arm move in __dangerous__ ways.
353 * Sending commands does not require ‘#’ and ‘\r’ chars.
354 ** example for #2\r you should enter 2Q and press the "SEND" button
355 * The commands are validated, and it shows a notification in case of error.
356 * The replies of queries are shown in the text field below.
357 )))
358 |(% colspan="2" %)(((
359 == Command Output ==
360 )))
361 |(% style="width:26px" %) |(% style="width:1452px" %)(((
362 //{Coming Soon}//
363 )))
364 |(% colspan="2" %)(((
365 == Telemetry ==
366 )))
367 |(% style="width:26px" %) |(% style="width:1452px" %)(((
368 **Data to Display**
369
370 Various telemetry data can be retrieved from each actuators / joints, here is what the software support:
371
372 * Position
373 * Current
374 * Linear Accel X
375 * Linear Accel Y
376 * Linear Accel Z
377 * Angular Accel α
378 * Angular Accel β
379 * Angular Accel γ
380 * MCU Temperature
381 * PCB Temperature
382 * Probe Temperature
383
384 **Display / Hide **
385
386 At the bottom of the graphics you will find squares to activate / deactivate the desired actuator / joint to be displayed in the graph.
387 )))
388 |(% colspan="2" style="width:26px" %)(((
389 == Sequencer ==
390 )))
391 |(% style="width:26px" %) |(% style="width:1452px" %)(((
392 **Sequence**
393
394 Add
395
396 Substract
397
398 Copy
399
400 Save
401
402 Open
403
404 Delete
405
406 //{Coming Soon}//
407
408 **Frames**
409
410 Add
411
412 Sequence Selector
413
414 Record
415
416 Delete
417
418 Copy
419
420 Paste
421
422 Swap
423
424 Manual Edit
425
426 Time, angles, gripper
427
428 Moving Frames
429
430 //Alt + Left Click = Drag time//
431
432 //{Coming Soon}//
433
434 **Errors**
435
436 //{Coming Soon}//
437 )))
438 |(% style="width:26px" %) |(% style="width:1452px" %)
439 |(% style="width:26px" %) |(% style="width:1452px" %)
440 |(% style="width:26px" %) |(% style="width:1452px" %)
441 |(% style="width:26px" %) |(% style="width:1452px" %)
442 |(% style="width:26px" %) |(% style="width:1452px" %)
443 |(% style="width:26px" %) |(% style="width:1452px" %)
444 |(% style="width:26px" %) |(% style="width:1452px" %)
445 |(% style="width:26px" %) |(% style="width:1452px" %)
446 |(% style="width:26px" %) |(% style="width:1452px" %)
447 |(% style="width:26px" %) |(% style="width:1452px" %)
448 |(% style="width:26px" %) |(% style="width:1452px" %)
449 |(% style="width:26px" %) |(% style="width:1452px" %)
450 |(% style="width:26px" %) |(% style="width:1452px" %)
451 |(% style="width:26px" %) |(% style="width:1452px" %)
452 |(% style="width:26px" %) |(% style="width:1452px" %)
453 |(% style="width:26px" %) |(% style="width:1452px" %)
454 |(% style="width:26px" %) |(% style="width:1452px" %)
455 |(% style="width:26px" %) |(% style="width:1452px" %)
456 |(% style="width:26px" %) |(% style="width:1452px" %)
457 |(% style="width:26px" %) |(% style="width:1452px" %)
458 |(% style="width:26px" %) |(% style="width:1452px" %)
459 |(% style="width:26px" %) |(% style="width:1452px" %)
460 |(% style="width:26px" %) |(% style="width:1452px" %)
461 |(% style="width:26px" %) |(% style="width:1452px" %)
462 |(% style="width:26px" %) |(% style="width:1452px" %)
463 |(% style="width:26px" %) |(% style="width:1452px" %)
464 |(% style="width:26px" %) |(% style="width:1452px" %)
465 |(% style="width:26px" %) |(% style="width:1452px" %)
466 |(% style="width:26px" %) |(% style="width:1452px" %)
467 |(% style="width:26px" %) |(% style="width:1452px" %)
468 |(% style="width:26px" %) |(% style="width:1452px" %)
469 |(% style="width:26px" %) |(% style="width:1452px" %)
470 |(% style="width:26px" %) |(% style="width:1452px" %)
471 |(% style="width:26px" %) |(% style="width:1452px" %)
472 |(% style="width:26px" %) |(% style="width:1452px" %)
473 |(% style="width:26px" %) |(% style="width:1452px" %)
474 |(% style="width:26px" %) |(% style="width:1452px" %)
475 |(% style="width:26px" %) |(% style="width:1452px" %)
476 |(% style="width:26px" %) |(% style="width:1452px" %)
477 |(% style="width:26px" %) |(% style="width:1452px" %)
478 |(% style="width:26px" %) |(% style="width:1452px" %)
479 |(% style="width:26px" %) |(% style="width:1452px" %)
480 |(% style="width:26px" %) |(% style="width:1452px" %)
481 |(% style="width:26px" %) |(% style="width:1452px" %)
482 |(% style="width:26px" %) |(% style="width:1452px" %)
483 |(% style="width:26px" %) |(% style="width:1452px" %)
484 |(% style="width:26px" %) |(% style="width:1452px" %)
485 |(% style="width:26px" %) |(% style="width:1452px" %)
486 |(% style="width:26px" %) |(% style="width:1452px" %)
487 |(% style="width:26px" %) |(% style="width:1452px" %)
488 |(% style="width:26px" %) |(% style="width:1452px" %)
489 |(% style="width:26px" %) |(% style="width:1452px" %)
490 |(% style="width:26px" %) |(% style="width:1452px" %)
491 |(% style="width:26px" %) |(% style="width:1452px" %)
492
493 {{comment}}
494 = =
495
496 = User Guide =
497
498 Pressing the i "Information" icon in the software will bring you to this page. Before proceeding with the guide, it is important to note the following:
499
500 * Neither the servos nor the arm are meant to be operated in proximity of humans as they do not have "collaborative" (COBOT) features and do not detect collision
501 * The servos use stepper motors and do NOT include mechanical brakes. If the stepper motor is unable to retain or move to a desired angle (insufficient torque), the motor will rotate freely as opposed to hold the last position
502
503 == IMPORTANT: Payload Considerations ==
504
505 1. The rated payload for each arm does NOT include an end effector, nor any added distance between the center of mass of the payload and the output of the final joint. Each of the two compatible Lynxmotion PRO grippers reduce the maximum payload of each arm, and it is up to the user to known and understand the concept of "torque" and center of mass before adding an end effector and payload.
506 1. The rated maximum payload for each arm (at full reach) is at the rated speed for each motor. Moving any joint at a higher speed will decrease the payload capacity of the robot.
507 1. Although each servo can provide significantly more torque than is needed for the rated payload (and therefore means the arm can support much higher loads at lower speeds, the mechanical and modular structure of the arms may fail. We strongly suggest testing and using each arm in a highly controlled and safe setting where, if a failure should occur with one or more joints, that nothing will break should the arm fall.
508 1. The stepper motors provide the highest torque at low speeds, and lower torque at high speeds. Note that the maxium torque is not at the lowest speed as the torque to rpm curve for each servo resembles a "mountain".
509
510 == IMPORTANT: Emergency ==
511
512 Before using the arm, it is important that a user know what to do when an issue or emergency arises where the arm must be stopped quickly. The following emergency options are available based on severity:
513
514 **Halt & Hold**
515
516 This will stop every joints and hold them in their last recorded angular positions. The corresponding command is #254H<cr>.
517
518 **Limp**
519
520 All joints will go limp which mean there will be nothing avoiding them to turn freely (potentially causing the arm to fall). The high gear ratio of the strain wave gearing does mean there is some (low) level of resistant to rotation, but the gears and motor are nto "locked" and as such, the arm may fall. The corresponding command is #254L<cr>.
521
522 **Software Stop**
523
524 The E-stop button within the software sets all joints to limp.
525
526 **Hardware E-Stop**
527 A hardware E-stop (push to cut power) button is located on the power supply which will cut electricity to all actuators. Similar to a limp command, this can possibly cause the arm to fall. To reset this button, rotate the red "mushroom" in the direction indicated by the white arrows and it will spring out.
528
529 == Arm Connection ==
530
531 **Model**
532
533 The software currently supports the following Lynxmotion PRO Arms:
534
535 * 550mm 5DoF
536 * 550mm 6DoF
537 * 900mm 5DoF
538 * 900mm 6DoF
539
540 In practice, each 5DoF arm has joint 4 at a fixed angle, otherwise the arms are identical to the 6DoF. Users can always purchase the missing actuator to upgrade to a 6DoF.
541
542 **COM Port**
543
544 The first joint at the base (J1) must be connected via USB to a computer running the sofware. No other joints should have a USB connection. A USB 3.0 port or higher on the computer is suggested, as the lower communication speeds fo USB 2.0 or 1.0 may impede communication and cause unecessary delay or issues. 
545
546 **Connect**
547
548 Once the COM port has been selection, the CONNECT button can be pressed, and once a servo has been found, the light next to it will go from red to green.
549
550 == Gripper Controls ==
551
552 **Model**
553
554 The software currently supports two models of Lynxmotion PRO compatible grippers based on DH Robots' PGE-50-40 and CGE-10-10 electric grippers. The Lynxmotion kits include hardware to mount the fingers in multiple different offsets for smaller or larger objects. In the sequencer, the position of the fingers for each gripper are included in the sequencer as J7.
555
556 * PGE-50-40 (40mm default configuration)
557 * PGE-50-40 (60mm configuration)
558 * PGE-50-40 (80mm configuration)
559 * CGE-10-10 (20mm configuration)
560 * CGE-10-10 (40mm configuration)
561 * CGE-10-10 (60mm configuration)
562
563 **COM Port**
564
565 Choose the appropriate COM port to which the gripper is connected (via its own USB cable). If you are not certain, you can check Windows -> Device Manager
566
567 **Baudrate**
568
569 The DH Robotics grippers provide the option to change the baud rate, though the default is 115200. If the gripper is configured by the user to a different baud rate, it is important to select the corresponding baud rate in teh software.
570
571 **Initialize**
572
573 Initializing the gripper opens it fully. This is available should the user encounter issues with positioning and need to re-zero the fingers.
574
575 **Connect**
576
577 Pressing CONNECT establishes a connection to the gripper and goes through the initilization process once, opening the gripper fully. Once connection has been established, the light next to the button will go from red to green.
578
579 **Speed**
580
581 The speed of motion can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
582
583 **Force**
584
585 The maximum force exerted by the gripper can be adjusted either via the plus or minus buttons or entering a value between 0 and 100 and pressing enter.
586
587 **Open / Close**
588
589 These are shortcut buttons to either fully open or fully close the gripper.
590
591 **Sequencer**
592
593 The sequencer displays the gripper position as joint 7 (J7).
594
595 HINT: If you want the gripper to open or close on an object only at the end of a motion, create a separate frame where only J7 moves.
596
597 == 3D Model ==
598
599 The 3D model of the arm is shown as reference at all times. The display also includes a virtual plane to denote  the X-Y plane. The model updates based on the selection of the arm, gripper and finger configuration.
600
601 **View Controls**
602
603 Zoom: Shift + Middle Scroll
604
605 Rotate: Shift + Middle Mouse
606
607 Pan: None
608
609 == Manual Move ==
610
611 **Angular Control**
612
613 In angular mode, the user can control the angle of each joint
614
615 **Coordinates Control**
616
617 In coordinate control the user can control the cartesian position of the end effector
618
619 **End Effector Lock**
620
621 The orientation of the end effector can be locked.
622
623 == Direct Command ==
624
625 This section allow the user to send commands using the [[doc:ses-pro.lss-pro.lss-p-communication-protocol.WebHome]] directly if required.
626
627 A few things to keep in mind when using this:
628
629 * Make sure you know what you are doing as you can make the arm move in __dangerous__ ways.
630 * Sending commands does not require ‘#’ and ‘\r’ chars.
631 ** example for #2\r you should enter 2Q and press the "SEND" button
632 * The commands are validated, and it shows a notification in case of error.
633 * The replies of queries are shown in the text field below.
634
635 == Command Output ==
636
637 //{Coming Soon}//
638
639 == Telemetry ==
640
641 **Data to Display**
642
643 //{Coming Soon}//
644
645 **Display / Hide Actuator**
646
647 //{Coming Soon}//
648
649 == Sequencer ==
650
651 **Frames**
652
653 //{Coming Soon}//
654
655 **Record **
656
657 //{Coming Soon}//
658
659 **Edit **
660
661 Time, angles, gripper
662
663 //Alt + Left Click = Drag time//
664
665 **Reorder**
666
667 //{Coming Soon}//
668
669 **Play**
670
671 //{Coming Soon}//
672
673 **Errors**
674
675 //{Coming Soon}//
676 {{/comment}}
Copyright RobotShop 2018