Last modified by Eric Nantel on 2025/06/06 07:47

From version < 14.1 >
edited by Coleman Benson
on 2018/04/12 15:53
To version < 215.1 >
edited by Eric Nantel
on 2024/11/21 09:22
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSS - Communication Protocol
1 +LSS Communication Protocol
Parent
... ... @@ -1,1 +1,1 @@
1 -Main.WebHome
1 +ses-v2.lynxmotion-smart-servo.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -xwiki:XWiki.CBenson
1 +xwiki:XWiki.ENantel
Tags
... ... @@ -1,0 +1,1 @@
1 +LSS|communication|protocol|programming|firmware|control|LSS-Ref
Content
... ... @@ -1,253 +1,404 @@
1 -The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time trying to stay compact and robust yet highly versatile. Almost everything one might expect to be able to configure for a smart servo motor is available.
1 +{{toc depth="3"/}}
2 2  
3 -=== Session ===
3 += Serial Protocol =
4 4  
5 -A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.
5 +The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servomotor is available.
6 6  
7 -== Action Commands ==
7 +In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>path:#HIdentificationNumber28ID29]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol.
8 8  
9 -Action commands are sent serially to the servo's Rx pin and must be set in the following format:
9 +|(% colspan="2" %)(((
10 +== Session ==
11 +)))
12 +|(% style="width:25px" %) |(((
13 +A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.
10 10  
11 -1. Start with a number sign # (U+0023)
12 -1. Servo ID number as an integer
13 -1. Action command (one to three letters, no spaces, capital or lower case)
14 -1. Action value in the correct units with no decimal
15 -1. End with a control / carriage return '<cr>'
15 +**Note 1:** For a given session, the action related to a specific command overrides the stored value in EEPROM.
16 16  
17 -(((
18 -Ex: #5PD1443<cr>
17 +**Note 2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).
19 19  
20 -Move servo with ID #5 to a position of 144.3 degrees.
19 +**Note 3:** You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r described below). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays.
20 +)))
21 21  
22 -Action commands cannot be combined with query commands, and only one action command can be sent at a time.
22 +|(% colspan="2" %)(((
23 +== Action Commands ==
24 +)))
25 +|(% style="width:25px" %) |(((
26 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HVirtualAngularPosition]] (described below). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
23 23  
24 -Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page).
28 +1. Start with a number sign **#** (Unicode Character: U+0023)
29 +1. Servo ID number as an integer (assigning an ID described below)
30 +1. Action command (one or more letters, no whitespace, capital or lowercase from the list below)
31 +1. Action value in the correct units with no decimal
32 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
25 25  
26 -=== Action Modifiers ===
34 +Ex: #5D1800<cr>
27 27  
28 -Two commands can be used as action modifiers only: Timed Move and Speed. The format is:
36 +This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
37 +)))
29 29  
30 -1. Start with a number sign # (U+0023)
39 +|(% colspan="2" %)(((
40 +== Modifiers ==
41 +)))
42 +|(% style="width:25px" %) |(((
43 +Modifiers can only be used with certain **action commands**. The format to include a modifier is:
44 +
45 +1. Start with a number sign **#** (Unicode Character: U+0023)
31 31  1. Servo ID number as an integer
32 -1. Action command (one to three letters, no spaces, capital or lower case)
47 +1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
33 33  1. Action value in the correct units with no decimal
34 -1. Modifier command (one letter)
49 +1. Modifier command (one or two letters from the list of modifiers below)
35 35  1. Modifier value in the correct units with no decimal
36 -1. End with a control / carriage return '<cr>'
51 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
37 37  
38 -Ex: #5P1456T1263<cr>
53 +Ex: #5D1800T1500<cr>
39 39  
40 -Results in the servo rotating from the current angular position to a pulse position of 1456 in 1263 milliseconds.
41 -
42 -Modified commands are command specific.
55 +This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).
43 43  )))
44 44  
58 +|(% colspan="2" %)(((
45 45  == Query Commands ==
60 +)))
61 +|(% style="width:25px" %) |(((
62 +Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:
46 46  
47 -Query commands are sent serially to the servo's Rx pin and must be set in the following format:
48 -
49 -1. Start with a number sign # (U+0023)
64 +1. Start with a number sign **#** (Unicode Character: U+0023)
50 50  1. Servo ID number as an integer
51 -1. Query command (one to three letters, no spaces, capital or lower case)
52 -1. End with a control / carriage return '<cr>'
66 +1. Query command (one to four letters, no spaces, capital or lower case)
67 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
53 53  
54 -(((
55 -Ex: #5QD<cr>Query position in degrees for servo #5
56 -)))
69 +Ex: #5QD<cr> Query the position in (tenth of) degrees for servo with ID #5
57 57  
58 -(((
59 -The query will return a value via the Tx pin with the following format:
71 +The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format:
60 60  
61 -1. Start with an asterisk (U+002A)
73 +1. Start with an asterisk * (Unicode Character: U+0023)
62 62  1. Servo ID number as an integer
63 -1. Query command (one to three letters, no spaces, capital letters)
75 +1. Query command (one to four letters, no spaces, capital letters)
64 64  1. The reported value in the units described, no decimals.
65 -1. End with a control / carriage return '<cr>'
77 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
66 66  
67 -(((
68 -Ex: *5QD1443<cr>
69 -)))
79 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:
70 70  
71 -Indicates that servo #5 is currently at 144.3 degrees.
81 +Ex: *5QD1800<cr>
82 +
83 +This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees).
72 72  )))
73 73  
86 +|(% colspan="2" %)(((
74 74  == Configuration Commands ==
88 +)))
89 +|(% style="width:25px" %) |(((
90 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.
75 75  
76 -Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servos (LSS).LSS - RC PWM.WebHome]].
92 +These configurations are retained in memory aftethe servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-radio-control-pwm/]]. Configuration commands are not cumulative. This means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.
77 77  
78 -1. Start with a number sign # (U+0023)
94 +The format to send a configuration command is identical to that of an action command:
95 +
96 +1. Start with a number sign **#** (Unicode Character: U+0023)
79 79  1. Servo ID number as an integer
80 -1. Configuration command (two to three letters, no spaces, capital or lower case)
98 +1. Configuration command (two to four letters, no spaces, capital or lower case)
81 81  1. Configuration value in the correct units with no decimal
82 -1. End with a control / carriage return '<cr>'
100 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
83 83  
84 84  Ex: #5CO-50<cr>
85 85  
86 -Assigns an absolute origin offset of -5.0 degrees (with respect to factory origin) to servo #5 and changes the offset for that session to -5.0 degrees.
104 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).
87 87  
88 -Configuration commands are not cumulative, in that if two configurations are sent at any time, only the last configuration is used and stored.
106 +**Session vs Configuration Query**
89 89  
90 -*Important Note: the one exception is the baud rate - the servo's current session retains the given baud rate. The new baud rate will only be in place when the servo is power cycled.
108 +By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
91 91  
92 -= Command List =
110 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.
93 93  
94 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes
95 -| 1|**L**imp| L| | | | ✓| none|
96 -| 2|**H**alt & Hold| H| | | | ✓| none|
97 -| 3|**T**imed move| T| | | | ✓| milliseconds| Modifier only
98 -| 4|**S**peed| S| | | | ✓| microseconds / second| Modifier only
99 -| 5|**M**ove in **D**egrees (relative)| MD| | | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
100 -| 6|**O**rigin Offset| O| QO| CO| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
101 -| 7|**A**ngular **R**ange| AR| QAR| CAR| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
102 -| 8|Position in **P**ulse| P| QP| | | ✓| microseconds|(((
103 -See details below.
112 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
113 +
114 +#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas
115 +
116 +#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM
104 104  )))
105 -| 9|Position in **D**egrees| D| QD| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
106 -| 10|**W**heel mode in **D**egrees| WD| QWD| | | ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|
107 -| 11|**W**heel mode in **R**PM| WR| QWR| | | ✓| rpm|
108 -| 12|**S**peed in **D**egrees| SD| QSD| CSD| ✓| ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|
109 -| 13|**S**peed in **R**PM| SR| QSR| CSR| ✓| ✓| rpm|
110 -| 14| | | | | | | |
111 -| 15| | | | | | | |
112 -| 16|**LED** Color| LED| QLED| CLED| ✓| ✓| none (integer from 1 to 8)|0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6= 7=MAGENTA, 8=WHITE
113 -| 17|**ID** #| ID| QID| CID| | ✓| none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to.
114 -| 18|**B**aud rate| B| QB| CB| | ✓| none (integer)|
115 -| 19|**G**yre direction (**G**)| G| QG| CG| ✓| ✓| none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)
116 -| 20|**F**irst Position (**P**ulse)| | QFP|CFP | ✓| ✓| none |
117 -| 21|**F**irst Position (**D**egrees)| | QFD|CFD| ✓| ✓| none |
118 -| 22|**T**arget (**D**egree) **P**osition| | QDT| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
119 -| 23|**M**odel| | QM| | | | none (integer)|
120 -| 24|Serial **N**umber| | QN| | | | none (integer)|
121 -| 25|**F**irmware version| | QF| | | | none (integer)|
122 -| 26|**Q**uery (general status)| | Q| | | ✓| none (integer from 1 to 8)|
123 -| 27|**V**oltage| | QV| | | ✓| tenths of volt (ex 113 = 11.3V; 92 = 9.2V)|
124 -| 28|**T**emperature| | QT| | | ✓| degrees Celsius|
125 -| 29|**C**urrent| | QC| | | ✓| tenths of Amps (ex 2 = 0.2A)|
126 -| | | | | | | | |
127 -| | | | | | | | |
128 128  
119 +|(% colspan="2" %)(((
120 +== Virtual Angular Position ==
121 +)))
122 +|(% style="width:25px" %) |(((
123 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).
124 +
125 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]
126 +
127 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
128 +
129 +#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)
130 +
131 +#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)
132 +
133 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.
134 +
135 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.
136 +
137 +#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
138 +
139 +#1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).
140 +
141 +If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°].
142 +)))
143 +
144 += Command List =
145 +
146 +**Latest firmware version currently : 370**
147 +
148 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Communication Setup**>>path:#HCommunicationSetup]]
149 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
150 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Reset**>>path:#HReset]]|RESET| | | |✓| | |Soft reset. See command for details.
151 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Default** Configuration>>path:#HDefault26confirm]]|DEFAULT| | | |✓| | |Revert to firmware default values. See command for details
152 +| |[[Firmware (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Update** Mode>>path:#HUpdate26confirm]]|UPDATE| | | |✓| | |Update firmware. See command for details.
153 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Confirm** Changes>>path:#HConfirm]]|CONFIRM| | | |✓| | |
154 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**hange to **RC**>>path:#HConfigureRCMode28CRC29]]| | |CRC| |✓| | |Change to RC mode 1 (position) or 2 (wheel).
155 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**ID** #>>path:#HIdentificationNumber28ID29]]| |QID|CID| |✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
156 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**B**audrate>>path:#HBaudRate]]| |QB|CB| |✓|115200| |Reset required after change.
157 +
158 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion**>>path:#HMotion]]
159 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
160 +| |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**D**egrees>>path:#HPositioninDegrees28D29]]|D|QD/QDT| | |✓| |1/10°|
161 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in **D**egrees (relative)>>path:#H28Relative29MoveinDegrees28MD29]]|MD| | | |✓| |1/10°|
162 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **D**egrees>>path:#HWheelModeinDegrees28WD29]]|WD|QWD/QVT| | |✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation"
163 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **R**PM>>path:#HWheelModeinRPM28WR29]]|WR|QWR| | |✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation"
164 +| |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**P**WM>>path:#HPositioninPWM28P29]]|P|QP| | |✓| |us|Inherited from SSC-32 serial protocol
165 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in PWM (relative)>>path:#H28Relative29MoveinPWM28M29]]|M| | | |✓| |us|
166 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**R**aw **D**uty-cycle **M**ove>>path:#HRawDuty-cycleMove28RDM29]]|RDM|QMD| | |✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW
167 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery Status>>path:#HQueryStatus28Q29]]| |Q| | |✓| |1 to 8 integer|See command description for details
168 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**L**imp>>path:#HLimp28L29]]|L| | | |✓| | |
169 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**H**alt & Hold>>path:#HHalt26Hold28H29]]|H| | | |✓| | |
170 +
171 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion Setup**>>path:#HMotionSetup]]
172 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
173 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**E**nable **M**otion Profile>>path:#HEnableMotionProfile28EM29]]|EM|QEM|CEM| |✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile
174 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**ilter **P**osition **C**ount>>path:#HFilterPositionCount28FPC29]]|FPC|QFPC|CFPC|✓|✓|5| |Affects motion only when motion profile is disabled (EM0)
175 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**O**rigin Offset>>path:#HOriginOffset28O29]]|O|QO|CO|✓|✓|0|1/10°|
176 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **R**ange>>path:#HAngularRange28AR29]]|AR|QAR|CAR|✓|✓|1800|1/10°|
177 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **S**tiffness>>path:#HAngularStiffness28AS29]]|AS|QAS|CAS|✓|✓|0|-4 to +4 integer|Suggested values are between 0 to +4
178 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **H**olding Stiffness>>path:#HAngularHoldingStiffness28AH29]]|AH|QAH|CAH|✓|✓|4|-10 to +10 integer|
179 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **A**cceleration>>path:#HAngularAcceleration28AA29]]|AA|QAA|CAA| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
180 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **D**eceleration>>path:#HAngularDeceleration28AD29]]|AD|QAD|CAD| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
181 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**G**yre Direction>>path:#HGyreDirection28G29]]|G|QG|CG|✓|✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
182 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**irst Position (**D**eg)>>path:#HFirstPosition]]| |QFD|CFD|✓|✓|No value|1/10°|Reset required after change.
183 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**aximum **M**otor **D**uty>>path:#HMaximumMotorDuty28MMD29]]|MMD|QMMD| | |✓|1023|255 to 1023 integer|
184 +| |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HMaximumSpeedinDegrees28SD29]]|SD|QSD|CSD|✓|✓|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
185 +| |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **R**PM>>path:#HMaximumSpeedinRPM28SR29]]|SR|QSR|CSR|✓|✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
186 +
187 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Modifiers**>>path:#HModifiers]]
188 +| |**Description**|**Modifier**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
189 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed>>path:#HSpeed28S2CSD29modifier]]|S|QS| | |✓| |uS/s |For P action command
190 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HSpeed28S2CSD29modifier]]|SD| | | |✓| |0.1°/s|For D and MD action commands
191 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**T**imed move>>path:#HTimedmove28T29modifier]]|T| | | |✓| |ms|Modifier only for P, D and MD. Time can change based on load
192 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **H**old>>path:#HCurrentHalt26Hold28CH29modifier]]|CH| | | |✓| |mA|Modifier for D, MD, WD and WR
193 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **L**imp>>path:#HCurrentLimp28CL29modifier]]|CL| | | |✓| |mA|Modifier for D, MD, WD and WR
194 +
195 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Telemetry**>>path:#HTelemetry]]
196 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
197 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **V**oltage>>path:#HQueryVoltage28QV29]]| |QV| | |✓| |mV|
198 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **T**emperature>>path:#HQueryTemperature28QT29]]| |QT| | |✓| |1/10°C|
199 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **C**urrent>>path:#HQueryCurrent28QC29]]| |QC| | |✓| |mA|
200 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **M**odel **S**tring>>path:#HQueryModelString28QMS29]]| |QMS| | |✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
201 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **F**irmware Version>>path:#HQueryFirmware28QF29]]| |QF| | |✓| | |
202 +
203 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**RGB LED**>>path:#HRGBLED]]
204 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
205 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**LED** Color>>path:#HLEDColor28LED29]]|LED|QLED|CLED|✓|✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
206 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**onfigure **L**ED **B**linking>>path:#HConfigureLEDBlinking28CLB29]]| | |CLB|✓|✓| |0 to 63 integer|Reset required after change. See command for details.
207 +
129 129  = Details =
130 130  
131 -__1. Limp (**L**)__
210 +== Communication Setup ==
132 132  
133 -Example: #5L<cr>
212 +|(% colspan="2" %)(((
213 +====== Reset ======
214 +)))
215 +|(% style="width:30px" %) |(((
216 +Ex: #5RESET<cr>
134 134  
135 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
218 +This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HSession]], note #2 for more details.
219 +)))
136 136  
137 -__2. Halt & Hold (**H**)__
221 +|(% colspan="2" %)(((
222 +====== Default & confirm ======
223 +)))
224 +|(% style="width:30px" %) |(((
225 +Ex: #5DEFAULT<cr>
138 138  
139 -Example: #5H<cr>
227 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
140 140  
141 -This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position.
229 +Ex: #5DEFAULT<cr> followed by #5CONFIRM<cr>
142 142  
143 -__3. Timed move (**T**)__
231 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
144 144  
145 -Example: #5P1500T2500<cr>
233 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.
234 +)))
146 146  
147 -Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
236 +|(% colspan="2" %)(((
237 +====== Update & confirm ======
238 +)))
239 +|(% style="width:30px" %) |(((
240 +Ex: #5UPDATE<cr>
148 148  
149 -__4. Speed (**S**)__
242 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
150 150  
151 -Example: #5P1500S750<cr>
244 +Ex: #5UPDATE<cr> followed by #5CONFIRM<cr>
152 152  
153 -This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
246 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
154 154  
155 -__5. (Relative) Move in Degrees (**MD**)__
248 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.
249 +)))
156 156  
157 -Example: #5MD123<cr>
251 +|(% colspan="2" %)(((
252 +====== Confirm ======
253 +)))
254 +|(% style="width:30px" %) |(((
255 +Ex: #5CONFIRM<cr>
158 158  
159 -The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
257 +This command is used to confirm changes after a Default or Update command.
160 160  
161 -__6. Origin Offset Action (**O**)__
259 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.
260 +)))
162 162  
163 -Example: #5O2400<cr>
262 +|(% colspan="2" %)(((
263 +====== Configure RC Mode (**CRC**) ======
264 +)))
265 +|(% style="width:30px" %) |(((
266 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
164 164  
165 -This command allows you to temporarily change the origin of the servo in relation to the factory zero position. The setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. Note that for a given session, the O command overrides the CO command. In the first image, the origin at factory offset '0' (centered).
268 +Ex: #5CRC1<cr>
166 166  
167 -[[image:LSS-servo-default.jpg]]
270 +Change to RC position mode.
168 168  
169 -In the second image, the origina, as well as the angular range (explained below) have been shifted by 240.0 degrees:
272 +Ex: #5CRC2<cr>
170 170  
171 -[[image:LSS-servo-origin.jpg]]
274 +Change to RC continuous rotation (wheel) mode.
172 172  
173 -Origin Offset Query (**QO**)
276 +Ex: #5CRC*<cr>
174 174  
175 -Example: #5QO<cr> Returns: *5QO-13
278 +Where * is any value other than 1 or 2 (or no value): stay in smart mode
176 176  
177 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position.
280 +Ex: #5CRC2<cr>
178 178  
179 -Configure Origin Offset (**CO**)
282 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.
180 180  
181 -Example: #5CO-24<cr>
284 +**Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-button-menu/]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.
285 +)))
182 182  
183 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode.
287 +|(% colspan="2" %)(((
288 +====== Identification Number (**ID**) ======
289 +)))
290 +|(% style="width:30px" %) |(((
291 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
184 184  
185 -__7. Angular Range (**AR**)__
293 +Query Identification (**QID**)
186 186  
187 -Example: #5AR1800<cr>
295 +EX: #254QID<cr> might return *QID5<cr>
188 188  
189 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). In the first image,
297 +When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
190 190  
191 -[[image:LSS-servo-default.jpg]]
299 +Configure ID (**CID**)
192 192  
193 -Here, the angular range has been restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
301 +Ex: #4CID5<cr>
194 194  
195 -[[image:LSS-servo-ar.jpg]]
303 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.
304 +)))
196 196  
197 -The angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) an be used to move both the center and limit the angular range:
306 +|(% colspan="2" %)(((
307 +====== Baud Rate ======
308 +)))
309 +|(% style="width:30px" %) |(((
310 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200.
198 198  
199 -[[image:LSS-servo-ar-o-1.jpg]]
312 +Query Baud Rate (**QB**)
200 200  
201 -Query Angular Range (**QAR**)
314 +Ex: #5QB<cr> might return *5QB115200<cr>Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.
202 202  
203 -Example: #5QAR<cr> might return *5AR2756
316 +Configure Baud Rate (**CB**)
204 204  
205 -Configure Angular Range (**CAR**)
318 +**Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.
206 206  
207 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
320 +Ex: #5CB9600<cr>
208 208  
209 -__8. Position in Pulse (**P**)__
322 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
323 +)))
210 210  
211 -Example: #5P2334<cr>
325 +|(% colspan="2" %)(((
326 +====== __Automatic Baud Rate__ ======
327 +)))
328 +|(% style="width:30px" %) |(((
329 +This option allows the LSS to listen to it's serial input and select the right baudrate automatically.
212 212  
213 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected to end points.
331 +Query Automatic Baud Rate (**QABR**)
214 214  
215 -Query Position in Pulse (**QP**)
333 +Ex: #5QABR<cr> might return *5ABR0<cr>
216 216  
217 -Example: #5QP<cr> might return *5QP
335 +Enable Baud Rate (**ABR**)
218 218  
219 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 
220 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds.
337 +Ex: #5QABR1<cr>
221 221  
222 -__9. Position in Degrees (**D**)__
339 +Enable baudrate detection on first byte received after power-up.
223 223  
224 -Example: #5PD1456<cr>
341 +Ex: #5QABR2,30<cr>Enable baudrate detection on first byte received after power-up. If no data for 30 seconds enable detection again on next byte.
225 225  
226 -This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction.
343 +Warning: ABR doesnt work well with LSS Config at the moment.
344 +)))
227 227  
228 -Larger values are permitted and allow for multi-turn functionality using the concept of virtual position.
346 +== Motion ==
229 229  
348 +|(% colspan="2" %)(((
349 +====== __Position in Degrees (**D**)__ ======
350 +)))
351 +|(% style="width:30px" %) |(((
352 +Ex: #5D1456<cr>
353 +
354 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction.
355 +
356 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above).
357 +
230 230  Query Position in Degrees (**QD**)
231 231  
232 -Example: #5QD<cr> might return *5QD0<cr>
360 +Ex: #5QD<cr> might return *5QD132<cr>
233 233  
234 -__10. Wheel Mode in Degrees (**WD**)__
362 +This means the servo is located at 13.2 degrees.
235 235  
236 -Ex: #5WD900<cr>
364 +Query Target Position in Degrees (**QDT**)
237 237  
366 +Ex: #5QDT<cr> might return *5QDT6783<cr>
367 +
368 +The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
369 +)))
370 +
371 +|(% colspan="2" %)(((
372 +====== (Relative) Move in Degrees (**MD**) ======
373 +)))
374 +|(% style="width:30px" %) |(((
375 +Ex: #5MD123<cr>
376 +
377 +The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
378 +)))
379 +
380 +|(% colspan="2" %)(((
381 +====== Wheel Mode in Degrees (**WD**) ======
382 +)))
383 +|(% style="width:30px" %) |(((
384 +Ex: #5WD90<cr>
385 +
238 238  This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
239 239  
240 240  Query Wheel Mode in Degrees (**QWD**)
241 241  
242 -Ex: #5QWD<cr> might return *5QWD900<cr>
390 +Ex: #5QWD<cr> might return *5QWD90<cr>
243 243  
244 -The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
392 +The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
393 +)))
245 245  
246 -__11. Wheel Mode in RPM (**WR**)__
247 -
395 +|(% colspan="2" %)(((
396 +====== Wheel Mode in RPM (**WR**) ======
397 +)))
398 +|(% style="width:30px" %) |(((
248 248  Ex: #5WR40<cr>
249 249  
250 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
401 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
251 251  
252 252  Query Wheel Mode in RPM (**QWR**)
253 253  
... ... @@ -254,104 +254,321 @@
254 254  Ex: #5QWR<cr> might return *5QWR40<cr>
255 255  
256 256  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
408 +)))
257 257  
258 -__12. Speed in Degrees (**SD**)__
410 +|(% colspan="2" %)(((
411 +====== Position in PWM (**P**) ======
412 +)))
413 +|(% style="width:30px" %) |(((
414 +Ex: #5P2334<cr>
259 259  
260 -Ex: #5SD1800<cr>
416 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>url:https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.
261 261  
262 -This command sets the servo's maximum speed for action commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.
418 +Query Position in Pulse (**QP**)
263 263  
264 -Query Speed in Degrees (**QSD**)
420 +Ex: #5QP<cr> might return *5QP2334
265 265  
266 -Ex: #5QSD<cr> might return *5QSD1800<cr>
422 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
423 +)))
267 267  
268 -Note that the QSD query will return the current servo speed. Querying the last maximum speed value set using SD or CSD is not possible.
425 +|(% colspan="2" %)(((
426 +====== __(Relative) Move in PWM (**M**)__ ======
427 +)))
428 +|(% style="width:30px" %) |(((
429 +Ex: #5M1500<cr>
269 269  
270 -Configure Speed in Degrees (**CSD**)
431 +The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
432 +)))
271 271  
272 -Ex: #5CSD1800<cr>
434 +|(% colspan="2" %)(((
435 +====== Raw Duty-cycle Move (**RDM**) ======
436 +)))
437 +|(% style="width:30px" %) |(((
438 +Ex: #5RDM512<cr>
273 273  
274 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
440 +The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.
275 275  
276 -__13. Speed in RPM (**SR**)__
442 +The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).
277 277  
278 -Ex: #5SD45<cr>
444 +Query Move in Duty-cycle (**QMD**)
279 279  
280 -This command sets the servo's maximum speed for action commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.
446 +Ex: #5QMD<cr> might return *5QMD512
281 281  
282 -Query Speed in Degrees (**QSR**)
448 +This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle.
449 +)))
283 283  
284 -Ex: #5QSR<cr> might return *5QSR45<cr>
451 +|(% colspan="2" %)(((
452 +====== Query Status (**Q**) ======
453 +)))
454 +|(% style="width:30px" %) |(((
455 +The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.
285 285  
286 -Note that the QSD query will return the current servo speed. Querying the last maximum speed value set using SR or CSR is not possible.
457 +Ex: #5Q<cr> might return *5Q6<cr>
287 287  
288 -Configure Speed in Degrees (**CSR**)
459 +which indicates the motor is holding a position.
460 +)))
289 289  
290 -Ex: #5CSR45<cr>
462 +|(% style="width:30px" %) |***Value returned (Q)**|**Status**|**Detailed description**
463 +| |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
464 +| |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
465 +| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command
466 +| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
467 +| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
468 +| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
469 +| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding)
470 +| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
471 +| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
472 +| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
473 +| |ex: *5Q10<cr>|10: Safe Mode|(((
474 +A safety limit has been exceeded (temperature, peak current or extended high current draw).
291 291  
292 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
476 +Send a Q1 command to know which limit has been reached (described below).
477 +)))
293 293  
294 -__16. RGB LED (**LED**)__
479 +|(% style="width:30px" %) |(% colspan="3" rowspan="1" %)If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
480 +| |***Value returned (Q1)**|**Status**|**Detailed description**
481 +| |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
482 +| |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
483 +| |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
484 +| |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
295 295  
296 -Ex: #5LED3<cr>
486 +|(% colspan="2" %)(((
487 +====== Limp (**L**) ======
488 +)))
489 +|(% style="width:30px" %) |(((
490 +Ex: #5L<cr>
297 297  
298 -This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
492 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
493 +)))
299 299  
300 -0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6= 7=MAGENTA, 8=WHITE 
495 +|(% colspan="2" %)(((
496 +====== Halt & Hold (**H**) ======
497 +)))
498 +|(% style="width:30px" %) |(((
499 +Example: #5H<cr>
301 301  
302 -Query LED Color (**QLED**)
501 +This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
502 +)))
303 303  
304 -Ex: #5QLED<cr> might return *5QLED5<cr>
504 +== Motion Setup ==
305 305  
306 -This simple query returns the indicated servo's LED color.
506 +|(% colspan="2" %)(((
507 +====== Enable Motion Profile (**EM**) ======
508 +)))
509 +|(% style="width:30px" %) |(((
510 +EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.
307 307  
308 -Configure LED Color (**CLED**)
512 +Ex: #5EM1<cr>
309 309  
310 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle.
514 +This command enables a trapezoidal motion profile for servo #5
311 311  
312 -__17. Identification Number__
516 +Ex: #5EM0<cr>
313 313  
314 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 1. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
518 +This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command).
315 315  
316 -Query Identification (**QID**)
520 +Query Motion Profile (**QEM**)
317 317  
318 -EX: #QID<cr> might return *QID5<cr>
522 +Ex: #5QEM<cr> might return *5QEM1<cr>
319 319  
320 -When using the query ID command, it is best to only have one servo connected and thus receive only one reply.
524 +This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.
321 321  
322 -Configure ID (**CID**)
526 +Configure Motion Profile (**CEM**)
323 323  
324 -Ex: #CID5<cr>
528 +Ex: #5CEM0<cr>
325 325  
326 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like.
530 +This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
531 +)))
327 327  
328 -__18. Baud Rate__
533 +|(% colspan="2" %)(((
534 +====== Filter Position Count (**FPC**) ======
535 +)))
536 +|(% style="width:30px" %) |(((
537 +The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default.
329 329  
330 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Standard / suggested baud rates are: 4800; 9600; 14400; 19200; 38400; 57600; 115200; 128000; 256000, 512000 bits per second. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above
539 +Ex: #5FPC10<cr>
331 331  
332 -Query Baud Rate (**QB**)
541 +This command allows the user to change the Filter Position Count value for that session.
333 333  
334 -Ex: #5QB<cr> might return *5QB9600<cr>
543 +Query Filter Position Count (**QFPC**)
335 335  
336 -Querying the baud rate is used simply to confirm the CB configuration command before the servo is power cycled.
545 +Ex: #5QFPC<cr> might return *5QFPC10<cr>
337 337  
338 -Configure Baud Rate (**CB**)
547 +This command will query the Filter Position Count value.
339 339  
340 -Ex: #5CB9600<cr>
549 +Configure Filter Position Count (**CFPC**)
341 341  
342 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
551 +Ex: #5CFPC10<cr>
343 343  
344 -__19. Gyre Rotation Direction__
553 +This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
554 +)))
345 345  
346 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
556 +|(% colspan="2" %)(((
557 +====== Origin Offset (**O**) ======
558 +)))
559 +|(% style="width:30px" %) |(((
560 +Ex: #5O2400<cr>
347 347  
348 -{images showing before and after with AR and Origin offset}
562 +This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
349 349  
564 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
565 +
566 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
567 +
568 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]
569 +
570 +Origin Offset Query (**QO**)
571 +
572 +Ex: #5QO<cr> might return *5QO-13
573 +
574 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
575 +
576 +Configure Origin Offset (**CO**)
577 +
578 +Ex: #5CO-24<cr>
579 +
580 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
581 +)))
582 +
583 +|(% colspan="2" %)(((
584 +====== Angular Range (**AR**) ======
585 +)))
586 +|(% style="width:30px" %) |(((
587 +Ex: #5AR1800<cr>
588 +
589 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
590 +
591 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
592 +
593 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
594 +
595 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]
596 +
597 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
598 +
599 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]
600 +
601 +Query Angular Range (**QAR**)
602 +
603 +Ex: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
604 +
605 +Configure Angular Range (**CAR**)
606 +
607 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
608 +)))
609 +
610 +|(% colspan="2" %)(((
611 +====== Angular Stiffness (**AS**) ======
612 +)))
613 +|(% style="width:30px" %) |(((
614 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.
615 +
616 +A higher value of "angular stiffness":
617 +
618 +* The more torque will be applied to try to keep the desired position against external input / changes
619 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
620 +
621 +A lower value on the other hand:
622 +
623 +* Causes a slower acceleration to the travel speed, and a slower deceleration
624 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back
625 +
626 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
627 +
628 +Ex: #5AS-2<cr>
629 +
630 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
631 +
632 +Ex: #5QAS<cr>
633 +
634 +Queries the value being used.
635 +
636 +Ex: #5CAS-2<cr>Writes the desired angular stiffness value to EEPROM.
637 +)))
638 +
639 +|(% colspan="2" %)(((
640 +====== Angular Holding Stiffness (**AH**) ======
641 +)))
642 +|(% style="width:30px" %) |(((
643 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
644 +
645 +Ex: #5AH3<cr>
646 +
647 +This sets the holding stiffness for servo #5 to 3 for that session.
648 +
649 +Query Angular Holding Stiffness (**QAH**)
650 +
651 +Ex: #5QAH<cr> might return *5QAH3<cr>
652 +
653 +This returns the servo's angular holding stiffness value.
654 +
655 +Configure Angular Holding Stiffness (**CAH**)
656 +
657 +Ex: #5CAH2<cr>
658 +
659 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM.
660 +)))
661 +
662 +|(% colspan="2" %)(((
663 +====== Angular Acceleration (**AA**) ======
664 +)))
665 +|(% style="width:30px" %) |(((
666 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
667 +
668 +Ex: #5AA30<cr>
669 +
670 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
671 +
672 +Query Angular Acceleration (**QAA**)
673 +
674 +Ex: #5QAA<cr> might return *5QAA30<cr>
675 +
676 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).
677 +
678 +Configure Angular Acceleration (**CAA**)
679 +
680 +Ex: #5CAA30<cr>
681 +
682 +This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
683 +)))
684 +
685 +|(% colspan="2" %)(((
686 +====== Angular Deceleration (**AD**) ======
687 +)))
688 +|(% style="width:30px" %) |(((
689 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
690 +
691 +Ex: #5AD30<cr>
692 +
693 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
694 +
695 +Query Angular Deceleration (**QAD**)
696 +
697 +Ex: #5QAD<cr> might return *5QAD30<cr>
698 +
699 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).
700 +
701 +Configure Angular Deceleration (**CAD**)
702 +
703 +Ex: #5CAD30<cr>
704 +
705 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
706 +)))
707 +
708 +|(% colspan="2" %)(((
709 +====== Gyre Direction (**G**) ======
710 +)))
711 +|(% style="width:30px" %) |(((
712 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.
713 +
714 +Ex: #5G-1<cr>
715 +
716 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
717 +
350 350  Query Gyre Direction (**QG**)
351 351  
352 352  Ex: #5QG<cr> might return *5QG-1<cr>
353 353  
354 -The value returned above means the servo is in a counter-clockwise gyration.
722 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.
355 355  
356 356  Configure Gyre (**CG**)
357 357  
... ... @@ -358,133 +358,272 @@
358 358  Ex: #5CG-1<cr>
359 359  
360 360  This changes the gyre direction as described above and also writes to EEPROM.
729 +)))
361 361  
362 -__20. First / Initial Position (pulse)__
731 +|(% colspan="2" %)(((
732 +====== First Position ======
733 +)))
734 +|(% style="width:30px" %) |(((
735 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.
363 363  
364 -In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for serial mode only.
737 +Query First Position in Degrees (**QFD**)
365 365  
366 -Query First Position in Pulses (**QFP**)
739 +Ex: #5QFD<cr> might return *5QFD900<cr>
367 367  
368 -Ex: #5QFP<cr> might return *5QFP1550<cr>
741 +The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.
369 369  
370 -The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds.
743 +Configure First Position in Degrees (**CFD**)
371 371  
372 -Configure First Position in Pulses (CFP)
745 +Ex: #5CFD900<cr>
373 373  
374 -Ex: #5CP1550<cr>
747 +This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
748 +)))
375 375  
376 -This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up.
750 +|(% colspan="2" %)(((
751 +====== Maximum Motor Duty (**MMD**) ======
752 +)))
753 +|(% style="width:30px" %) |(((
754 +This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.
377 377  
378 -__21. First / Initial Position (Degrees)__
756 +Ex: #5MMD512<cr>
379 379  
380 -In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for serial mode only.
758 +This will set the duty-cycle to 512 for servo with ID 5 for that session.
381 381  
382 -Query First Position in Degrees (**QFD**)
760 +Query Maximum Motor Duty (**QMMD**)
383 383  
384 -Ex: #5QFD<cr> might return *5QFD64<cr>
762 +Ex: #5QMMDD<cr> might return *5QMMD512<cr>
385 385  
386 -The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds.
764 +This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023.
765 +)))
387 387  
388 -Configure First Position in Degrees (**CFD**)
767 +|(% colspan="2" %)(((
768 +====== Maximum Speed in Degrees (**SD**) ======
769 +)))
770 +|(% style="width:30px" %) |(((
771 +Ex: #5SD1800<cr>
389 389  
390 -Ex: #5CD64<cr>
773 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
391 391  
392 -This configuration command means the servo, when set to serial mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up.
775 +Query Speed in Degrees (**QSD**)
393 393  
394 -__22. Query Target Position in Degrees (**QDT**)__
777 +Ex: #5QSD<cr> might return *5QSD1800<cr>
395 395  
396 -Ex: #5QDT<cr> might return *5QDT6783<cr>
779 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
780 +)))
397 397  
398 -The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
782 +|(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)**
783 +| |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
784 +| |ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
785 +| |ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
786 +| |ex: #5QSD3<cr>|Target travel speed
399 399  
400 -__23. Query Model (**QM**)__
788 +|(% style="width:30px" %) |(((
789 +Configure Speed in Degrees (**CSD**)
401 401  
402 -Ex: #5QM<cr> might return *5QM11<cr>
791 +Ex: #5CSD1800<cr>
403 403  
404 -This reply means the servo model is 1.1, meaning high speed servo, first revision. 1=HS (high speed) 2=ST (standard) 3=HT (high torque)
793 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
794 +)))
405 405  
406 -__24. Query Serial Number (**QN**)__
796 +|(% colspan="2" %)(((
797 +====== Maximum Speed in RPM (**SR**) ======
798 +)))
799 +|(% style="width:30px" %) |(((
800 +Ex: #5SR45<cr>
407 407  
408 -Ex: #5QN<cr> might return *5QN~_~_<cr>
802 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
409 409  
410 -The number in the response is the servo's serial number which is set and cannot be changed.
804 +Query Speed in RPM (**QSR**)
411 411  
412 -__25. Query Firmware (**QF**)__
806 +Ex: #5QSR<cr> might return *5QSR45<cr>
413 413  
414 -Ex: #5QF<cr> might return *5QF11<cr>
808 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
809 +)))
415 415  
416 -The integer in the reply represents the firmware version with one decimal, in this example being 1.1
811 +|(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)**
812 +| |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
813 +| |ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
814 +| |ex: #5QSR2<cr>|Instantaneous speed (same as QWD)
815 +| |ex: #5QSR3<cr>|Target travel speed
417 417  
418 -__26. Query Status (**Q**)__
817 +|(((
818 +Configure Speed in RPM (**CSR**)
419 419  
420 -Ex: #5Q<cr> might return *5Q_<cr>
820 +Ex: #5CSR45<cr>
421 421  
422 -{Description coming soon}
822 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
823 +)))|
423 423  
424 -__27. Query Voltage (**QV**)__
825 +== Modifiers ==
425 425  
426 -Ex: #5QV<cr> might return *5QV112<cr>
827 +|(% colspan="2" %)(((
828 +====== Speed (**S**, **SD**) modifier ======
829 +)))
830 +|(% style="width:30px" %) |(((
831 +Ex: #5P1500S750<cr>
427 427  
428 -The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
833 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
429 429  
430 -__28. Query Temperature (**QT**)__
835 +Ex: #5D0SD180<cr>
431 431  
432 -Ex: #5QT<cr> might return *5QT564<cr>
837 +Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.
433 433  
434 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
839 +Query Speed (**QS**)
435 435  
436 -__29. Query Current (QC)__
841 +Ex: #5QS<cr> might return *5QS300<cr>
437 437  
843 +This command queries the current speed in microseconds per second.
844 +)))
845 +
846 +|(% colspan="2" %)(((
847 +====== Timed move (**T**) modifier ======
848 +)))
849 +|(% style="width:30px" %) |(((
850 +
851 +
852 +Example: #5P1500T2500<cr>
853 +
854 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
855 +
856 +**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
857 +)))
858 +
859 +|(% colspan="2" %)(((
860 +====== Current Halt & Hold (**CH**) modifier ======
861 +)))
862 +|(% style="width:30px" %) |(((
863 +Example: #5D1423CH400<cr>
864 +
865 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.
866 +
867 +This modifier can be added to the following actions: D; MD; WD; WR.
868 +)))
869 +
870 +|(% colspan="2" %)(((
871 +====== Current Limp (**CL**) modifier ======
872 +)))
873 +|(% style="width:30px" %) |(((
874 +Example: #5D1423CL400<cr>
875 +
876 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.
877 +
878 +This modifier can be added to the following actions: D; MD; WD; WR.
879 +)))
880 +
881 +== Telemetry ==
882 +
883 +|(% colspan="2" %)(((
884 +====== Query Voltage (**QV**) ======
885 +)))
886 +|(% style="width:30px" %) |(((
887 +Ex: #5QV<cr> might return *5QV11200<cr>
888 +
889 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.
890 +)))
891 +
892 +|(% colspan="2" %)(((
893 +====== Query Current (**QC**) ======
894 +)))
895 +|(% style="width:30px" %) |(((
896 +
897 +
438 438  Ex: #5QC<cr> might return *5QC140<cr>
439 439  
440 440  The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
901 +)))
441 441  
442 -__**RESET**__
903 +|(% colspan="2" %)(((
904 +====== Query Model String (**QMS**) ======
905 +)))
906 +|(% style="width:30px" %) |(((
907 +
443 443  
444 -Ex: #5RESET<cr> or #5RS<cr>
909 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
445 445  
446 -This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
911 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision.
912 +)))
447 447  
448 -**__DEFAULT __**__& **CONFIRM**__
914 +|(% colspan="2" %)(((
915 +====== Query Firmware (**QF**) ======
916 +)))
917 +|(% style="width:30px" %) |(((
918 +Ex: #5QF<cr> might return *5QF368<cr>
449 449  
450 -Ex: #5DEFAULT<cr>
920 +The number in the reply represents the firmware version, in this example being 368.
451 451  
452 -This command sets in motion the reset all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
922 +The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14
923 +)))
453 453  
454 -EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
925 +== RGB LED ==
455 455  
456 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
927 +|(% colspan="2" %)(((
928 +====== LED Color (**LED**) ======
929 +)))
930 +|(% style="width:30px" %) |(((
931 +
457 457  
458 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
933 +Ex: #5LED3<cr>
459 459  
460 -**__UPDATE __**__& **CONFIRM**__
935 +This action sets the servo's RGB LED color for that session.
461 461  
462 -Ex: #5UPDATE<cr>
937 +The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
463 463  
464 -This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
939 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;
465 465  
466 -EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
941 +Query LED Color (**QLED**)
467 467  
468 -Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
943 +Ex: #5QLED<cr> might return *5QLED5<cr>
469 469  
470 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
945 +This simple query returns the indicated servo's LED color.
471 471  
472 -=== Virtual Angular Position ===
947 +Configure LED Color (**CLED**)
473 473  
474 -{In progress}
949 +Ex: #5CLED3<cr>
475 475  
476 -A "virtual position" is one which allows for multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to 360.0 degrees.
951 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.
952 +)))
477 477  
478 -[[image:LSS-servo-positions.jpg]]
954 +|(% colspan="2" %)(((
955 +====== Configure LED Blinking (**CLB**) ======
956 +)))
957 +|(% style="width:30px" %) |(((
958 +
479 479  
480 -Example: Gyre direction / rotation is positive (clockwise), and origin offset has not been modified.
960 +This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:
961 +)))
481 481  
482 -#1D-300<cr> The servo is commander to move to -30.0 degrees (green arrow)
963 +|(% style="width:30px" %) |(% style="width:200px" %)**Blink While:**|(% style="width:50px" %)**#**|
964 +| |No blinking|0|
965 +| |Limp|1|
966 +| |Holding|2|
967 +| |Accelerating|4|
968 +| |Decelerating|8|
969 +| |Free|16|
970 +| |Travelling|32|
971 +| |Always blink|63|
483 483  
484 -#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)
973 +|(% style="width:30px" %) |(((
974 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
485 485  
486 -#1D-4200<cr> The servo rotates counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees and (420.0-360.0) stopping at an absolute position of 60.0 degrees, but virtual position of -420.0.
976 +Ex: #5CLB0 to turn off all blinking (LED always solid)
487 487  
488 -Although the final position would be the same as if the servo were commanded to move to -60.0 degrees, it is in fact at -420.0 degrees.
978 +Ex: #5CLB1 only blink when limp (1)
489 489  
490 -#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees, which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
980 +Ex: #5CLB2 only blink when holding (2)
981 +
982 +Ex: #5CLB12 only blink when accel or decel (accel 4 + decel 8 = 12)
983 +
984 +Ex: #5CLB48 only blink when free or travel (free 16 + travel 32 = 48)
985 +
986 +Ex: #5CLB63 blink in all status (1 + 2 + 4 + 8 + 16 + 32)
987 +
988 +RESETTING the servo is needed.
989 +)))
990 +
991 +|(% colspan="2" style="width:30px" %)(((
992 +====== RGB LED Patterns ======
993 +)))
994 +|(% style="width:30px" %) |(((
995 +The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-button-menu/]]
996 +)))
997 +|(% style="width:30px" %) |[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS%20-%20LED%20Patterns.png||alt="LSS - LED Patterns.png"]]
LSS - LED Patterns.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.RB1
Size
... ... @@ -1,0 +1,1 @@
1 +116.3 KB
Content
LSS-Protocol-Backup-2020-05-01.zip
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.ENantel
Size
... ... @@ -1,0 +1,1 @@
1 +47.4 KB
Content
XWiki.StyleSheetExtension[0]
Caching policy
... ... @@ -1,0 +1,1 @@
1 +long
Code
... ... @@ -1,0 +1,13 @@
1 +div.cmdcnt
2 +{
3 + display:table-row;
4 +}
5 +div.cmdpad
6 +{
7 + display:table-cell;
8 + padding:16px;
9 +}
10 +div.cmdtxt
11 +{
12 + display:table-cell;
13 +}
Content Type
... ... @@ -1,0 +1,1 @@
1 +CSS
Name
... ... @@ -1,0 +1,1 @@
1 +DivTextIndentation
Parse content
... ... @@ -1,0 +1,1 @@
1 +No
Use this extension
... ... @@ -1,0 +1,1 @@
1 +currentPage
Copyright RobotShop 2018