Last modified by Eric Nantel on 2025/06/06 07:47

From version < 100.1 >
edited by Coleman Benson
on 2019/02/20 09:39
To version < 95.1 >
edited by Coleman Benson
on 2019/02/01 15:17
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,5 +1,5 @@
1 1  (% class="wikigeneratedid" id="HTableofContents" %)
2 -**Page Contents**
2 +**Table of Contents**
3 3  
4 4  {{toc depth="3"/}}
5 5  
... ... @@ -13,8 +13,6 @@
13 13  
14 14  A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.
15 15  
16 -Note that for a given session, the action related to a specific commands overrides the stored value in EEPROM.
17 -
18 18  == Action Commands ==
19 19  
20 20  Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
... ... @@ -47,6 +47,20 @@
47 47  This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds.
48 48  )))
49 49  
48 +== Configuration Commands ==
49 +
50 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not (see each command for details). Not all action commands have a corresponding configuration and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
51 +
52 +1. Start with a number sign # (U+0023)
53 +1. Servo ID number as an integer
54 +1. Configuration command (two to three letters, no spaces, capital or lower case)
55 +1. Configuration value in the correct units with no decimal
56 +1. End with a control / carriage return '<cr>'
57 +
58 +Ex: #5CO-50<cr>
59 +
60 +This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below.
61 +
50 50  == Query Commands ==
51 51  
52 52  Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:
... ... @@ -77,20 +77,6 @@
77 77  
78 78  This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees).
79 79  
80 -== Configuration Commands ==
81 -
82 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
83 -
84 -1. Start with a number sign # (U+0023)
85 -1. Servo ID number as an integer
86 -1. Configuration command (two to three letters, no spaces, capital or lower case)
87 -1. Configuration value in the correct units with no decimal
88 -1. End with a control / carriage return '<cr>'
89 -
90 -Ex: #5CO-50<cr>
91 -
92 -This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below.
93 -
94 94  **Session vs Configuration Query**
95 95  
96 96  By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
... ... @@ -128,72 +128,69 @@
128 128  
129 129  = Command List =
130 130  
131 -== Regular ==
132 -
133 -|= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
134 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
135 -| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
136 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]| T| | | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %)
137 -| 4|[[**S**peed>>||anchor="H4.Speed28S29modifier"]]| S| | | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %)
138 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
139 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
129 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
130 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
131 +| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
132 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %)
133 +| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %)
134 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
135 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
140 140  0
141 141  )))
142 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR|✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
138 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
143 143  1800
144 144  )))
145 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | | ✓|microseconds|(% style="width:510px" %)(((
141 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|(% style="width:510px" %)(((
146 146  Inherited from SSC-32 serial protocol
147 147  )))|(% style="text-align:center; width:113px" %)
148 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
149 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
150 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
151 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| SD| QSD|CSD|✓| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)(((
144 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
145 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
146 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
147 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)(((
152 152  QSD: Add modifier "2" for instantaneous speed.
153 153  
154 154  SD overwrites SR / CSD overwrites CSR and vice-versa.
155 155  )))|(% style="text-align:center; width:113px" %)Max per servo
156 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.MaxSpeedinRPM28SR29"]]| SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((
152 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((
157 157  QSR: Add modifier "2" for instantaneous speed
158 158  
159 159  SR overwrites SD / CSR overwrites CSD and vice-versa.
160 160  )))|(% style="text-align:center; width:113px" %)Max per servo
161 -| 14|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7
162 -| 15|[[**G**yre direction (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| G| QG| CG|✓| | ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
163 -| 16|[[**ID** #>>||anchor="H16.IdentificationNumber28ID29"]]| | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0
164 -| 17|[[**B**aud rate>>||anchor="H17.BaudRate"]]| | QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600
165 -| 18|[[**F**irst Position (**P**ulse)>>||anchor="H18.FirstPosition28Pulse2928FP29"]]| | QFP|CFP |X| ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)(((
157 +| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7
158 +| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center; width:113px" %)0
159 +| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600
160 +| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| | ✓|none |(% style="width:510px" %)Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
161 +| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)(((
166 166  Limp
167 167  )))
168 -| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstPosition28Degrees2928FD29"]]| | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp
169 -| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %)
170 -| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %)
171 -| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
172 -| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
173 -| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
174 -| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
175 -| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
176 -| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | |CRC|✓| | ✓|none|(% style="width:510px" %)(((
177 -Change to RC mode 1 (position) or 2 (wheel).
164 +| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp
165 +| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
166 +| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %)
167 +| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %)
168 +| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
169 +| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
170 +| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
171 +| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
172 +| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
173 +| 30a|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1| | ✓|none|(% style="width:510px" %)(((
174 +Puts the servo into RC mode. To revert to smart mode, use the button menu.
178 178  )))|(% style="text-align:center; width:113px" %)Serial
179 -| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
180 -| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
181 -| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
176 +| 30b|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2| | ✓| |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
177 +| 31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
178 +| 32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
179 +| 33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
182 182  
183 183  == Advanced ==
184 184  
185 -|= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
186 -| A1|[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]| AS|QAS|CAS|✓| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0
187 -| A2|[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|AH|QAH|CAH|✓| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1
188 -| A3|[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|AA|QAA|CAA|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
189 -| A4|[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|AD|QAD|CAD|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
190 -| A5|[[**E**nable **M**otion Control>>||anchor="HA5:MotionControl28EM29"]]|EM|QEM| | | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %)
191 -| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]| | | CLB| | ✓| |none (integer from 0 to 63)|(% style="width:510px" %)(((
192 -0=No blinking, 63=Always blink;
183 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
184 +| 1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS|QAS|CAS| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0
185 +| 2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1
186 +| 3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
187 +| 4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
188 +| 5|[[**E**nable **M**otion Control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %)
189 +| 6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|(% style="width:510px" %)0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;|(% style="text-align:center; width:113px" %)
190 +| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
193 193  
194 -Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
195 -)))|(% style="text-align:center; width:113px" %)
196 -
197 197  == Details ==
198 198  
199 199  ====== __1. Limp (**L**)__ ======
... ... @@ -206,17 +206,17 @@
206 206  
207 207  Example: #5H<cr>
208 208  
209 -This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position.
204 +This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position.
210 210  
211 -====== __3. Timed move (**T**) modifier__ ======
206 +====== __3. Timed move (**T**)__ ======
212 212  
213 213  Example: #5P1500T2500<cr>
214 214  
215 -Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
210 +Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
216 216  
217 217  Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
218 218  
219 -====== __4. Speed (**S**) modifier__ ======
214 +====== __4. Speed (**S**)__ ======
220 220  
221 221  Example: #5P1500S750<cr>
222 222  
... ... @@ -232,11 +232,11 @@
232 232  
233 233  Example: #5O2400<cr>
234 234  
235 -This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
230 +This command allows you to temporarily change the origin of the servo in relation to the factory zero position. The setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. Note that for a given session, the O command overrides the CO command. In the first image, the origin at factory offset '0' (centered).
236 236  
237 237  [[image:LSS-servo-default.jpg]]
238 238  
239 -In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
234 +In the second image, the origina, as well as the angular range (explained below) have been shifted by 240.0 degrees:
240 240  
241 241  [[image:LSS-servo-origin.jpg]]
242 242  
... ... @@ -244,33 +244,33 @@
244 244  
245 245  Example: #5QO<cr> Returns: *5QO-13
246 246  
247 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
242 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position.
248 248  
249 249  Configure Origin Offset (**CO**)
250 250  
251 251  Example: #5CO-24<cr>
252 252  
253 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
248 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode.
254 254  
255 255  ====== __7. Angular Range (**AR**)__ ======
256 256  
257 257  Example: #5AR1800<cr>
258 258  
259 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
254 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). In the first image,
260 260  
261 261  [[image:LSS-servo-default.jpg]]
262 262  
263 -Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
258 +Here, the angular range has been restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
264 264  
265 265  [[image:LSS-servo-ar.jpg]]
266 266  
267 -Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
262 +The angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) an be used to move both the center and limit the angular range:
268 268  
269 269  [[image:LSS-servo-ar-o-1.jpg]]
270 270  
271 271  Query Angular Range (**QAR**)
272 272  
273 -Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
268 +Example: #5QAR<cr> might return *5AR2756
274 274  
275 275  Configure Angular Range (**CAR**)
276 276  
... ... @@ -303,13 +303,6 @@
303 303  
304 304  This means the servo is located at 13.2 degrees.
305 305  
306 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %)
307 -Query Target Position in Degrees (**QDT**)
308 -
309 -Ex: #5QDT<cr> might return *5QDT6783<cr>
310 -
311 -The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
312 -
313 313  ====== __10. Wheel Mode in Degrees (**WD**)__ ======
314 314  
315 315  Ex: #5WD900<cr>
... ... @@ -334,22 +334,22 @@
334 334  
335 335  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
336 336  
337 -====== __12. Max Speed in Degrees (**SD**)__ ======
325 +====== __12. Speed in Degrees (**SD**)__ ======
338 338  
339 339  Ex: #5SD1800<cr>
340 340  
341 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
329 +This command sets the servo's maximum speed for action commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.
342 342  
343 343  Query Speed in Degrees (**QSD**)
344 344  
345 345  Ex: #5QSD<cr> might return *5QSD1800<cr>
346 346  
347 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed.
335 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed.
348 348  If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
349 349  
350 350  |**Command sent**|**Returned value (1/10 °)**
351 351  |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
352 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
340 +|ex: #5QSD1<cr>|Configured maximum speed  (set by CSD/CSR)
353 353  |ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
354 354  |ex: #5QSD3<cr>|Target travel speed
355 355  
... ... @@ -359,22 +359,22 @@
359 359  
360 360  Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
361 361  
362 -====== __13. Max Speed in RPM (**SR**)__ ======
350 +====== __13. Speed in RPM (**SR**)__ ======
363 363  
364 364  Ex: #5SD45<cr>
365 365  
366 -This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
354 +This command sets the servo's maximum speed for action commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.
367 367  
368 368  Query Speed in Degrees (**QSR**)
369 369  
370 370  Ex: #5QSR<cr> might return *5QSR45<cr>
371 371  
372 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed.
360 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a SD/SR command is processed.
373 373  If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
374 374  
375 375  |**Command sent**|**Returned value (1/10 °)**
376 376  |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
377 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
365 +|ex: #5QSR1<cr>|Configured maximum speed  (set by CSD/CSR)
378 378  |ex: #5QSR2<cr>|Instantaneous speed (same as QWR)
379 379  |ex: #5QSR3<cr>|Target travel speed
380 380  
... ... @@ -382,10 +382,70 @@
382 382  
383 383  Ex: #5CSR45<cr>
384 384  
385 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
373 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
386 386  
387 -====== __14. LED Color (**LED**)__ ======
375 +====== __14. Angular Stiffness (**AS**)__ ======
388 388  
377 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes.
378 +
379 +A positive value of "angular stiffness":
380 +
381 +* The more torque will be applied to try to keep the desired position against external input / changes
382 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
383 +
384 +A negative value on the other hand:
385 +
386 +* Causes a slower acceleration to the travel speed, and a slower deceleration
387 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back
388 +
389 +The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior.
390 +
391 +Ex: #5AS-2<cr>
392 +
393 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
394 +
395 +Ex: #5QAS<cr>
396 +
397 +Queries the value being used.
398 +
399 +Ex: #5CAS<cr>
400 +
401 +Writes the desired angular stiffness value to memory.
402 +
403 +====== __15. Angular Hold Stiffness (**AH**)__ ======
404 +
405 +The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected.
406 +
407 +Ex: #5AH3<cr>
408 +
409 +This sets the holding stiffness for servo #5 to 3 for that session.
410 +
411 +Query Angular Hold Stiffness (**QAH**)
412 +
413 +Ex: #5QAH<cr> might return *5QAH3<cr>
414 +
415 +This returns the servo's angular holding stiffness value.
416 +
417 +Configure Angular Hold Stiffness (**CAH**)
418 +
419 +Ex: #5CAH2<cr>
420 +
421 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM
422 +
423 +====== __15b: Angular Acceleration (**AA**)__ ======
424 +
425 +{More details to come}
426 +
427 +====== __15c: Angular Deceleration (**AD**)__ ======
428 +
429 +{More details to come}
430 +
431 +====== __15d: Motion Control (**EM**)__ ======
432 +
433 +{More details to come}
434 +
435 +====== __16. RGB LED (**LED**)__ ======
436 +
389 389  Ex: #5LED3<cr>
390 390  
391 391  This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
... ... @@ -400,66 +400,79 @@
400 400  
401 401  Configure LED Color (**CLED**)
402 402  
403 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
451 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
404 404  
405 -====== __15. Gyre Rotation Direction (**G**)__ ======
453 +====== __16b. Configure LED Blinking (**CLB**)__ ======
406 406  
407 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
455 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details).
456 +You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
408 408  
409 -Ex: #5G-1<cr>
458 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
410 410  
411 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
460 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
461 +Ex: #5CLB1<cr> only blink when limp
462 +Ex: #5CLB2<cr> only blink when holding
463 +Ex: #5CLB12<cr> only blink when accel or decel
464 +Ex: #5CLB48<cr> only blink when free or travel
465 +Ex: #5CLB63<cr> blink in all status
412 412  
413 -Query Gyre Direction (**QG**)
467 +====== __17. Identification Number__ ======
414 414  
415 -Ex: #5QG<cr> might return *5QG-1<cr>
469 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
416 416  
417 -The value returned above means the servo is in a counter-clockwise gyration.
418 -
419 -Configure Gyre (**CG**)
420 -
421 -Ex: #5CG-1<cr>
422 -
423 -This changes the gyre direction as described above and also writes to EEPROM.
424 -
425 -====== __16. Identification Number (**ID**)__ ======
426 -
427 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate).
428 -
429 429  Query Identification (**QID**)
430 430  
431 431  EX: #254QID<cr> might return *QID5<cr>
432 432  
433 -When using the query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number (assuming the query is sent . Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
475 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply using the broadcast command (ID 254). Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
434 434  
435 435  Configure ID (**CID**)
436 436  
437 437  Ex: #4CID5<cr>
438 438  
439 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.
481 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like.
440 440  
441 -====== __17. Baud Rate__ ======
483 +====== __18. Baud Rate__ ======
442 442  
443 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above.
485 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above.
486 +\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out.
444 444  
445 445  Query Baud Rate (**QB**)
446 446  
447 447  Ex: #5QB<cr> might return *5QB9600<cr>
448 448  
449 -Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.
492 +Querying the baud rate is used simply to confirm the CB configuration command before the servo is power cycled.
450 450  
451 451  Configure Baud Rate (**CB**)
452 452  
453 -Important Note: the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.
496 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only be in place when the servo is power cycled.
454 454  
455 455  Ex: #5CB9600<cr>
456 456  
457 457  Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
458 458  
459 -====== __18. First Position (Pulse) (**FP**)__ ======
502 +====== __19. Gyre Rotation Direction__ ======
460 460  
461 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
504 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
462 462  
506 +{images showing before and after with AR and Origin offset}
507 +
508 +Query Gyre Direction (**QG**)
509 +
510 +Ex: #5QG<cr> might return *5QG-1<cr>
511 +
512 +The value returned above means the servo is in a counter-clockwise gyration.
513 +
514 +Configure Gyre (**CG**)
515 +
516 +Ex: #5CG-1<cr>
517 +
518 +This changes the gyre direction as described above and also writes to EEPROM.
519 +
520 +====== __20. First / Initial Position (pulse)__ ======
521 +
522 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
523 +
463 463  Query First Position in Pulses (**QFP**)
464 464  
465 465  Ex: #5QFP<cr> might return *5QFP1550<cr>
... ... @@ -470,11 +470,11 @@
470 470  
471 471  Ex: #5CP1550<cr>
472 472  
473 -This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number (Ex. #5CFP<cr>) results in the servo remaining limp upon power up (i.e. disabled).
534 +This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled).
474 474  
475 -====== __19. First Position (Degrees) (**FD**)__ ======
536 +====== __21. First / Initial Position (Degrees)__ ======
476 476  
477 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
538 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
478 478  
479 479  Query First Position in Degrees (**QFD**)
480 480  
... ... @@ -486,34 +486,44 @@
486 486  
487 487  Ex: #5CD64<cr>
488 488  
489 -This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up.
550 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up.
490 490  
491 -====== __20. Query Model String (**QMS**)__ ======
552 +====== __22. Query Target Position in Degrees (**QDT**)__ ======
492 492  
554 +Ex: #5QDT<cr> might return *5QDT6783<cr>
555 +
556 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
557 +
558 +====== __23. Query Model String (**QMS**)__ ======
559 +
493 493  Ex: #5QMS<cr> might return *5QMSLSS-HS1cr>
494 494  
495 -This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
562 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
496 496  
497 -====== __21. Query Serial Number (**QN**)__ ======
564 +====== __23b. Query Model (**QM**)__ ======
498 498  
499 -Ex: #5QN<cr> might return *5QN12345678<cr>
566 +Ex: #5QM<cr> might return *5QM68702699520cr>
500 500  
501 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
568 +This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision.
502 502  
503 -====== __22. Query Firmware (**QF**)__ ======
570 +====== __24. Query Serial Number (**QN**)__ ======
504 504  
505 -Ex: #5QF<cr> might return *5QF411<cr>
572 +Ex: #5QN<cr> might return *5QN~_~_<cr>
506 506  
507 -The number in the reply represents the firmware version, in this example being 411.
574 +The number in the response is the servo's serial number which is set and cannot be changed.
508 508  
509 -====== __23. Query Status (**Q**)__ ======
576 +====== __25. Query Firmware (**QF**)__ ======
510 510  
511 -The status query described what the servo is currently doing. The query returns an integer which must be looked up in the table below.
578 +Ex: #5QF<cr> might return *5QF11<cr>
512 512  
580 +The integer in the reply represents the firmware version with one decimal, in this example being 1.1
581 +
582 +====== __26. Query Status (**Q**)__ ======
583 +
513 513  Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
514 514  
515 515  |*Value returned|**Status**|**Detailed description**
516 -|ex: *5Q0<cr>|Unknown|LSS is unsure / unknown state
587 +|ex: *5Q0<cr>|Unknown|LSS is unsure
517 517  |ex: *5Q1<cr>|Limp|Motor driving circuit is not powered and horn can be moved freely
518 518  |ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely
519 519  |ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed
... ... @@ -525,56 +525,55 @@
525 525  |ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting
526 526  |ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
527 527  
528 -====== __24. Query Voltage (**QV**)__ ======
599 +====== __27. Query Voltage (**QV**)__ ======
529 529  
530 530  Ex: #5QV<cr> might return *5QV11200<cr>
531 531  
532 532  The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
533 533  
534 -====== __25. Query Temperature (**QT**)__ ======
605 +====== __28. Query Temperature (**QT**)__ ======
535 535  
536 536  Ex: #5QT<cr> might return *5QT564<cr>
537 537  
538 538  The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
539 539  
540 -====== __26. Query Current (**QC**)__ ======
611 +====== __29. Query Current (**QC**)__ ======
541 541  
542 542  Ex: #5QC<cr> might return *5QC140<cr>
543 543  
544 544  The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
545 545  
546 -====== __27. Configure RC Mode (**CRC**)__ ======
617 +====== __30. RC Mode (**CRC**)__ ======
547 547  
548 548  This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
549 549  
550 550  |**Command sent**|**Note**
622 +|ex: #5CRC<cr>|Stay in smart mode.
551 551  |ex: #5CRC1<cr>|Change to RC position mode.
552 552  |ex: #5CRC2<cr>|Change to RC continuous (wheel) mode.
553 -|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode.
625 +|ex: #5CRC*<cr>|Where * is any number or value. Stay in smart mode.
554 554  
555 -EX: #5CRC2<cr>
627 +EX: #5CRC<cr>
556 556  
557 -This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands.
629 +====== __31. RESET__ ======
558 558  
559 -====== __28. **RESET**__ ======
560 -
561 561  Ex: #5RESET<cr> or #5RS<cr>
562 562  
563 563  This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
564 564  
565 -====== __29. **DEFAULT** & CONFIRM__ ======
635 +====== __32. DEFAULT & CONFIRM__ ======
566 566  
567 567  Ex: #5DEFAULT<cr>
568 568  
569 -This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
639 +This command sets in motion the reset all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
570 570  
571 571  EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
572 572  
573 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
643 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
574 574  
575 575  Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
576 576  
577 -====== __30. **UPDATE** & CONFIRM__ ======
647 +====== __33. UPDATE & CONFIRM__ ======
578 578  
579 579  Ex: #5UPDATE<cr>
580 580  
... ... @@ -585,89 +585,3 @@
585 585  Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
586 586  
587 587  Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
588 -
589 -= Advanced =
590 -
591 -====== __A1. Angular Stiffness (**AS**)__ ======
592 -
593 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.
594 -
595 -A positive value of "angular stiffness":
596 -
597 -* The more torque will be applied to try to keep the desired position against external input / changes
598 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
599 -
600 -A negative value on the other hand:
601 -
602 -* Causes a slower acceleration to the travel speed, and a slower deceleration
603 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back
604 -
605 -The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
606 -
607 -Ex: #5AS-2<cr>
608 -
609 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
610 -
611 -Ex: #5QAS<cr>
612 -
613 -Queries the value being used.
614 -
615 -Ex: #5CAS<cr>
616 -
617 -Writes the desired angular stiffness value to memory.
618 -
619 -====== __A2. Angular Holding Stiffness (**AH**)__ ======
620 -
621 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
622 -
623 -Ex: #5AH3<cr>
624 -
625 -This sets the holding stiffness for servo #5 to 3 for that session.
626 -
627 -Query Angular Hold Stiffness (**QAH**)
628 -
629 -Ex: #5QAH<cr> might return *5QAH3<cr>
630 -
631 -This returns the servo's angular holding stiffness value.
632 -
633 -Configure Angular Hold Stiffness (**CAH**)
634 -
635 -Ex: #5CAH2<cr>
636 -
637 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM
638 -
639 -====== __A3: Angular Acceleration (**AA**)__ ======
640 -
641 -{More details to come}
642 -
643 -====== __A4: Angular Deceleration (**AD**)__ ======
644 -
645 -{More details to come}
646 -
647 -====== __A5: Motion Control (**EM**)__ ======
648 -
649 -{More details to come}
650 -
651 -====== __A6. Configure LED Blinking (**CLB**)__ ======
652 -
653 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. Here is the list and their associated value:
654 -
655 -(% style="width:195px" %)
656 -|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
657 -|(% style="width:134px" %)No blinking|(% style="width:58px" %)0
658 -|(% style="width:134px" %)Limp|(% style="width:58px" %)1
659 -|(% style="width:134px" %)Holding|(% style="width:58px" %)2
660 -|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
661 -|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
662 -|(% style="width:134px" %)Free|(% style="width:58px" %)16
663 -|(% style="width:134px" %)Travelling|(% style="width:58px" %)32
664 -|(% style="width:134px" %)Always blink|(% style="width:58px" %)63
665 -
666 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
667 -
668 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
669 -Ex: #5CLB1<cr> only blink when limp (1)
670 -Ex: #5CLB2<cr> only blink when holding (2)
671 -Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)
672 -Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)
673 -Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)
Copyright RobotShop 2018