Wiki source code of LSS Communication Protocol

Last modified by Eric Nantel on 2024/11/21 09:43

Show last authors
1 {{toc depth="3"/}}
2
3 = Serial Protocol =
4
5 The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servomotor is available.
6
7 In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>path:#HIdentificationNumber28ID29]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol.
8
9 |(% colspan="2" %)(((
10 == Session ==
11 )))
12 |(% style="width:25px" %) |(((
13 A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.
14
15 **Note 1:** For a given session, the action related to a specific command overrides the stored value in EEPROM.
16
17 **Note 2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).
18
19 **Note 3:** You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r described below). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays.
20 )))
21
22 |(% colspan="2" %)(((
23 == Action Commands ==
24 )))
25 |(% style="width:25px" %) |(((
26 Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HVirtualAngularPosition]] (described below). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
27
28 1. Start with a number sign **#** (Unicode Character: U+0023)
29 1. Servo ID number as an integer (assigning an ID described below)
30 1. Action command (one or more letters, no whitespace, capital or lowercase from the list below)
31 1. Action value in the correct units with no decimal
32 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
33
34 Ex: #5D1800<cr>
35
36 This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
37 )))
38
39 |(% colspan="2" %)(((
40 == Modifiers ==
41 )))
42 |(% style="width:25px" %) |(((
43 Modifiers can only be used with certain **action commands**. The format to include a modifier is:
44
45 1. Start with a number sign **#** (Unicode Character: U+0023)
46 1. Servo ID number as an integer
47 1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
48 1. Action value in the correct units with no decimal
49 1. Modifier command (one or two letters from the list of modifiers below)
50 1. Modifier value in the correct units with no decimal
51 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
52
53 Ex: #5D1800T1500<cr>
54
55 This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).
56 )))
57
58 |(% colspan="2" %)(((
59 == Query Commands ==
60 )))
61 |(% style="width:25px" %) |(((
62 Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:
63
64 1. Start with a number sign **#** (Unicode Character: U+0023)
65 1. Servo ID number as an integer
66 1. Query command (one to four letters, no spaces, capital or lower case)
67 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
68
69 Ex: #5QD<cr> Query the position in (tenth of) degrees for servo with ID #5
70
71 The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format:
72
73 1. Start with an asterisk * (Unicode Character: U+0023)
74 1. Servo ID number as an integer
75 1. Query command (one to four letters, no spaces, capital letters)
76 1. The reported value in the units described, no decimals.
77 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
78
79 There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:
80
81 Ex: *5QD1800<cr>
82
83 This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees).
84 )))
85
86 |(% colspan="2" %)(((
87 == Configuration Commands ==
88 )))
89 |(% style="width:25px" %) |(((
90 Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.
91
92 These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-radio-control-pwm/]]. Configuration commands are not cumulative. This means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.
93
94 The format to send a configuration command is identical to that of an action command:
95
96 1. Start with a number sign **#** (Unicode Character: U+0023)
97 1. Servo ID number as an integer
98 1. Configuration command (two to four letters, no spaces, capital or lower case)
99 1. Configuration value in the correct units with no decimal
100 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
101
102 Ex: #5CO-50<cr>
103
104 This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).
105
106 **Session vs Configuration Query**
107
108 By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
109
110 Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.
111
112 After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
113
114 #5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas
115
116 #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM
117 )))
118
119 |(% colspan="2" %)(((
120 == Virtual Angular Position ==
121 )))
122 |(% style="width:25px" %) |(((
123 The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).
124
125 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]
126
127 In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
128
129 #1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)
130
131 #1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)
132
133 #1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.
134
135 Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.
136
137 #1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
138
139 #1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).
140
141 If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°].
142 )))
143
144 = Command List =
145
146 **Latest firmware version currently : 370**
147
148 |(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Communication Setup**>>path:#HCommunicationSetup]]
149 | |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
150 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Reset**>>path:#HReset]]|RESET| | | |✓| | |Soft reset. See command for details.
151 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Default** Configuration>>path:#HDefault26confirm]]|DEFAULT| | | |✓| | |Revert to firmware default values. See command for details
152 | |[[Firmware (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Update** Mode>>path:#HUpdate26confirm]]|UPDATE| | | |✓| | |Update firmware. See command for details.
153 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Confirm** Changes>>path:#HConfirm]]|CONFIRM| | | |✓| | |
154 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**hange to **RC**>>path:#HConfigureRCMode28CRC29]]| | |CRC| |✓| | |Change to RC mode 1 (position) or 2 (wheel).
155 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**ID** #>>path:#HIdentificationNumber28ID29]]| |QID|CID| |✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
156 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**B**audrate>>path:#HBaudRate]]| |QB|CB| |✓|115200| |Reset required after change.
157
158 |(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion**>>path:#HMotion]]
159 | |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
160 | |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**D**egrees>>path:#HPositioninDegrees28D29]]|D|QD/QDT| | |✓| |1/10°|
161 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in **D**egrees (relative)>>path:#H28Relative29MoveinDegrees28MD29]]|MD| | | |✓| |1/10°|
162 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **D**egrees>>path:#HWheelModeinDegrees28WD29]]|WD|QWD/QVT| | |✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation"
163 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **R**PM>>path:#HWheelModeinRPM28WR29]]|WR|QWR| | |✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation"
164 | |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**P**WM>>path:#HPositioninPWM28P29]]|P|QP| | |✓| |us|Inherited from SSC-32 serial protocol
165 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in PWM (relative)>>path:#H28Relative29MoveinPWM28M29]]|M| | | |✓| |us|
166 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**R**aw **D**uty-cycle **M**ove>>path:#HRawDuty-cycleMove28RDM29]]|RDM|QMD| | |✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW
167 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery Status>>path:#HQueryStatus28Q29]]| |Q| | |✓| |1 to 8 integer|See command description for details
168 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**L**imp>>path:#HLimp28L29]]|L| | | |✓| | |
169 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**H**alt & Hold>>path:#HHalt26Hold28H29]]|H| | | |✓| | |
170
171 |(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion Setup**>>path:#HMotionSetup]]
172 | |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
173 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**E**nable **M**otion Profile>>path:#HEnableMotionProfile28EM29]]|EM|QEM|CEM| |✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile
174 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**ilter **P**osition **C**ount>>path:#HFilterPositionCount28FPC29]]|FPC|QFPC|CFPC|✓|✓|5| |Affects motion only when motion profile is disabled (EM0)
175 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**O**rigin Offset>>path:#HOriginOffset28O29]]|O|QO|CO|✓|✓|0|1/10°|
176 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **R**ange>>path:#HAngularRange28AR29]]|AR|QAR|CAR|✓|✓|1800|1/10°|
177 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **S**tiffness>>path:#HAngularStiffness28AS29]]|AS|QAS|CAS|✓|✓|0|-4 to +4 integer|Suggested values are between 0 to +4
178 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **H**olding Stiffness>>path:#HAngularHoldingStiffness28AH29]]|AH|QAH|CAH|✓|✓|4|-10 to +10 integer|
179 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **A**cceleration>>path:#HAngularAcceleration28AA29]]|AA|QAA|CAA| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
180 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **D**eceleration>>path:#HAngularDeceleration28AD29]]|AD|QAD|CAD| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
181 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**G**yre Direction>>path:#HGyreDirection28G29]]|G|QG|CG|✓|✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
182 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**irst Position (**D**eg)>>path:#HFirstPosition]]| |QFD|CFD|✓|✓|No value|1/10°|Reset required after change.
183 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**aximum **M**otor **D**uty>>path:#HMaximumMotorDuty28MMD29]]|MMD|QMMD| | |✓|1023|255 to 1023 integer|
184 | |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HMaximumSpeedinDegrees28SD29]]|SD|QSD|CSD|✓|✓|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
185 | |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **R**PM>>path:#HMaximumSpeedinRPM28SR29]]|SR|QSR|CSR|✓|✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
186
187 |(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Modifiers**>>path:#HModifiers]]
188 | |**Description**|**Modifier**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
189 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed>>path:#HSpeed]]|S|QS| | |✓| |uS/s |For P action command
190 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HSpeed]]|SD| | | |✓| |0.1°/s|For D and MD action commands
191 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**T**imed move>>path:#HTimedmove28T29modifier]]|T| | | |✓| |ms|Modifier only for P, D and MD. Time can change based on load
192 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **H**old>>path:#HCurrentHalt26Hold28CH29modifier]]|CH| | | |✓| |mA|Modifier for D, MD, WD and WR
193 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **L**imp>>path:#HCurrentLimp28CL29modifier]]|CL| | | |✓| |mA|Modifier for D, MD, WD and WR
194
195 |(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Telemetry**>>path:#HTelemetry]]
196 | |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
197 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **V**oltage>>path:#HQueryVoltage28QV29]]| |QV| | |✓| |mV|
198 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **T**emperature>>path:#HQueryTemperature28QT29]]| |QT| | |✓| |1/10°C|
199 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **C**urrent>>path:#HQueryCurrent28QC29]]| |QC| | |✓| |mA|
200 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **M**odel **S**tring>>path:#HQueryModelString28QMS29]]| |QMS| | |✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
201 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **F**irmware Version>>path:#HQueryFirmware28QF29]]| |QF| | |✓| | |
202
203 |(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**RGB LED**>>path:#HRGBLED]]
204 | |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
205 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**LED** Color>>path:#HLEDColor28LED29]]|LED|QLED|CLED|✓|✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
206 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**onfigure **L**ED **B**linking>>path:#HConfigureLEDBlinking28CLB29]]| | |CLB|✓|✓| |0 to 63 integer|Reset required after change. See command for details.
207
208 = Details =
209
210 == Communication Setup ==
211
212 |(% colspan="2" %)(((
213 ====== __Reset__ ======
214 )))
215 |(% style="width:30px" %) |(((
216 Ex: #5RESET<cr>
217
218 This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HSession]], note #2 for more details.
219 )))
220
221 |(% colspan="2" %)(((
222 ====== __Default & confirm__ ======
223 )))
224 |(% style="width:30px" %) |(((
225 Ex: #5DEFAULT<cr>
226
227 This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
228
229 Ex: #5DEFAULT<cr> followed by #5CONFIRM<cr>
230
231 Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
232
233 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.
234 )))
235
236 |(% colspan="2" %)(((
237 ====== __Update & confirm__ ======
238 )))
239 |(% style="width:30px" %) |(((
240 Ex: #5UPDATE<cr>
241
242 This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
243
244 Ex: #5UPDATE<cr> followed by #5CONFIRM<cr>
245
246 Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
247
248 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.
249 )))
250
251 |(% colspan="2" %)(((
252 ====== __Confirm__ ======
253 )))
254 |(% style="width:30px" %) |(((
255 Ex: #5CONFIRM<cr>
256
257 This command is used to confirm changes after a Default or Update command.
258
259 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.
260 )))
261
262 |(% colspan="2" %)(((
263 ====== __Configure RC Mode (**CRC**)__ ======
264 )))
265 |(% style="width:30px" %) |(((
266 This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
267
268 Ex: #5CRC1<cr>
269
270 Change to RC position mode.
271
272 Ex: #5CRC2<cr>
273
274 Change to RC continuous rotation (wheel) mode.
275
276 Ex: #5CRC*<cr>
277
278 Where * is any value other than 1 or 2 (or no value): stay in smart mode
279
280 Ex: #5CRC2<cr>
281
282 This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.
283
284 **Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-button-menu/]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.
285 )))
286
287 |(% colspan="2" %)(((
288 ====== __Identification Number (**ID**)__ ======
289 )))
290 |(% style="width:30px" %) |(((
291 A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
292
293 Query Identification (**QID**)
294
295 EX: #254QID<cr> might return *QID5<cr>
296
297 When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
298
299 Configure ID (**CID**)
300
301 Ex: #4CID5<cr>
302
303 Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.
304 )))
305
306 |(% colspan="2" %)(((
307 ====== __Baud Rate__ ======
308 )))
309 |(% style="width:30px" %) |(((
310 A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200.
311
312 Query Baud Rate (**QB**)
313
314 Ex: #5QB<cr> might return *5QB115200<cr>Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.
315
316 Configure Baud Rate (**CB**)
317
318 **Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.
319
320 Ex: #5CB9600<cr>
321
322 Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
323 )))
324
325 |(% colspan="2" %)(((
326 ====== __Automatic Baud Rate__ ======
327 )))
328 |(% style="width:30px" %) |(((
329 This option allows the LSS to listen to it's serial input and select the right baudrate automatically.
330
331 Query Automatic Baud Rate (**QABR**)
332
333 Ex: #5QABR<cr> might return *5ABR0<cr>
334
335 Enable Baud Rate (**ABR**)
336
337 Ex: #5QABR1<cr>
338
339 Enable baudrate detection on first byte received after power-up.
340
341 Ex: #5QABR2,30<cr>Enable baudrate detection on first byte received after power-up. If no data for 30 seconds enable detection again on next byte.
342
343 Warning: ABR doesnt work well with LSS Config at the moment.
344 )))
345
346 == Motion ==
347
348 |(% colspan="2" %)(((
349 ====== __Position in Degrees (**D**)__ ======
350 )))
351 |(% style="width:30px" %) |(((
352 Ex: #5D1456<cr>
353
354 This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction.
355
356 Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above).
357
358 Query Position in Degrees (**QD**)
359
360 Ex: #5QD<cr> might return *5QD132<cr>
361
362 This means the servo is located at 13.2 degrees.
363
364 Query Target Position in Degrees (**QDT**)
365
366 Ex: #5QDT<cr> might return *5QDT6783<cr>
367
368 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
369 )))
370
371 |(% colspan="2" %)(((
372 ====== __(Relative) Move in Degrees (**MD**)__ ======
373 )))
374 |(% style="width:30px" %) |(((
375 Ex: #5MD123<cr>
376
377 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
378 )))
379
380 |(% colspan="2" %)(((
381 ====== __Wheel Mode in Degrees (**WD**)__ ======
382 )))
383 |(% style="width:30px" %) |(((
384 Ex: #5WD90<cr>
385
386 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
387
388 Query Wheel Mode in Degrees (**QWD**)
389
390 Ex: #5QWD<cr> might return *5QWD90<cr>
391
392 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
393 )))
394
395 |(% colspan="2" %)(((
396 ====== __Wheel Mode in RPM (**WR**)__ ======
397 )))
398 |(% style="width:30px" %) |(((
399 Ex: #5WR40<cr>
400
401 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
402
403 Query Wheel Mode in RPM (**QWR**)
404
405 Ex: #5QWR<cr> might return *5QWR40<cr>
406
407 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
408 )))
409
410 |(% colspan="2" %)(((
411 ====== __Position in PWM (**P**)__ ======
412 )))
413 |(% style="width:30px" %) |(((
414 Ex: #5P2334<cr>
415
416 The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>url:https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.
417
418 Query Position in Pulse (**QP**)
419
420 Ex: #5QP<cr> might return *5QP2334
421
422 This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
423 )))
424
425 |(% colspan="2" %)(((
426 ====== __(Relative) Move in PWM (**M**)__ ======
427 )))
428 |(% style="width:30px" %) |(((
429 Ex: #5M1500<cr>
430
431 The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
432 )))
433
434 |(% colspan="2" %)(((
435 ====== __Raw Duty-cycle Move (**RDM**)__ ======
436 )))
437 |(% style="width:30px" %) |(((
438 Ex: #5RDM512<cr>
439
440 The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.
441
442 The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).
443
444 Query Move in Duty-cycle (**QMD**)
445
446 Ex: #5QMD<cr> might return *5QMD512
447
448 This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle.
449 )))
450
451 |(% colspan="2" %)(((
452 ====== __Query Status (**Q**)__ ======
453 )))
454 |(% style="width:30px" %) |(((
455 The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.
456
457 Ex: #5Q<cr> might return *5Q6<cr>
458
459 which indicates the motor is holding a position.
460 )))
461
462 |(% style="width:30px" %) |***Value returned (Q)**|**Status**|**Detailed description**
463 | |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
464 | |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
465 | |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command
466 | |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
467 | |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
468 | |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
469 | |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding)
470 | |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
471 | |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
472 | |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
473 | |ex: *5Q10<cr>|10: Safe Mode|(((
474 A safety limit has been exceeded (temperature, peak current or extended high current draw).
475
476 Send a Q1 command to know which limit has been reached (described below).
477 )))
478
479 |(% style="width:30px" %) |(% colspan="3" rowspan="1" %)If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
480 | |***Value returned (Q1)**|**Status**|**Detailed description**
481 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
482 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
483 | |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
484 | |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
485
486 |(% colspan="2" %)(((
487 ====== __Limp (**L**)__ ======
488 )))
489 |(% style="width:30px" %) |(((
490 Ex: #5L<cr>
491
492 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
493 )))
494
495 |(% colspan="2" %)(((
496 ====== __Halt & Hold (**H**)__ ======
497 )))
498 |(% style="width:30px" %) |(((
499 Example: #5H<cr>
500
501 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
502 )))
503
504 == Motion Setup ==
505
506 |(% colspan="2" %)(((
507 ====== __Enable Motion Profile (**EM**)__ ======
508 )))
509 |(% style="width:30px" %) |(((
510 EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.
511
512 Ex: #5EM1<cr>
513
514 This command enables a trapezoidal motion profile for servo #5
515
516 Ex: #5EM0<cr>
517
518 This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command).
519
520 Query Motion Profile (**QEM**)
521
522 Ex: #5QEM<cr> might return *5QEM1<cr>
523
524 This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.
525
526 Configure Motion Profile (**CEM**)
527
528 Ex: #5CEM0<cr>
529
530 This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
531 )))
532
533 |(% colspan="2" %)(((
534 ====== __Filter Position Count (**FPC**)__ ======
535 )))
536 |(% style="width:30px" %) |(((
537 The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default.
538
539 Ex: #5FPC10<cr>
540
541 This command allows the user to change the Filter Position Count value for that session.
542
543 Query Filter Position Count (**QFPC**)
544
545 Ex: #5QFPC<cr> might return *5QFPC10<cr>
546
547 This command will query the Filter Position Count value.
548
549 Configure Filter Position Count (**CFPC**)
550
551 Ex: #5CFPC10<cr>
552
553 This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
554 )))
555
556 |(% colspan="2" %)(((
557 ====== __Origin Offset (**O**)__ ======
558 )))
559 |(% style="width:30px" %) |(((
560 Ex: #5O2400<cr>
561
562 This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
563
564 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
565
566 In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
567
568 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]
569
570 Origin Offset Query (**QO**)
571
572 Ex: #5QO<cr> might return *5QO-13
573
574 This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
575
576 Configure Origin Offset (**CO**)
577
578 Ex: #5CO-24<cr>
579
580 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
581 )))
582
583 |(% colspan="2" %)(((
584 ====== __Angular Range (**AR**)__ ======
585 )))
586 |(% style="width:30px" %) |(((
587 Ex: #5AR1800<cr>
588
589 This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
590
591 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
592
593 Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
594
595 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]
596
597 Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
598
599 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]
600
601 Query Angular Range (**QAR**)
602
603 Ex: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
604
605 Configure Angular Range (**CAR**)
606
607 This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
608 )))
609
610 |(% colspan="2" %)(((
611 ====== __Angular Stiffness (**AS**)__ ======
612 )))
613 |(% style="width:30px" %) |(((
614 The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.
615
616 A higher value of "angular stiffness":
617
618 * The more torque will be applied to try to keep the desired position against external input / changes
619 * The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
620
621 A lower value on the other hand:
622
623 * Causes a slower acceleration to the travel speed, and a slower deceleration
624 * Allows the target position to deviate more from its position before additional torque is applied to bring it back
625
626 The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
627
628 Ex: #5AS-2<cr>
629
630 This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
631
632 Ex: #5QAS<cr>
633
634 Queries the value being used.
635
636 Ex: #5CAS-2<cr>Writes the desired angular stiffness value to EEPROM.
637 )))
638
639 |(% colspan="2" %)(((
640 ====== __Angular Holding Stiffness (**AH**)__ ======
641 )))
642 |(% style="width:30px" %) |(((
643 The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
644
645 Ex: #5AH3<cr>
646
647 This sets the holding stiffness for servo #5 to 3 for that session.
648
649 Query Angular Holding Stiffness (**QAH**)
650
651 Ex: #5QAH<cr> might return *5QAH3<cr>
652
653 This returns the servo's angular holding stiffness value.
654
655 Configure Angular Holding Stiffness (**CAH**)
656
657 Ex: #5CAH2<cr>
658
659 This writes the angular holding stiffness of servo #5 to 2 to EEPROM.
660 )))
661
662 |(% colspan="2" %)(((
663 ====== __Angular Acceleration (**AA**)__ ======
664 )))
665 |(% style="width:30px" %) |(((
666 The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
667
668 Ex: #5AA30<cr>
669
670 This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
671
672 Query Angular Acceleration (**QAA**)
673
674 Ex: #5QAA<cr> might return *5QAA30<cr>
675
676 This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).
677
678 Configure Angular Acceleration (**CAA**)
679
680 Ex: #5CAA30<cr>
681
682 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
683 )))
684
685 |(% colspan="2" %)(((
686 ====== __Angular Deceleration (**AD**)__ ======
687 )))
688 |(% style="width:30px" %) |(((
689 The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
690
691 Ex: #5AD30<cr>
692
693 This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
694
695 Query Angular Deceleration (**QAD**)
696
697 Ex: #5QAD<cr> might return *5QAD30<cr>
698
699 This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).
700
701 Configure Angular Deceleration (**CAD**)
702
703 Ex: #5CAD30<cr>
704
705 This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
706 )))
707
708 |(% colspan="2" %)(((
709 ====== __Gyre Direction (**G**)__ ======
710 )))
711 |(% style="width:30px" %) |(((
712 "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.
713
714 Ex: #5G-1<cr>
715
716 This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
717
718 Query Gyre Direction (**QG**)
719
720 Ex: #5QG<cr> might return *5QG-1<cr>
721
722 The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.
723
724 Configure Gyre (**CG**)
725
726 Ex: #5CG-1<cr>
727
728 This changes the gyre direction as described above and also writes to EEPROM.
729 )))
730
731 |(% colspan="2" %)(((
732 ====== __First Position__ ======
733 )))
734 |(% style="width:30px" %) |(((
735 In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.
736
737 Query First Position in Degrees (**QFD**)
738
739 Ex: #5QFD<cr> might return *5QFD900<cr>
740
741 The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.
742
743 Configure First Position in Degrees (**CFD**)
744
745 Ex: #5CFD900<cr>
746
747 This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
748 )))
749
750 |(% colspan="2" %)(((
751 ====== __Maximum Motor Duty (**MMD**)__ ======
752 )))
753 |(% style="width:30px" %) |(((
754 This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.
755
756 Ex: #5MMD512<cr>
757
758 This will set the duty-cycle to 512 for servo with ID 5 for that session.
759
760 Query Maximum Motor Duty (**QMMD**)
761
762 Ex: #5QMMDD<cr> might return *5QMMD512<cr>
763
764 This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023.
765 )))
766
767 |(% colspan="2" %)(((
768 ====== __Maximum Speed in Degrees (**SD**)__ ======
769 )))
770 |(% style="width:30px" %) |(((
771 Ex: #5SD1800<cr>
772
773 This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
774
775 Query Speed in Degrees (**QSD**)
776
777 Ex: #5QSD<cr> might return *5QSD1800<cr>
778
779 By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
780 )))
781
782 |(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)**
783 | |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
784 | |ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
785 | |ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
786 | |ex: #5QSD3<cr>|Target travel speed
787
788 |(% style="width:30px" %) |(((
789 Configure Speed in Degrees (**CSD**)
790
791 Ex: #5CSD1800<cr>
792
793 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
794 )))
795
796 |(% colspan="2" %)(((
797 ====== __Maximum Speed in RPM (**SR**)__ ======
798 )))
799 |(% style="width:30px" %) |(((
800 Ex: #5SR45<cr>
801
802 This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
803
804 Query Speed in RPM (**QSR**)
805
806 Ex: #5QSR<cr> might return *5QSR45<cr>
807
808 By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
809 )))
810
811 |(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)**
812 | |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
813 | |ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
814 | |ex: #5QSR2<cr>|Instantaneous speed (same as QWD)
815 | |ex: #5QSR3<cr>|Target travel speed
816
817 |(((
818 Configure Speed in RPM (**CSR**)
819
820 Ex: #5CSR45<cr>
821
822 Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
823 )))|
824
825 == Modifiers ==
826
827 |(% colspan="2" %)(((
828 ====== __Speed__ ======
829 )))
830 |(% style="width:30px" %) |(((
831 Ex: #5P1500S750<cr>
832
833 Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
834
835 Ex: #5D0SD180<cr>
836
837 Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.
838
839 Query Speed (**QS**)
840
841 Ex: #5QS<cr> might return *5QS300<cr>
842
843 This command queries the current speed in microseconds per second.
844 )))
845
846 |(% colspan="2" %)(((
847 ====== __Timed move (**T**) modifier__ ======
848 )))
849 |(% style="width:30px" %) |(((
850 Example: #5P1500T2500<cr>
851
852 Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
853
854 **Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
855 )))
856
857 |(% colspan="2" %)(((
858 ====== __Current Halt & Hold (**CH**) modifier__ ======
859 )))
860 |(% style="width:30px" %) |(((
861 Example: #5D1423CH400<cr>
862
863 This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.
864
865 This modifier can be added to the following actions: D; MD; WD; WR.
866 )))
867
868 |(% colspan="2" %)(((
869 ====== __Current Limp (**CL**) modifier__ ======
870 )))
871 |(% style="width:30px" %) |(((
872 Example: #5D1423CL400<cr>
873
874 This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.
875
876 This modifier can be added to the following actions: D; MD; WD; WR.
877 )))
878
879 == Telemetry ==
880
881 |(% colspan="2" %)(((
882 ====== __Query Voltage (**QV**)__ ======
883 )))
884 |(% style="width:30px" %) |(((
885 Ex: #5QV<cr> might return *5QV11200<cr>
886
887 The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.
888 )))
889
890 |(% colspan="2" %)(((
891 ====== __Query Temperature (**QT**)__ ======
892 )))
893 |(% style="width:30px" %) |(((
894 Ex: #5QT<cr> might return *5QT564<cr>
895
896 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
897 )))
898
899 |(% colspan="2" %)(((
900 ====== __Query Current (**QC**)__ ======
901 )))
902 |(% style="width:30px" %) |(((
903 Ex: #5QC<cr> might return *5QC140<cr>
904
905 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
906 )))
907
908 |(% colspan="2" %)(((
909 ====== __Query Model String (**QMS**)__ ======
910 )))
911 |(% style="width:30px" %) |(((
912 Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
913
914 This reply means that the servo model is LSS-HS1: a high speed servo, first revision.
915 )))
916
917 |(% colspan="2" %)(((
918 ====== __Query Firmware (**QF**)__ ======
919 )))
920 |(% style="width:30px" %) |(((
921 Ex: #5QF<cr> might return *5QF368<cr>
922
923 The number in the reply represents the firmware version, in this example being 368.
924
925 The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14
926 )))
927
928 == RGB LED ==
929
930 |(% colspan="2" %)(((
931 ====== __LED Color (**LED**)__ ======
932 )))
933 |(% style="width:30px" %) |(((
934 Ex: #5LED3<cr>
935
936 This action sets the servo's RGB LED color for that session.
937
938 The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
939
940 0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;
941
942 Query LED Color (**QLED**)
943
944 Ex: #5QLED<cr> might return *5QLED5<cr>
945
946 This simple query returns the indicated servo's LED color.
947
948 Configure LED Color (**CLED**)
949
950 Ex: #5CLED3<cr>
951
952 Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.
953 )))
954
955 |(% colspan="2" %)(((
956 ====== __Configure LED Blinking (**CLB**)__ ======
957 )))
958 |(% style="width:30px" %) |(((
959 This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:
960 )))
961
962 |(% style="width:30px" %) |(% style="width:200px" %)**Blink While:**|(% style="width:50px" %)**#**|
963 | |No blinking|0|
964 | |Limp|1|
965 | |Holding|2|
966 | |Accelerating|4|
967 | |Decelerating|8|
968 | |Free|16|
969 | |Travelling|32|
970 | |Always blink|63|
971
972 |(% style="width:30px" %) |(((
973 To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
974
975 Ex: #5CLB0 to turn off all blinking (LED always solid)
976
977 Ex: #5CLB1 only blink when limp (1)
978
979 Ex: #5CLB2 only blink when holding (2)
980
981 Ex: #5CLB12 only blink when accel or decel (accel 4 + decel 8 = 12)
982
983 Ex: #5CLB48 only blink when free or travel (free 16 + travel 32 = 48)
984
985 Ex: #5CLB63 blink in all status (1 + 2 + 4 + 8 + 16 + 32)
986
987 RESETTING the servo is needed.
988 )))
989
990 |(% colspan="2" style="width:30px" %)(((
991 ====== __RGB LED Patterns__ ======
992 )))
993 |(% style="width:30px" %) |(((
994 The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-button-menu/]]
995 )))
996 |(% style="width:30px" %) |[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS%20-%20LED%20Patterns.png||alt="LSS - LED Patterns.png"]]
Copyright RobotShop 2018