Last modified by Eric Nantel on 2025/06/06 07:47

From version < 116.1 >
edited by Brahim Daouas
on 2019/03/20 14:28
To version < 98.1 >
edited by Coleman Benson
on 2019/02/01 16:13
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -xwiki:XWiki.BDaouas
1 +xwiki:XWiki.CBenson
Content
... ... @@ -1,5 +1,5 @@
1 1  (% class="wikigeneratedid" id="HTableofContents" %)
2 -**Page Contents**
2 +**Table of Contents**
3 3  
4 4  {{toc depth="3"/}}
5 5  
... ... @@ -79,7 +79,7 @@
79 79  
80 80  == Configuration Commands ==
81 81  
82 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
82 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
83 83  
84 84  1. Start with a number sign # (U+0023)
85 85  1. Servo ID number as an integer
... ... @@ -128,13 +128,11 @@
128 128  
129 129  = Command List =
130 130  
131 -== Regular ==
132 -
133 133  |= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
134 134  | 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
135 135  | 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
136 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]| T| | | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %)
137 -| 4|[[**S**peed>>||anchor="H4.Speed28S29modifier"]]| S| | | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %)
134 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %)
135 +| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %)
138 138  | 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
139 139  | 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
140 140  0
... ... @@ -145,54 +145,56 @@
145 145  | 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | | ✓|microseconds|(% style="width:510px" %)(((
146 146  Inherited from SSC-32 serial protocol
147 147  )))|(% style="text-align:center; width:113px" %)
148 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
146 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
149 149  | 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
150 150  | 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
151 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| SD| QSD|CSD|✓| ✓| ✓|degrees per second (°/s)|(% style="width:510px" %)(((
149 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD|✓| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)(((
152 152  QSD: Add modifier "2" for instantaneous speed.
153 153  
154 154  SD overwrites SR / CSD overwrites CSR and vice-versa.
155 155  )))|(% style="text-align:center; width:113px" %)Max per servo
156 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.MaxSpeedinRPM28SR29"]]| SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((
154 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((
157 157  QSR: Add modifier "2" for instantaneous speed
158 158  
159 159  SR overwrites SD / CSR overwrites CSD and vice-versa.
160 160  )))|(% style="text-align:center; width:113px" %)Max per servo
161 -| 14|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7
162 -| 15|[[**G**yre direction (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| G| QG| CG|| | ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
163 -| 16|[[**ID** #>>||anchor="H16.IdentificationNumber28ID29"]]| | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0
164 -| 17|[[**B**aud rate>>||anchor="H17.BaudRate"]]| | QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600
165 -| 18|//{coming soon}//| | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
166 -
159 +| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7
160 +| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center; width:113px" %)0
161 +| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600
162 +| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG|| | ✓|none |(% style="width:510px" %)Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
163 +| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | | | |none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)(((
164 +Limp
167 167  )))
168 -| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstPosition28Degrees2928FD29"]]| | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp
169 -| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %)
170 -| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %)
171 -| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
172 -| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
173 -| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
174 -| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
175 -| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
176 -| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | |CRC|✓| | ✓|none|(% style="width:510px" %)(((
177 -Change to RC mode 1 (position) or 2 (wheel).
166 +| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| | ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp
167 +| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
168 +| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %)
169 +| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %)
170 +| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
171 +| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
172 +| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
173 +| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
174 +| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
175 +| 30a|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1| | | ✓|none|(% style="width:510px" %)(((
176 +Puts the servo into RC mode. To revert to smart mode, use the button menu.
178 178  )))|(% style="text-align:center; width:113px" %)Serial
179 -| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
180 -| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
181 -| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
178 +| 30b|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2| | | ✓| |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
179 +| 31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
180 +| 32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
181 +| 33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
182 182  
183 183  == Advanced ==
184 184  
185 -|= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes
186 -| A1|[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]|AS|QAS|CAS|✓| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4
187 -| A2|[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|AH|QAH|CAH|✓| | ✓|none (integer -10 to +10)|(% style="width:510px" %)Effect is different between serial and RC
188 -| A3|[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|AA|QAA|CAA|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared
189 -| A4|[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|AD|QAD|CAD|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared
190 -| A5|[[**E**nable **M**otion Control>>||anchor="HA5:MotionControl28EM29"]]|EM|QEM| | | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable
191 -| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]| | | CLB| | ✓| |none (integer from 0 to 63)|(% style="width:510px" %)(((
185 +|= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
186 +| A1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS|QAS|CAS|✓| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0
187 +| A2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH|✓| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1
188 +| A3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
189 +| A4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
190 +| A5|[[**E**nable **M**otion Control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %)
191 +| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| | ✓| |none (integer from 0 to 63)|(% style="width:510px" %)(((
192 192  0=No blinking, 63=Always blink;
193 193  
194 194  Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
195 -)))
195 +)))|(% style="text-align:center; width:113px" %)
196 196  
197 197  == Details ==
198 198  
... ... @@ -208,7 +208,7 @@
208 208  
209 209  This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position.
210 210  
211 -====== __3. Timed move (**T**) modifier__ ======
211 +====== __3. Timed move (**T**)__ ======
212 212  
213 213  Example: #5P1500T2500<cr>
214 214  
... ... @@ -216,7 +216,7 @@
216 216  
217 217  Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
218 218  
219 -====== __4. Speed (**S**) modifier__ ======
219 +====== __4. Speed (**S**)__ ======
220 220  
221 221  Example: #5P1500S750<cr>
222 222  
... ... @@ -280,7 +280,7 @@
280 280  
281 281  Example: #5P2334<cr>
282 282  
283 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.
283 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected to end points.
284 284  
285 285  Query Position in Pulse (**QP**)
286 286  
... ... @@ -303,13 +303,6 @@
303 303  
304 304  This means the servo is located at 13.2 degrees.
305 305  
306 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %)
307 -Query Target Position in Degrees (**QDT**)
308 -
309 -Ex: #5QDT<cr> might return *5QDT6783<cr>
310 -
311 -The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
312 -
313 313  ====== __10. Wheel Mode in Degrees (**WD**)__ ======
314 314  
315 315  Ex: #5WD900<cr>
... ... @@ -334,22 +334,22 @@
334 334  
335 335  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
336 336  
337 -====== __12. Max Speed in Degrees (**SD**)__ ======
330 +====== __12. Speed in Degrees (**SD**)__ ======
338 338  
339 339  Ex: #5SD1800<cr>
340 340  
341 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
334 +This command sets the servo's maximum speed for action commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.
342 342  
343 343  Query Speed in Degrees (**QSD**)
344 344  
345 345  Ex: #5QSD<cr> might return *5QSD1800<cr>
346 346  
347 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed.
340 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed.
348 348  If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
349 349  
350 350  |**Command sent**|**Returned value (1/10 °)**
351 351  |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
352 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
345 +|ex: #5QSD1<cr>|Configured maximum speed  (set by CSD/CSR)
353 353  |ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
354 354  |ex: #5QSD3<cr>|Target travel speed
355 355  
... ... @@ -359,22 +359,22 @@
359 359  
360 360  Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
361 361  
362 -====== __13. Max Speed in RPM (**SR**)__ ======
355 +====== __13. Speed in RPM (**SR**)__ ======
363 363  
364 364  Ex: #5SD45<cr>
365 365  
366 -This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
359 +This command sets the servo's maximum speed for action commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.
367 367  
368 368  Query Speed in Degrees (**QSR**)
369 369  
370 370  Ex: #5QSR<cr> might return *5QSR45<cr>
371 371  
372 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed.
365 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a SD/SR command is processed.
373 373  If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
374 374  
375 375  |**Command sent**|**Returned value (1/10 °)**
376 376  |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
377 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
370 +|ex: #5QSR1<cr>|Configured maximum speed  (set by CSD/CSR)
378 378  |ex: #5QSR2<cr>|Instantaneous speed (same as QWR)
379 379  |ex: #5QSR3<cr>|Target travel speed
380 380  
... ... @@ -382,321 +382,288 @@
382 382  
383 383  Ex: #5CSR45<cr>
384 384  
385 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
378 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
386 386  
387 -====== __14. LED Color (**LED**)__ ======
380 +====== __14. Angular Stiffness (**AS**)__ ======
388 388  
389 -Ex: #5LED3<cr>
382 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes.
390 390  
391 -This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
384 +A positive value of "angular stiffness":
392 392  
393 -0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6= 7=MAGENTA, 8=WHITE 
386 +* The more torque will be applied to try to keep the desired position against external input / changes
387 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
394 394  
395 -Query LED Color (**QLED**)
389 +A negative value on the other hand:
396 396  
397 -Ex: #5QLED<cr> might return *5QLED5<cr>
391 +* Causes a slower acceleration to the travel speed, and a slower deceleration
392 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back
398 398  
399 -This simple query returns the indicated servo's LED color.
394 +The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior.
400 400  
401 -Configure LED Color (**CLED**)
396 +Ex: #5AS-2<cr>
402 402  
403 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
398 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
404 404  
405 -====== __15. Gyre Rotation Direction (**G**)__ ======
400 +Ex: #5QAS<cr>
406 406  
407 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
402 +Queries the value being used.
408 408  
409 -Ex: #5G-1<cr>
404 +Ex: #5CAS<cr>
410 410  
411 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
406 +Writes the desired angular stiffness value to memory.
412 412  
413 -Query Gyre Direction (**QG**)
408 +====== __15. Angular Hold Stiffness (**AH**)__ ======
414 414  
415 -Ex: #5QG<cr> might return *5QG-1<cr>
410 +The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected.
416 416  
417 -The value returned above means the servo is in a counter-clockwise gyration.
412 +Ex: #5AH3<cr>
418 418  
419 -Configure Gyre (**CG**)
414 +This sets the holding stiffness for servo #5 to 3 for that session.
420 420  
421 -Ex: #5CG-1<cr>
416 +Query Angular Hold Stiffness (**QAH**)
422 422  
423 -This changes the gyre direction as described above and also writes to EEPROM.
418 +Ex: #5QAH<cr> might return *5QAH3<cr>
424 424  
425 -====== __16. Identification Number (**ID**)__ ======
420 +This returns the servo's angular holding stiffness value.
426 426  
427 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate).
422 +Configure Angular Hold Stiffness (**CAH**)
428 428  
429 -Query Identification (**QID**)
424 +Ex: #5CAH2<cr>
430 430  
431 -EX: #254QID<cr> might return *QID5<cr>
426 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM
432 432  
433 -When using the query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number (assuming the query is sent . Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
428 +====== __15b: Angular Acceleration (**AA**)__ ======
434 434  
435 -Configure ID (**CID**)
430 +{More details to come}
436 436  
437 -Ex: #4CID5<cr>
432 +====== __15c: Angular Deceleration (**AD**)__ ======
438 438  
439 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.
434 +{More details to come}
440 440  
441 -====== __17. Baud Rate__ ======
436 +====== __15d: Motion Control (**EM**)__ ======
442 442  
443 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above.
438 +{More details to come}
444 444  
445 -Query Baud Rate (**QB**)
440 +====== __16. RGB LED (**LED**)__ ======
446 446  
447 -Ex: #5QB<cr> might return *5QB9600<cr>
442 +Ex: #5LED3<cr>
448 448  
449 -Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.
444 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
450 450  
451 -Configure Baud Rate (**CB**)
446 +0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6= 7=MAGENTA, 8=WHITE 
452 452  
453 -Important Note: the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.
448 +Query LED Color (**QLED**)
454 454  
455 -Ex: #5CB9600<cr>
450 +Ex: #5QLED<cr> might return *5QLED5<cr>
456 456  
457 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
452 +This simple query returns the indicated servo's LED color.
458 458  
459 -====== __18. {//Coming soon//}__ ======
454 +Configure LED Color (**CLED**)
460 460  
461 -Command coming soon....
456 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
462 462  
463 -====== __19. First Position (Degrees) (**FD**)__ ======
458 +====== __16b. Configure LED Blinking (**CLB**)__ ======
464 464  
465 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
460 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details).
461 +You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
466 466  
467 -Query First Position in Degrees (**QFD**)
463 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
468 468  
469 -Ex: #5QFD<cr> might return *5QFD64<cr>
465 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
466 +Ex: #5CLB1<cr> only blink when limp
467 +Ex: #5CLB2<cr> only blink when holding
468 +Ex: #5CLB12<cr> only blink when accel or decel
469 +Ex: #5CLB48<cr> only blink when free or travel
470 +Ex: #5CLB63<cr> blink in all status
470 470  
471 -The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds.
472 +====== __17. Identification Number__ ======
472 472  
473 -Configure First Position in Degrees (**CFD**)
474 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
474 474  
475 -Ex: #5CD64<cr>
476 +Query Identification (**QID**)
476 476  
477 -This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up.
478 +EX: #254QID<cr> might return *QID5<cr>
478 478  
479 -====== __20. Query Model String (**QMS**)__ ======
480 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply using the broadcast command (ID 254). Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
480 480  
481 -Ex: #5QMS<cr> might return *5QMSLSS-HS1cr>
482 +Configure ID (**CID**)
482 482  
483 -This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
484 +Ex: #4CID5<cr>
484 484  
485 -====== __21. Query Serial Number (**QN**)__ ======
486 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like.
486 486  
487 -Ex: #5QN<cr> might return *5QN12345678<cr>
488 +====== __18. Baud Rate__ ======
488 488  
489 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
490 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above.
491 +\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out.
490 490  
491 -====== __22. Query Firmware (**QF**)__ ======
493 +Query Baud Rate (**QB**)
492 492  
493 -Ex: #5QF<cr> might return *5QF411<cr>
495 +Ex: #5QB<cr> might return *5QB9600<cr>
494 494  
495 -The number in the reply represents the firmware version, in this example being 411.
497 +Querying the baud rate is used simply to confirm the CB configuration command before the servo is power cycled.
496 496  
497 -====== __23. Query Status (**Q**)__ ======
499 +Configure Baud Rate (**CB**)
498 498  
499 -The status query described what the servo is currently doing. The query returns an integer which must be looked up in the table below. Use the CLB advanced command to have the LED blink for certain statuses.
501 +Important Note: the servo's current session retains the given baud rate anthe new baud rate will only be in place when the servo is power cycled.
500 500  
501 -Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
503 +Ex: #5CB9600<cr>
502 502  
503 -|***Value returned (Q)**|**Status**|**Detailed description**
504 -|ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
505 -|ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
506 -|ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely
507 -|ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
508 -|ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
509 -|ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
510 -|ex: *5Q6<cr>|6: Holding|Keeping current position
511 -|ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
512 -|ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
513 -|ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
514 -|ex: *5Q10<cr>|10: Safe Mode|(((
515 -A safety limit has been exceeded (temperature, peak current or extended high current draw).
505 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
516 516  
517 -Send a Q1 command to know which limit has been reached (described below).
518 -)))
507 +====== __19. Gyre Rotation Direction__ ======
519 519  
520 -(% class="wikigeneratedid" %)
521 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
509 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
522 522  
523 -|***Value returned (Q1)**|**Status**|**Detailed description**
524 -|ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
525 -|ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
526 -|ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
527 -|ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
511 +{images showing before and after with AR and Origin offset}
528 528  
529 -====== __24. Query Voltage (**QV**)__ ======
513 +Query Gyre Direction (**QG**)
530 530  
531 -Ex: #5QV<cr> might return *5QV11200<cr>
515 +Ex: #5QG<cr> might return *5QG-1<cr>
532 532  
533 -The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
517 +The value returned above means the servo is in a counter-clockwise gyration.
534 534  
535 -====== __25. Query Temperature (**QT**)__ ======
519 +Configure Gyre (**CG**)
536 536  
537 -Ex: #5QT<cr> might return *5QT564<cr>
521 +Ex: #5CG-1<cr>
538 538  
539 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
523 +This changes the gyre direction as described above and also writes to EEPROM.
540 540  
541 -====== __26. Query Current (**QC**)__ ======
525 +====== __20. First / Initial Position (pulse)__ ======
542 542  
543 -Ex: #5QC<cr> might return *5QC140<cr>
527 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
544 544  
545 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
529 +Query First Position in Pulses (**QFP**)
546 546  
547 -====== __27. Configure RC Mode (**CRC**)__ ======
531 +Ex: #5QFP<cr> might return *5QFP1550<cr>
548 548  
549 -This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
533 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If no first position has been set, servo will respond with DIS ("disabled").
550 550  
551 -|**Command sent**|**Note**
552 -|ex: #5CRC1<cr>|Change to RC position mode.
553 -|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode.
554 -|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode.
535 +Configure First Position in Pulses (**CFP**)
555 555  
556 -EX: #5CRC2<cr>
537 +Ex: #5CP1550<cr>
557 557  
558 -This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.
539 +This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled).
559 559  
560 -Important note:** **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:LynxmotionSmartServo.LSS - Button Menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), ensuring a common GND and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.
541 +====== __21. First / Initial Position (Degrees)__ ======
561 561  
562 -====== __28. **RESET**__ ======
543 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
563 563  
564 -Ex: #5RESET<cr> or #5RS<cr>
545 +Query First Position in Degrees (**QFD**)
565 565  
566 -This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
547 +Ex: #5QFD<cr> might return *5QFD64<cr>
567 567  
568 -====== __29. **DEFAULT** & CONFIRM__ ======
549 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds.
569 569  
570 -Ex: #5DEFAULT<cr>
551 +Configure First Position in Degrees (**CFD**)
571 571  
572 -This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
553 +Ex: #5CD64<cr>
573 573  
574 -EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
555 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up.
575 575  
576 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
557 +====== __22. Query Target Position in Degrees (**QDT**)__ ======
577 577  
578 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
559 +Ex: #5QDT<cr> might return *5QDT6783<cr>
579 579  
580 -====== __30. **UPDATE** & CONFIRM__ ======
561 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
581 581  
582 -Ex: #5UPDATE<cr>
563 +====== __23. Query Model String (**QMS**)__ ======
583 583  
584 -This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
565 +Ex: #5QMS<cr> might return *5QMSLSS-HS1cr>
585 585  
586 -EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
567 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
587 587  
588 -Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
569 +====== __23b. Query Model (**QM**)__ ======
589 589  
590 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
571 +Ex: #5QM<cr> might return *5QM68702699520cr>
591 591  
592 -= Advanced =
573 +This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision.
593 593  
594 -The motion controller used in serial mode is not the same as the motion controller use in RC mode. RC mode is intended to add functionality to what would be considered "normal" RC behavior based on PWM input.
575 +====== __24. Query Serial Number (**QN**)__ ======
595 595  
596 -====== __A1. Angular Stiffness (**AS**)__ ======
577 +Ex: #5QN<cr> might return *5QN~_~_<cr>
597 597  
598 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.
579 +The number in the response is the servo's serial number which is set and cannot be changed.
599 599  
600 -A positive value of "angular stiffness":
581 +====== __25. Query Firmware (**QF**)__ ======
601 601  
602 -* The more torque will be applied to try to keep the desired position against external input / changes
603 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
583 +Ex: #5QF<cr> might return *5QF11<cr>
604 604  
605 -A negative value on the other hand:
585 +The integer in the reply represents the firmware version with one decimal, in this example being 1.1
606 606  
607 -* Causes a slower acceleration to the travel speed, and a slower deceleration
608 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back
587 +====== __26. Query Status (**Q**)__ ======
609 609  
610 -The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
589 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
611 611  
612 -Ex: #5AS-2<cr>
591 +|*Value returned|**Status**|**Detailed description**
592 +|ex: *5Q0<cr>|Unknown|LSS is unsure
593 +|ex: *5Q1<cr>|Limp|Motor driving circuit is not powered and horn can be moved freely
594 +|ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely
595 +|ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed
596 +|ex: *5Q4<cr>|Traveling|Moving at a stable speed
597 +|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position.
598 +|ex: *5Q6<cr>|Holding|Keeping current position
599 +|ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque
600 +|ex: *5Q8<cr>|Outside limits|{More details coming soon}
601 +|ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting
602 +|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
613 613  
614 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
604 +====== __27. Query Voltage (**QV**)__ ======
615 615  
616 -Ex: #5QAS<cr>
606 +Ex: #5QV<cr> might return *5QV11200<cr>
617 617  
618 -Queries the value being used.
608 +The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
619 619  
620 -Ex: #5CAS<cr>
610 +====== __28. Query Temperature (**QT**)__ ======
621 621  
622 -Writes the desired angular stiffness value to memory.
612 +Ex: #5QT<cr> might return *5QT564<cr>
623 623  
624 -====== __A2. Angular Holding Stiffness (**AH**)__ ======
614 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
625 625  
626 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. Note that when  considering altering a stiffness value, the end effect depends on the mode being tested.
616 +====== __29. Query Current (**QC**)__ ======
627 627  
628 -Ex: #5AH3<cr>
618 +Ex: #5QC<cr> might return *5QC140<cr>
629 629  
630 -This sets the holding stiffness for servo #5 to 3 for that session.
620 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
631 631  
632 -Query Angular Hold Stiffness (**QAH**)
622 +====== __30. RC Mode (**CRC**)__ ======
633 633  
634 -Ex: #5QAH<cr> might return *5QAH3<cr>
624 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
635 635  
636 -This returns the servo's angular holding stiffness value.
626 +|**Command sent**|**Note**
627 +|ex: #5CRC<cr>|Stay in smart mode.
628 +|ex: #5CRC1<cr>|Change to RC position mode.
629 +|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode.
630 +|ex: #5CRC*<cr>|Where * is any number or value. Stay in smart mode.
637 637  
638 -Configure Angular Hold Stiffness (**CAH**)
632 +EX: #5CRC<cr>
639 639  
640 -Ex: #5CAH2<cr>
634 +====== __31. RESET__ ======
641 641  
642 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM. Note that when  considering altering a stiffness value, the end effect depends on the mode being tested.
636 +Ex: #5RESET<cr> or #5RS<cr>
643 643  
644 -====== __A3: Angular Acceleration (**AA**)__ ======
638 +This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
645 645  
646 -The default value for angular acceleration is 100, which is the same as the maximum deceleration. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
640 +====== __32. DEFAULT & CONFIRM__ ======
647 647  
648 -Ex: #5AA30<cr>
642 +Ex: #5DEFAULT<cr>
649 649  
650 -Query Angular Acceleration (**QAD**)
644 +This command sets in motion the reset all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
651 651  
652 -Ex: #5QA<cr> might return *5QA30<cr>
646 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
653 653  
654 -Configure Angular Acceleration (**CAD**)
648 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
655 655  
656 -Ex: #5CA30<cr>
650 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
657 657  
658 -====== __A4: Angular Deceleration (**AD**)__ ======
652 +====== __33. UPDATE & CONFIRM__ ======
659 659  
660 -The default value for angular deceleration is 100, which is the same as the maximum acceleration. Values between 1 and 15 have the greatest impact.
654 +Ex: #5UPDATE<cr>
661 661  
662 -Ex: #5AD8<cr>
656 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
663 663  
664 -Query Angular Deceleration (**QAD**)
658 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
665 665  
666 -Ex: #5QD<cr> might return *5QD8<cr>
660 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
667 667  
668 -Configure Angular Deceleration (**CAD**)
669 -
670 -Ex: #5CD8<cr>
671 -
672 -====== __A5: Motion Control (**EM**)__ ======
673 -
674 -The command EM0 disables use of the motion controller (acceleration, velocity / travel, deceleration). As such, the servo will move at full speed for all motion commands. The command EM1 enables use of the motion controller.
675 -
676 -Note that if the modifiers S or T are used, it is assumed that motion control is desired, and for that command, EM1 will be used.
677 -
678 -====== __A6. Configure LED Blinking (**CLB**)__ ======
679 -
680 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:
681 -
682 -(% style="width:195px" %)
683 -|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
684 -|(% style="width:134px" %)No blinking|(% style="width:58px" %)0
685 -|(% style="width:134px" %)Limp|(% style="width:58px" %)1
686 -|(% style="width:134px" %)Holding|(% style="width:58px" %)2
687 -|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
688 -|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
689 -|(% style="width:134px" %)Free|(% style="width:58px" %)16
690 -|(% style="width:134px" %)Travelling|(% style="width:58px" %)32
691 -|(% style="width:134px" %)Always blink|(% style="width:58px" %)63
692 -
693 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
694 -
695 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
696 -Ex: #5CLB1<cr> only blink when limp (1)
697 -Ex: #5CLB2<cr> only blink when holding (2)
698 -Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)
699 -Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)
700 -Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)
701 -
702 -RESETTING the servo is needed.
662 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
Copyright RobotShop 2018