Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% class="wikigeneratedid" id="HTableofContents" %) 2 -** Page Contents**2 +**Table of Contents** 3 3 4 4 {{toc depth="3"/}} 5 5 ... ... @@ -128,13 +128,11 @@ 128 128 129 129 = Command List = 130 130 131 -== Regular == 132 - 133 133 |= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 134 134 | 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 135 135 | 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 136 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29 modifier"]]| T| | | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %)137 -| 4|[[**S**peed>>||anchor="H4.Speed28S29 modifier"]]| S| | | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %)134 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %) 135 +| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %) 138 138 | 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 139 139 | 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 140 140 0 ... ... @@ -145,54 +145,56 @@ 145 145 | 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | | ✓|microseconds|(% style="width:510px" %)((( 146 146 Inherited from SSC-32 serial protocol 147 147 )))|(% style="text-align:center; width:113px" %) 148 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)146 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 149 149 | 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 150 150 | 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 151 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12. MaxSpeedinDegrees28SD29"]]| SD| QSD|CSD|✓| ✓| ✓|degrees per second(°/s)|(% style="width:510px" %)(((149 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD|✓| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)((( 152 152 QSD: Add modifier "2" for instantaneous speed. 153 153 154 154 SD overwrites SR / CSD overwrites CSR and vice-versa. 155 155 )))|(% style="text-align:center; width:113px" %)Max per servo 156 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13. MaxSpeedinRPM28SR29"]]| SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((154 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 157 157 QSR: Add modifier "2" for instantaneous speed 158 158 159 159 SR overwrites SD / CSR overwrites CSD and vice-versa. 160 160 )))|(% style="text-align:center; width:113px" %)Max per servo 161 -| 14|[[**LED** Color>>||anchor="H1 4.LEDColor28LED29"]]| LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7162 -| 15|[[** G**yredirection (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]|G| QG| CG|✓|✓| ✓|none |(% style="width:510px" %)Gyre/rotationdirection:1= CW (clockwise)-1= CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1163 -| 16|[[** ID**#>>||anchor="H16.IdentificationNumber28ID29"]]| | QID| CID| | | ✓|none (integerfrom 0 to 250)|(% style="width:510px" %)Note:ID 254 is a "broadcast" which all servos respond to.|(% style="text-align:center; width:113px" %)0164 -| 17|[[** B**audrate>>||anchor="H17.BaudRate"]]| | QB| CB|(integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600165 -| 18| //{comingsoon}//| | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((166 - 159 +| 14|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7 160 +| 15|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0 161 +| 16|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600 162 +| 17|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 163 +| 18|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | | ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)((( 164 +Limp 167 167 ))) 168 -| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstPosition28Degrees2928FD29"]]| | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp 169 -| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %) 170 -| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 171 -| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 172 -| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 173 -| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 174 -| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 175 -| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 176 -| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | |CRC|✓| | ✓|none|(% style="width:510px" %)((( 177 -Change to RC mode 1 (position) or 2 (wheel). 166 +| 19|[[**F**irst Position (**D**eg)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| | ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp 167 +| 20|[[**T**arget (**D**eg) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 168 +| 21|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %) 169 +| 22|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 170 +| 23|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 171 +| 24|[[**Q**uery (gen. status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 172 +| 25|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 173 +| 26|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 174 +| 27|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 175 +| 28|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1|✓| | ✓|none|(% style="width:510px" %)((( 176 +Change to RC position mode. To revert to smart mode, use the button menu. 178 178 )))|(% style="text-align:center; width:113px" %)Serial 179 -| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 180 -| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 181 -| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 178 +| 29|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2|✓| | ✓| |(% style="width:510px" %)Change to RC wheel mode. To revert to smart mode, use the button menu.|(% style="text-align:center; width:113px" %)Serial 179 +| 30|[[**RESET**>>||anchor="H31.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 180 +| 31|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 181 +| 32|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 182 182 183 183 == Advanced == 184 184 185 -|= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes 186 -| A1|[[**A**ngular **S**tiffness>>||anchor="H A1.AngularStiffness28AS29"]]|AS|QAS|CAS|✓| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4187 -| A2|[[**A**ngular **H**olding Stiffness>>||anchor="H A2.AngularHoldingStiffness28AH29"]]|AH|QAH|CAH|✓| | ✓|none (integer -10 to +10)|(% style="width:510px" %)EffectisdifferentbetweenserialandRC188 -| A3|[[**A**ngular **A**cceleration>>||anchor="H A3:AngularAcceleration28AA29"]]|AA|QAA|CAA|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared189 -| A4|[[**A**ngular **D**eceleration>>||anchor="H A4:AngularDeceleration28AD29"]]|AD|QAD|CAD|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared190 -| A5|[[**E**nable **M**otion Control>>||anchor="H A5:MotionControl28EM29"]]|EM|QEM| | | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable191 -| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="H A6.ConfigureLEDBlinking28CLB29"]]| | | CLB| | ✓| |none (integer from 0 to 63)|(% style="width:510px" %)(((185 +|= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 186 +| A1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS|QAS|CAS|✓| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0 187 +| A2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH|✓| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1 188 +| A3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 189 +| A4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 190 +| A5|[[**E**nable **M**otion Control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %) 191 +| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| | ✓| |none (integer from 0 to 63)|(% style="width:510px" %)((( 192 192 0=No blinking, 63=Always blink; 193 193 194 194 Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 195 -))) 195 +)))|(% style="text-align:center; width:113px" %) 196 196 197 197 == Details == 198 198 ... ... @@ -208,7 +208,7 @@ 208 208 209 209 This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position. 210 210 211 -====== __3. Timed move (**T**) modifier__ ======211 +====== __3. Timed move (**T**)__ ====== 212 212 213 213 Example: #5P1500T2500<cr> 214 214 ... ... @@ -216,7 +216,7 @@ 216 216 217 217 Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 218 218 219 -====== __4. Speed (**S**) modifier__ ======219 +====== __4. Speed (**S**)__ ====== 220 220 221 221 Example: #5P1500S750<cr> 222 222 ... ... @@ -280,7 +280,7 @@ 280 280 281 281 Example: #5P2334<cr> 282 282 283 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.283 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected to end points. 284 284 285 285 Query Position in Pulse (**QP**) 286 286 ... ... @@ -303,13 +303,6 @@ 303 303 304 304 This means the servo is located at 13.2 degrees. 305 305 306 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 307 -Query Target Position in Degrees (**QDT**) 308 - 309 -Ex: #5QDT<cr> might return *5QDT6783<cr> 310 - 311 -The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 312 - 313 313 ====== __10. Wheel Mode in Degrees (**WD**)__ ====== 314 314 315 315 Ex: #5WD900<cr> ... ... @@ -384,8 +384,10 @@ 384 384 385 385 Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 386 386 387 -====== __14.LEDColor (**LED**)__======380 +====== ====== 388 388 382 +====== __16. RGB LED (**LED**)__ ====== 383 + 389 389 Ex: #5LED3<cr> 390 390 391 391 This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. ... ... @@ -400,70 +400,81 @@ 400 400 401 401 Configure LED Color (**CLED**) 402 402 403 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 398 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 404 404 405 -====== __1 5.GyreRotation Direction(**G**)__ ======400 +====== __17. Identification Number__ ====== 406 406 407 - "Gyre"is definedasacircularcourse ormotion. The effect ofchangingthegyre directionisas ifyou were to usea mirrorimageofacircle.CW=1;CCW= -1. Thefactorydefaultis clockwise (CW).402 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands. 408 408 409 - Ex:#5G-1<cr>404 +Query Identification (**QID**) 410 410 411 - Thiscommand will cause servo#5's positions to be inverted, effectively causing the servoto rotate in the opposite direction given the same command. For examplein a 2WD robot, servos are often physically installed back to back, therefore settingone of the servostoa negative gyration, thesame wheel command (ex WR30)to both servos will cause therobotto move forward or backward rather than rotate.406 +EX: #254QID<cr> might return *QID5<cr> 412 412 413 - QueryGyreDirection (**QG**)408 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply using the broadcast command (ID 254). Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID. 414 414 415 - Ex: #5QG<cr> might return*5QG-1<cr>410 +Configure ID (**CID**) 416 416 417 - Thevalue returned above means the servo is in acounter-clockwise gyration.412 +Ex: #4CID5<cr> 418 418 419 -Con figureGyre(**CG**)414 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. 420 420 421 - Ex:#5CG-1<cr>416 +====== __18. Baud Rate__ ====== 422 422 423 -This changes the gyre direction as described above and also writes to EEPROM. 418 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 419 +\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out. 424 424 425 - ======__16. Identification Number(**ID**)__ ======421 +Query Baud Rate (**QB**) 426 426 427 - Aservo's identification numbercannot be set "on the fly" andmust be configured via the CID command described below. The factorydefault ID numberfor all servos is 0. Since smartservos are intended to be daisy chained, in order to respond differently from one another, theusermust set differentidentification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate).423 +Ex: #5QB<cr> might return *5QB9600<cr> 428 428 429 -Query Identification(**QID**)425 +Querying the baud rate is used simply to confirm the CB configuration command before the servo is power cycled. 430 430 431 - EX: #254QID<cr> mightreturn*QID5<cr>427 +Configure Baud Rate (**CB**) 432 432 433 - When using the queryID command, itis best to onlyhaveoneservo connected and thusreceive onlyonereply. Thisisuseful whenyou arenotureoftheservo'sID,butdon'twantto changeit. Using the broadcastcommand (ID 254) with only oneservowillhave that servoreplywith its ID number(assumingthe query is sent . Alternatively,pushing thebuttonupon startup and temporarily setting the servoID to 255 willstillresult in the servo respondingwith its "real"ID.429 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only be in place when the servo is power cycled. 434 434 435 - ConfigureID (**CID**)431 +Ex: #5CB9600<cr> 436 436 437 - Ex:#4CID5<cr>433 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 438 438 439 - Settinga servo's ID in EEPROM is done via the CID command.All servos connectedtohe same serial bus will be assignedthat ID. In most situationseach servo must be set a unique ID, which means each servo must beonnectedindividually tothe serial bus andreceive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.435 +====== __19. Gyre Rotation Direction__ ====== 440 440 441 - ======__17.BaudRate__======437 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 442 442 443 - A servo's baud ratecannot beset"on the fly" and must be configuredvia the CB command described below. Thefactory defaultbaudratefor all servos is 9600. Since smartservosareintended to be daisy chained,inorder to respond to the same serial bus, all servos ina project shouldideally be set to the same baudrate. Settingdifferentbaud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above.439 +{images showing before and after with AR and Origin offset} 444 444 445 -Query BaudRate (**QB**)441 +Query Gyre Direction (**QG**) 446 446 447 -Ex: #5Q B<cr> might return *5QB9600<cr>443 +Ex: #5QG<cr> might return *5QG-1<cr> 448 448 449 - Since thecommand to query thebaudrate must bedoneatthe servo'sexistingbaudrate, itcan simply be used toconfirmtheCB configurationcommand wascorrectly received before theservois power cycled and the new baudrate takes effect.445 +The value returned above means the servo is in a counter-clockwise gyration. 450 450 451 -Configure Baud Rate (**CB**)447 +Configure Gyre (**CG**) 452 452 453 - Important Note:the servo'scurrent session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.449 +Ex: #5CG-1<cr> 454 454 455 - Ex:#5CB9600<cr>451 +This changes the gyre direction as described above and also writes to EEPROM. 456 456 457 - Sendingthiscommandwill changethe baudrate associated with servoID 5 to 9600 bitspersecond.453 +====== __20. First / Initial Position (pulse)__ ====== 458 458 459 - ======__18.{//Coming soon//}__======455 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 460 460 461 - Commandcomingsoon....457 +Query First Position in Pulses (**QFP**) 462 462 463 - ======__19.FirstPosition(Degrees)(**FD**)__======459 +Ex: #5QFP<cr> might return *5QFP1550<cr> 464 464 465 - In certaincases,ausermight want tohavetheservomovetoaspecificangle upon power up; we refer to this as"first position"(a.k.a. "initialposition"). Thefactorydefault has no first positionvaluestoredin EEPROM and therefore uponpower up,theservoremainslimp untilaposition(or holdcommand)is assigned. FP and FD are differentin thatFP is used for RC mode only, whereas FD isused for smart mode only.461 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If no first position has been set, servo will respond with DIS ("disabled"). 466 466 463 +Configure First Position in Pulses (**CFP**) 464 + 465 +Ex: #5CP1550<cr> 466 + 467 +This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled). 468 + 469 +====== __21. First / Initial Position (Degrees)__ ====== 470 + 471 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 472 + 467 467 Query First Position in Degrees (**QFD**) 468 468 469 469 Ex: #5QFD<cr> might return *5QFD64<cr> ... ... @@ -474,110 +474,104 @@ 474 474 475 475 Ex: #5CD64<cr> 476 476 477 -This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up.483 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up. 478 478 479 -====== __2 0. QueryModelString (**QMS**)__ ======485 +====== __22. Query Target Position in Degrees (**QDT**)__ ====== 480 480 481 -Ex: #5Q MS<cr> might return *5QMSLSS-HS1cr>487 +Ex: #5QDT<cr> might return *5QDT6783<cr> 482 482 483 -This re plymeans the servomodelisLSS-HS1,meaning ahighspeed servo,first revision.489 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 484 484 485 -====== __2 1. QuerySerialNumber (**QN**)__ ======491 +====== __23. Query Model String (**QMS**)__ ====== 486 486 487 -Ex: #5Q N<cr> might return *5QN12345678<cr>493 +Ex: #5QMS<cr> might return *5QMSLSS-HS1cr> 488 488 489 -Th e numberintheresponse (12345678) wouldbe'sserialnumberwhich issetand shouldnot bechangedby theuser.495 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 490 490 491 -====== __2 2. QueryFirmware (**QF**)__ ======497 +====== __23b. Query Model (**QM**)__ ====== 492 492 493 -Ex: #5Q F<cr> might return *5QF411<cr>499 +Ex: #5QM<cr> might return *5QM68702699520cr> 494 494 495 -Th e numberinthereplyrepresents thefirmwareversion, inthisexamplebeing411.501 +This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision. 496 496 497 -====== __2 3. Query Status(**Q**)__ ======503 +====== __24. Query Serial Number (**QN**)__ ====== 498 498 499 - Thestatus query describedwhat the servois currently doing. Thequery returnsan integer which must be looked up in the table below. Use the CLB advanced command to have the LED blink forcertain statuses.505 +Ex: #5QN<cr> might return *5QN~_~_<cr> 500 500 501 - Ex:#5Q<cr>might return*5Q6<cr>,which indicatesthemotoris holdingaposition.507 +The number in the response is the servo's serial number which is set and cannot be changed. 502 502 503 -|***Value returned (Q)**|**Status**|**Detailed description** 504 -|ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 505 -|ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 506 -|ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely 507 -|ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 508 -|ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 509 -|ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 510 -|ex: *5Q6<cr>|6: Holding|Keeping current position 511 -|ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 512 -|ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 513 -|ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 514 -|ex: *5Q10<cr>|10: Safe Mode|((( 515 -A safety limit has been exceeded (temperature, peak current or extended high current draw). 509 +====== __25. Query Firmware (**QF**)__ ====== 516 516 517 -Send a Q1 command to know which limit has been reached (described below). 518 -))) 511 +Ex: #5QF<cr> might return *5QF11<cr> 519 519 520 -(% class="wikigeneratedid" %) 521 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 513 +The integer in the reply represents the firmware version with one decimal, in this example being 1.1 522 522 523 -|***Value returned (Q1)**|**Status**|**Detailed description** 524 -|ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 525 -|ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 526 -|ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 527 -|ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 515 +====== __26. Query Status (**Q**)__ ====== 528 528 529 - ======__24.QueryVoltage(**QV**)__======517 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 530 530 519 +|*Value returned|**Status**|**Detailed description** 520 +|ex: *5Q0<cr>|Unknown|LSS is unsure 521 +|ex: *5Q1<cr>|Limp|Motor driving circuit is not powered and horn can be moved freely 522 +|ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely 523 +|ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed 524 +|ex: *5Q4<cr>|Traveling|Moving at a stable speed 525 +|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position. 526 +|ex: *5Q6<cr>|Holding|Keeping current position 527 +|ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque 528 +|ex: *5Q8<cr>|Outside limits|{More details coming soon} 529 +|ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting 530 +|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 531 + 532 +====== __27. Query Voltage (**QV**)__ ====== 533 + 531 531 Ex: #5QV<cr> might return *5QV11200<cr> 532 532 533 533 The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery). 534 534 535 -====== __2 5. Query Temperature (**QT**)__ ======538 +====== __28. Query Temperature (**QT**)__ ====== 536 536 537 537 Ex: #5QT<cr> might return *5QT564<cr> 538 538 539 539 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 540 540 541 -====== __2 6. Query Current (**QC**)__ ======544 +====== __29. Query Current (**QC**)__ ====== 542 542 543 543 Ex: #5QC<cr> might return *5QC140<cr> 544 544 545 545 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 546 546 547 -====== __ 27.ConfigureRC Mode (**CRC**)__ ======550 +====== __30. RC Mode (**CRC**)__ ====== 548 548 549 549 This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 550 550 551 551 |**Command sent**|**Note** 555 +|ex: #5CRC<cr>|Stay in smart mode. 552 552 |ex: #5CRC1<cr>|Change to RC position mode. 553 553 |ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 554 -|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode.558 +|ex: #5CRC*<cr>|Where * is any number or value. Stay in smart mode. 555 555 556 -EX: #5CRC 2<cr>560 +EX: #5CRC<cr> 557 557 558 - Thiscommand would place the servo in RC wheel mode after a RESET or power cycle.Note that after aRESETor power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.562 +====== __31. RESET__ ====== 559 559 560 -Important note:** **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:Lynxmotion Smart Servo (LSS).LSS - Button Menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), ensuring a common GND and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe. 561 - 562 -====== __28. **RESET**__ ====== 563 - 564 564 Ex: #5RESET<cr> or #5RS<cr> 565 565 566 566 This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 567 567 568 -====== __2 9.**DEFAULT**& CONFIRM__ ======568 +====== __32. DEFAULT & CONFIRM__ ====== 569 569 570 570 Ex: #5DEFAULT<cr> 571 571 572 -This command sets in motion the reset ofall values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.572 +This command sets in motion the reset all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 573 573 574 574 EX: #5DEFAULT<cr> followed by #5CONFIRM<cr> 575 575 576 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will e xitthecommand.576 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 577 577 578 578 Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 579 579 580 -====== __3 0.**UPDATE**& CONFIRM__ ======580 +====== __33. UPDATE & CONFIRM__ ====== 581 581 582 582 Ex: #5UPDATE<cr> 583 583 ... ... @@ -589,13 +589,9 @@ 589 589 590 590 Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 591 591 592 -= Advanced = 593 - 594 -The motion controller used in serial mode is not the same as the motion controller use in RC mode. RC mode is intended to add functionality to what would be considered "normal" RC behavior based on PWM input. 595 - 596 596 ====== __A1. Angular Stiffness (**AS**)__ ====== 597 597 598 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. Thereare no units.594 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. 599 599 600 600 A positive value of "angular stiffness": 601 601 ... ... @@ -607,7 +607,7 @@ 607 607 * Causes a slower acceleration to the travel speed, and a slower deceleration 608 608 * Allows the target position to deviate more from its position before additional torque is applied to bring it back 609 609 610 -The default value forstiffnessdependingonthefirmwaremay be0or1.and the effect becomes extreme below -4 and above +4.Maximum values are -10 to +10.606 +The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior. 611 611 612 612 Ex: #5AS-2<cr> 613 613 ... ... @@ -621,9 +621,9 @@ 621 621 622 622 Writes the desired angular stiffness value to memory. 623 623 624 -====== __A2. Angular Holding 620 +====== __A2. Angular Holding Stiffness (**AH**)__ ====== 625 625 626 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default valueforstiffnessdependingon the firmwaremay be0 or1. Greatervalues produceincreasingly erratic behavior andthe effect becomes extreme below -4 andabove +4. Maximum values are -10to +10. Note thatwhenconsideringltering a stiffnessvalue,theendeffect dependsthemodebeingtested.622 +The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected. 627 627 628 628 Ex: #5AH3<cr> 629 629 ... ... @@ -639,64 +639,30 @@ 639 639 640 640 Ex: #5CAH2<cr> 641 641 642 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM . Note that when considering altering a stiffness value, the end effect depends on the mode being tested.638 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM 643 643 644 644 ====== __A3: Angular Acceleration (**AA**)__ ====== 645 645 646 - The default value forangular accelerationis 100, which is thesame asthe maximum deceleration. Acceptsvalues of between 1 and 100. Incrementsof10 degrees per second squared.642 +{More details to come} 647 647 648 -Ex: #5AA30<cr> 649 - 650 -Query Angular Acceleration (**QAD**) 651 - 652 -Ex: #5QA<cr> might return *5QA30<cr> 653 - 654 -Configure Angular Acceleration (**CAD**) 655 - 656 -Ex: #5CA30<cr> 657 - 658 658 ====== __A4: Angular Deceleration (**AD**)__ ====== 659 659 660 - The default value forangulardeceleration is 100, which is the same as the maximum acceleration. Valuesbetween1 and 15 have the greatest impact.646 +{More details to come} 661 661 662 -Ex: #5AD8<cr> 663 - 664 -Query Angular Deceleration (**QAD**) 665 - 666 -Ex: #5QD<cr> might return *5QD8<cr> 667 - 668 -Configure Angular Deceleration (**CAD**) 669 - 670 -Ex: #5CD8<cr> 671 - 672 672 ====== __A5: Motion Control (**EM**)__ ====== 673 673 674 - The command EM0 disables useof the motion controller(acceleration, velocity / travel,deceleration). As such, the servo will move at fullspeedfor all motioncommands. Thecommand EM1 enables use of the motion controller.650 +{More details to come} 675 675 676 -Note that if the modifiers S or T are used, it is assumed that motion control is desired, and for that command, EM1 will be used. 677 - 678 678 ====== __A6. Configure LED Blinking (**CLB**)__ ====== 679 679 680 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value: 654 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). 655 +You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 681 681 682 -(% style="width:195px" %) 683 -|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 684 -|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 685 -|(% style="width:134px" %)Limp|(% style="width:58px" %)1 686 -|(% style="width:134px" %)Holding|(% style="width:58px" %)2 687 -|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 688 -|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 689 -|(% style="width:134px" %)Free|(% style="width:58px" %)16 690 -|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 691 -|(% style="width:134px" %)Always blink|(% style="width:58px" %)63 692 - 693 693 To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 694 694 695 695 Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 696 -Ex: #5CLB1<cr> only blink when limp (1) 697 -Ex: #5CLB2<cr> only blink when holding (2) 698 -Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12) 699 -Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48) 700 -Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32) 701 - 702 -RESETTING the servo is needed. 660 +Ex: #5CLB1<cr> only blink when limp 661 +Ex: #5CLB2<cr> only blink when holding 662 +Ex: #5CLB12<cr> only blink when accel or decel 663 +Ex: #5CLB48<cr> only blink when free or travel 664 +Ex: #5CLB63<cr> blink in all status