Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
-
Objects (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -xwiki:XWiki. BDaouas1 +xwiki:XWiki.ENantel - Content
-
... ... @@ -5,731 +5,998 @@ 5 5 6 6 = Serial Protocol = 7 7 8 -The customLynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 RC servo controller and almost everything one might expect to be able to configure for a smart servo8 +The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servomotor is available. 9 9 10 -In order to haveservosreactdifferently whencommandsare sent to all servos in a serial bus, the first stepa user shouldtakeisto assign a different ID number to each servo (explainedbelow).Oncethishasbeen,only the servo(s) which have beenassigned tothe IDsentas part ofthecommandwillfollowthatcommand. There is currently no CRC/checksum implemented as part of10 +In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol. 11 11 12 12 == Session == 13 13 14 -A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset. 14 +{{html clean="false" wiki="true"}} 15 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 16 +A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.<div class="wikimodel-emptyline"></div> 15 15 16 -Note #1: For a given session, the action related to a specific commands overrides the stored value in EEPROM. 17 -Note #2: During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s). 18 -You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended. 18 +**Note 1:** For a given session, the action related to a specific command overrides the stored value in EEPROM.<div class="wikimodel-emptyline"></div> 19 +**Note 2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (~1.25 s).<div class="wikimodel-emptyline"></div> 20 +**Note 3:** You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r described below). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays. 21 +<div class="wikimodel-emptyline"></div></div></div> 22 +{{/html}} 19 19 20 20 == Action Commands == 21 21 22 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format: 26 +{{html clean="false" wiki="true"}} 27 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 28 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]] (described below). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:<div class="wikimodel-emptyline"></div> 23 23 24 -1. Start with a number sign # (U+0023) 25 -1. Servo ID number as an integer 26 -1. Action command (one tothreeletters, no spaces, capital or lower30 +1. Start with a number sign **#** (Unicode Character: U+0023) 31 +1. Servo ID number as an integer (assigning an ID described below) 32 +1. Action command (one or more letters, no whitespace, capital or lowercase from the list below) 27 27 1. Action value in the correct units with no decimal 28 -1. End with a c ontrol / carriage return'<cr>'34 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 29 29 30 30 ((( 31 -Ex: #5 PD1443<cr>37 +Ex: #5D1800<cr><div class="wikimodel-emptyline"></div> 32 32 33 -This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 39 +This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 40 +<div class="wikimodel-emptyline"></div></div></div> 41 +{{/html}} 34 34 35 -== ActionModifiers ==43 +== Modifiers == 36 36 37 -Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is: 45 +{{html clean="false" wiki="true"}} 46 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 47 +Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div> 38 38 39 -1. Start with a number sign # (U+0023) 49 +1. Start with a number sign **#** (Unicode Character: U+0023) 40 40 1. Servo ID number as an integer 41 -1. Action command (one to three letters, no spaces, capital or lower case) 51 +1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below) 42 42 1. Action value in the correct units with no decimal 43 -1. Modifier command (one letter) 53 +1. Modifier command (one or two letters from the list of modifiers below) 44 44 1. Modifier value in the correct units with no decimal 45 -1. End with a c ontrol / carriage return'<cr>'55 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 46 46 47 -Ex: #5 P1456T1263<cr>57 +Ex: #5D1800T1500<cr><div class="wikimodel-emptyline"></div> 48 48 49 -This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds. 50 -))) 59 +This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div> 60 +<div class="wikimodel-emptyline"></div></div></div> 61 +{{/html}} 51 51 52 52 == Query Commands == 53 53 54 -Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format: 65 +{{html clean="false" wiki="true"}} 66 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 67 +Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div> 55 55 56 -1. Start with a number sign # (U+0023) 69 +1. Start with a number sign **#** (Unicode Character: U+0023) 57 57 1. Servo ID number as an integer 58 -1. Query command (one to threeletters, no spaces, capital or lower case)59 -1. End with a c ontrol / carriage return'<cr>'71 +1. Query command (one to four letters, no spaces, capital or lower case) 72 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 60 60 61 -((( 62 -Ex: #5QD<cr>Query position in degrees for servo #5 63 -))) 74 +Ex: #5QD<cr> Query the position in (tenth of) degrees for servo with ID #5<div class="wikimodel-emptyline"></div> 64 64 65 -((( 66 66 The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format: 67 67 68 -1. Start with an asterisk * (U+002 A)78 +1. Start with an asterisk * (Unicode Character: U+0023) 69 69 1. Servo ID number as an integer 70 -1. Query command (one to threeletters, no spaces, capital letters)80 +1. Query command (one to four letters, no spaces, capital letters) 71 71 1. The reported value in the units described, no decimals. 72 -1. End with a c ontrol / carriage return'<cr>'82 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 73 73 74 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be: 84 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div> 75 75 76 -((( 77 -Ex: *5QD1443<cr> 78 -))) 86 +Ex: *5QD1800<cr><div class="wikimodel-emptyline"></div> 79 79 80 -This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees). 88 +This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees). 89 +<div class="wikimodel-emptyline"></div></div></div> 90 +{{/html}} 81 81 82 82 == Configuration Commands == 83 83 84 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command: 94 +{{html clean="false" wiki="true"}} 95 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 96 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div> 85 85 86 -1. Start with a number sign # (U+0023) 98 +These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative. This means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div> 99 + 100 +The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div> 101 + 102 +1. Start with a number sign **#** (Unicode Character: U+0023) 87 87 1. Servo ID number as an integer 88 -1. Configuration command (two to threeletters, no spaces, capital or lower case)104 +1. Configuration command (two to four letters, no spaces, capital or lower case) 89 89 1. Configuration value in the correct units with no decimal 90 -1. End with a c ontrol / carriage return'<cr>'106 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 91 91 92 -Ex: #5CO-50 <cr>108 +Ex: #5CO-50<cr><div class="wikimodel-emptyline"></div> 93 93 94 -This configures an absolute origin offset ("CO") with respect to factory origin toservo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off andthen powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset(clears all configurations)described below.110 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div> 95 95 96 -**Session vs Configuration Query** 112 +**Session vs Configuration Query**<div class="wikimodel-emptyline"></div> 97 97 98 -By default, the query command returns the session s'114 +By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div> 99 99 100 -Ex: #5CSR20 <cr>immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.116 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div> 101 101 102 -After RESET, a command of #5SR4 <cr>sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:118 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div> 103 103 104 -#5QSR <cr>would return *5QSR4<cr>which represents the value for that session, whereas120 +#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas<div class="wikimodel-emptyline"></div> 105 105 106 -#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 122 +#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 123 +<div class="wikimodel-emptyline"></div></div></div> 124 +{{/html}} 107 107 108 108 == Virtual Angular Position == 109 109 110 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset). 128 +{{html wiki="true" clean="false"}} 129 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 130 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div> 111 111 112 -[[image:LSS-servo-positions.jpg]] 132 +[[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div> 113 113 114 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: 134 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div> 115 115 116 -#1D-300 <cr>This causes the servo to move to -30.0 degrees (green arrow)136 +#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)<div class="wikimodel-emptyline"></div> 117 117 118 -#1D2100 <cr>This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)138 +#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)<div class="wikimodel-emptyline"></div> 119 119 120 -#1D-4200 <cr>This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.140 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div> 121 121 122 -Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. 142 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.<div class="wikimodel-emptyline"></div> 123 123 124 -#1D4800 <cr>This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.144 +#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div> 125 125 126 -#1D3300 <cr>would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).146 +#1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).<div class="wikimodel-emptyline"></div> 127 127 128 -If / once the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). 129 -))) 148 +If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°]. 149 +<div class="wikimodel-emptyline"></div></div></div> 150 +{{/html}} 130 130 131 131 = Command List = 132 132 133 - ==Regular==154 +**Latest firmware version currently : 368.29.14** 134 134 135 -|= #|=Description|=Mod|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 136 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| | L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 137 -| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| | H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 138 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]|T| | | | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}. Time is estimated and can change based on load|(% style="text-align:center; width:113px" %) 139 -| 4|[[**S**peed>>||anchor="H4.Speed28S29modifier"]]|S| |QS| | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %) 140 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| | MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 141 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| | O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 142 -0 143 -))) 144 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| | AR| QAR| CAR|✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 145 -1800 146 -))) 147 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| | P| QP| | | | ✓|microseconds|(% style="width:510px" %)((( 148 -Inherited from SSC-32 serial protocol 149 -)))|(% style="text-align:center; width:113px" %) 150 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| | D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 151 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| | WD| QWD| | | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 152 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| | WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 153 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| | SD| QSD|CSD|✓| ✓| ✓|degrees per second (°/s)|(% style="width:510px" %)((( 154 -QSD: Add modifier "2" for instantaneous speed. 156 +|(% colspan="10" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]] 157 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 158 +| |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Soft reset. See command for details. 159 +| |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Revert to firmware default values. See command for details 160 +| |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Update firmware. See command for details. 161 +| |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 162 +| |[[**C**hange to **RC**>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CRC|(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Change to RC mode 1 (position) or 2 (wheel). 163 +| |[[**ID** #>>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %) |(% style="text-align:center" %)✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 164 +| |[[**B**audrate>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QB|(% style="text-align:center" %)CB|(% style="text-align:center" %) |(% style="text-align:center" %)✓|115200| |Reset required after change. 155 155 156 -SD overwrites SR / CSD overwrites CSR and vice-versa. 157 -)))|(% style="text-align:center; width:113px" %)Max per servo 158 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.MaxSpeedinRPM28SR29"]]| | SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 159 -QSR: Add modifier "2" for instantaneous speed 166 +|(% colspan="10" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]] 167 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 168 +| |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°| 169 +| |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°| 170 +| |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation" 171 +| |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM28WR29"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation" 172 +| |[[Position in **P**WM>>||anchor="HPositioninPWM28P29"]]|(% style="text-align:center" %)P|(% style="text-align:center" %)QP|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|Inherited from SSC-32 serial protocol 173 +| |[[**M**ove in PWM (relative)>>||anchor="H28Relative29MoveinPWM28M29"]]|(% style="text-align:center" %)M|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us| 174 +| |[[**R**aw **D**uty-cycle **M**ove>>||anchor="HRawDuty-cycleMove28RDM29"]]|(% style="text-align:center" %)RDM|(% style="text-align:center" %)QMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW 175 +| |[[**Q**uery Status>>||anchor="HQueryStatus28Q29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1 to 8 integer|See command description for details 176 +| |[[**L**imp>>||anchor="HLimp28L29"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 177 +| |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 160 160 161 -SR overwrites SD / CSR overwrites CSD and vice-versa. 162 -)))|(% style="text-align:center; width:113px" %)Max per servo 163 -| 14|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| | LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 7)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)0 (OFF) 164 -| 15|[[**G**yre direction (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| | G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 165 -| 16|[[**ID** #>>||anchor="H16.IdentificationNumber28ID29"]]| | | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0 166 -| 17|[[**B**aud rate>>||anchor="H17.BaudRate"]]| | | QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)115200 167 -| 18|//{coming soon}//| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 168 - 169 -))) 170 -| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstA0Position28Degrees29"]]| | | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)No Value 171 -| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)|(% style="text-align:center; width:113px" %) 172 -| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 173 -| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 174 -| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 175 -| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 176 -| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 177 -| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 178 -| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | | |CRC|✓| | ✓|none|(% style="width:510px" %)((( 179 -Change to RC mode 1 (position) or 2 (wheel). 180 -)))|(% style="text-align:center; width:113px" %)Serial 181 -| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 182 -| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 183 -| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 179 +|(% colspan="10" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]] 180 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 181 +| |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|(% style="text-align:center" %) |(% style="text-align:center" %)✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile 182 +| |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|5| |Affects motion only when motion profile is disabled (EM0) 183 +| |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|1/10°| 184 +| |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1800|1/10°| 185 +| |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|-4 to +4 integer|Suggested values are between 0 to +4 186 +| |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|4|-10 to +10 integer| 187 +| |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 188 +| |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 189 +| |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise) 190 +| |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|No value|1/10°|Reset required after change. 191 +| |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓|1023|255 to 1023 integer| 192 +| |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa 193 +| |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa 184 184 185 -== Advanced == 195 +|(% colspan="10" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]] 196 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 197 +| |[[**S**peed>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)S|(% style="text-align:center" %)QS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |uS/s |For P action command 198 +| |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |0.1°/s|For D and MD action commands 199 +| |[[**T**imed move>>||anchor="HTimedmove28T29modifier"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |ms|Modifier only for P, D and MD. Time can change based on load 200 +| |[[**C**urrent **H**old>>||anchor="HCurrentHalt26Hold28CH29modifier"]]|(% style="text-align:center" %)CH|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR 201 +| |[[**C**urrent **L**imp>>||anchor="HCurrentLimp28CL29modifier"]]|(% style="text-align:center" %)CL|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR 186 186 187 -| = #|=(%style="width: 182px;" %)Description|=(% style="width: 56px;"%)Mod|=(%style="width: 70px;" %) Action|=(% style="width: 71px;" %) Query|=(% style="width:77px;" %) Config|=(% style="width: 77px;"%)Session|=(% style="width: 56px;" %) RC|=(%style="width:51px;" %)Serial|= Units|=(% style="width: 510px;"%) Notes188 -| A1|(% style="width:182px" %)[[**A**ngular**S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]|(% style="width:56px" %)70px" %)AS|(% style="width:71px" %)QAS|(% style="width:77px" %)CAS|(% style="width:77px" %)✓|(% style="width:56px" %)✓|(% style="width:151px" %)✓|none(integer -4 to +4)|(% style="width:510px" %)Suggested values are between0to+4189 -| A2|(% style="width:182px" %)[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|(% style="width:56px" %) |(% style="width:70px" %)AH|(% style="width:71px" %)QAH|(% style="width:77px" %)CAH|(% style="width:77px" %)✓|(% style="width:56px"%) |(% style="width:151px" %) ✓|none(integer-10to +10)|(% style="width:510px" %)Effects differentbetween serialandRC190 -| A3|(% style="width:182px" %)[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|(% style="width:56px" %) |(% style="width:70px" %)AA|(% style="width:71px" %)QAA|(% style="width:77px" %)CAA|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|degrees per second squared|(% style="width:510px" %)Incrementsof10degrees per second squared191 -| A4|(% style="width:182px" %)[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|(% style="width:56px" %) |(% style="width:70px" %)AD|(% style="width:71px" %)QAD|(% style="width:77px" %)CAD|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees persecondsquared|(% style="width:510px" %)Increments of 10 degreespersecondsquared192 -| A5|(% style="width:182px" %)[[**E**nable **M**otionControl>>||anchor="HA5:MotionControl28EM29"]]|(% style="width:56px" %) |(% style="width:70px" %)EM|(% style="width:71px" %)QEM|(% style="width:77px" %) |(% style="width:77px" %) |(% style="width:56px" %) |(% style="width:151px" %)none|(%style="width:510px"%)EM0to disable motioncontrol,EM1to enable193 -| A6|(% style="width:182px" %)[[**C**onfigure **L**ED**B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]|(% style="width:56px" %) |(% style="width:70px" %) |(% style="width:71px" %)QLB|(% style="width:77px" %) CLB|(% style="width:77px" %) |(% style="width:56px" %)✓|(% style="width:151px" %) ✓|none(integerfrom 0 to 63)|(%style="width:510px"%)(((194 - 0=Noking,63=Alwaysblink;203 +|(% colspan="10" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]] 204 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 205 +| |[[**Q**uery **V**oltage>>||anchor="HQueryVoltage28QV29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QV|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mV| 206 +| |[[**Q**uery **T**emperature>>||anchor="HQueryTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°C| 207 +| |[[**Q**uery **C**urrent>>||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA| 208 +| |[[**Q**uery **M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1) 209 +| |[[**Q**uery **F**irmware Version>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 210 +| |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the unique serial number for the servo 195 195 196 - Blinkwhile: 1=Limp; 2=Holding; 4=Accel; 8=Decel; 16=Free 32=Travel;197 -))) 198 -| A7|(% style="width:182px" %)[[**C**urrent**H**alt & **H**old>>||anchor="HA7.CurrentHalt26Hold28CH29"]]|(% style="width:56px" %)CH|(% style="width:70px" %)width:71px" %)width:77px" %)width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps(ex 400=0.4A)|(%style="width:510px" %)ModifierforD,MD,WD, WR199 -| A8|(% style="width:182px" %)[[**C**urrent**L**imp>>||anchor="HA8.CurrentLimp28CL29"]]|(% style="width:56px" %)CL|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %)width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps(ex 400=0.4A)|(%style="width:510px"%)ModifierforD, MD, WD, WR212 +|(% colspan="10" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]] 213 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 214 +| |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White 215 +| |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 63 integer|Reset required after change. See command for details. 200 200 201 -== Details - Basic==217 += (% style="color:inherit; font-family:inherit" %)Details(%%) = 202 202 203 -== ====__1.Limp(**L**)__======219 +== (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) == 204 204 205 - Example:#5L<cr>221 +====== __Reset__ ====== 206 206 207 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 223 +{{html wiki="true" clean="false"}} 224 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 225 +Ex: #5RESET<cr><div class="wikimodel-emptyline"></div> 226 +This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). 227 +Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div> 228 +</div></div> 229 +{{/html}} 208 208 209 -====== __ 2. Halt &Hold (**H**)__ ======231 +====== __Default & confirm__ ====== 210 210 211 -Example: #5H<cr> 233 +{{html wiki="true" clean="false"}} 234 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 235 +Ex: #5DEFAULT<cr><div class="wikimodel-emptyline"></div> 212 212 213 -This action overrides whatever the servomightbedoingat thetimethe commandisreceived(accelerating, moving continuouslyetc.)and causesittostopimmediatelyandholdthat angular position.237 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.<div class="wikimodel-emptyline"></div> 214 214 215 - ======__3.Timedmove(**T**)modifier__ ======239 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 216 216 217 - Example:#5P1500T2500<cr>241 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<div class="wikimodel-emptyline"></div> 218 218 219 -Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 243 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 244 +</div></div> 245 +{{/html}} 220 220 221 - Note:If the calculated speedwhich a servomustrotatefor a timed move is greater than itsmaximumspeed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.247 +====== __Update & confirm__ ====== 222 222 223 -====== __4. Speed (**S**) modifier__ ====== 249 +{{html wiki="true" clean="false"}} 250 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 251 +Ex: #5UPDATE<cr><div class="wikimodel-emptyline"></div> 224 224 225 - Example:#5P1500S750<cr>253 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<div class="wikimodel-emptyline"></div> 226 226 227 - Thiscommand is a modifier only for a position (P) action and determinesthespeed ofthe move in microsecondspersecond. A speed of 750 microseconds would causethe servoto rotate fromitscurrent position to the desired position at a speed of 750microseconds per second. This command is in placeto ensure backwards compatibility with theSSC-32/32U protocol.255 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 228 228 229 - QuerySpeed(**QS**)257 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div> 230 230 231 -Example: #5QS<cr> might return *5QS300<cr> 259 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 260 +</div></div> 261 +{{/html}} 232 232 233 - Thiscommand queries the current speed inmicrosecondsper second.263 +====== __Confirm__ ====== 234 234 235 -====== __5. (Relative) Move in Degrees (**MD**)__ ====== 265 +{{html wiki="true" clean="false"}} 266 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 267 +Ex: #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 236 236 237 - Example:#5MD123<cr>269 +This command is used to confirm changes after a Default or Update command.<div class="wikimodel-emptyline"></div> 238 238 239 -The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 271 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 272 +</div></div> 273 +{{/html}} 240 240 241 -====== __ 6. OriginOffsetAction(**O**)__ ======275 +====== __Configure RC Mode (**CRC**)__ ====== 242 242 243 -Example: #5O2400<cr> 277 +{{html wiki="true" clean="false"}} 278 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 279 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.<div class="wikimodel-emptyline"></div> 244 244 245 -This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered). 281 +|**Command sent**|**Note** 282 +|ex: #5CRC1<cr>|Change to RC position mode. 283 +|ex: #5CRC2<cr>|Change to RC continuous rotation (wheel) mode. 284 +|ex: #5CRC*<cr>|Where * is any value other than 1 or 2 (or no value): stay in smart mode.<div class="wikimodel-emptyline"></div> 246 246 247 - [[image:LSS-servo-default.jpg]]286 +EX: #5CRC2<cr><div class="wikimodel-emptyline"></div> 248 248 249 - In the secondimage,the origin,andthecorrespondingangularrange(explainedbelow)havebeen shiftedby+240.0degrees:288 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.<div class="wikimodel-emptyline"></div> 250 250 251 -[[image:LSS-servo-origin.jpg]] 290 +**Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.<div class="wikimodel-emptyline"></div> 291 +</div></div> 292 +{{/html}} 252 252 253 - OriginOffset Query(**QO**)294 +====== __Identification Number (**ID**)__ ====== 254 254 255 -Example: #5QO<cr> Returns: *5QO-13 296 +{{html wiki="true" clean="false"}} 297 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 298 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div> 256 256 257 - This allows youto querythe angle (in tenths ofdegrees) of the originin relation to thefactory zero position.In thisexample, the neworigin is at -1.3degrees fromhe factoryzero.300 +Query Identification (**QID**)<div class="wikimodel-emptyline"></div> 258 258 259 - ConfigureOriginOffset(**CO**)302 +EX: #254QID<cr> might return *QID5<cr><div class="wikimodel-emptyline"></div> 260 260 261 - Example:#5CO-24<cr>304 +When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.<div class="wikimodel-emptyline"></div> 262 262 263 - This command allows you to change the origin ofthe servoin relation to the factory zero position in EEPROM. The settingwill be savedupon servo reset/power cycle. Origin offset configuration commands are not cumulativeand alwaysrelate to factory zero. The neworigin is also used in RCmode. In theexample,the new originwill beat -2.4degrees from the factory zero.306 +Configure ID (**CID**)<div class="wikimodel-emptyline"></div> 264 264 265 - ======__7. AngularRange(**AR**)__ ======308 +Ex: #4CID5<cr><div class="wikimodel-emptyline"></div> 266 266 267 -Example: #5AR1800<cr> 310 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div> 311 +</div></div> 312 +{{/html}} 268 268 269 - Thiscommand allows youto temporarily change the total angular range of the servo in tenths ofdegrees.This applies to the Position in Pulse (P) command andRC mode. The defaultfor (P) and RC modeis 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:314 +====== __Baud Rate__ ====== 270 270 271 -[[image:LSS-servo-default.jpg]] 316 +{{html clean="false" wiki="true"}} 317 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 318 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div> 272 272 273 - Below,theangularrange isrestricted to180.0degrees, or-90.0 to +90.0. Thecenter has remainedunchanged.320 +Query Baud Rate (**QB**)<div class="wikimodel-emptyline"></div> 274 274 275 - [[image:LSS-servo-ar.jpg]]322 +Ex: #5QB<cr> might return *5QB115200<cr><div class="wikimodel-emptyline"></div> 276 276 277 - Finally,the angular range actioncommand(ex.#5AR1800<cr>)and originoffsetaction command(ex.#5O-1200<cr>) areusedtomove boththecenter andlimittheangularrange:324 +Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.<div class="wikimodel-emptyline"></div> 278 278 279 - [[image:LSS-servo-ar-o-1.jpg]]326 +Configure Baud Rate (**CB**)<div class="wikimodel-emptyline"></div> 280 280 281 - QueryAngularRange(**QAR**)328 +**Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.<div class="wikimodel-emptyline"></div> 282 282 283 -Ex ample: #5QAR<cr> mightreturn *5AR1800, indicating theotalangular rangeis 180.0degrees.330 +Ex: #5CB9600<cr><div class="wikimodel-emptyline"></div> 284 284 285 -Configure Angular Range (**CAR**) 332 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div> 333 +</div></div> 334 +{{/html}} 286 286 287 - Thiscommand allows youtochangethe total angular range of the servo in tenths ofdegreesin EEPROM. The setting will be saved upon servo reset/ powercycle.336 +====== __Automatic Baud Rate__ ====== 288 288 289 -====== __8. Position in Pulse (**P**)__ ====== 338 +{{html clean="false" wiki="true"}} 339 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 340 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div> 341 +</div></div> 342 +{{/html} 290 290 291 - Example:#5P2334<cr>344 +== Motion == 292 292 293 - Theposition inPWM pulses was retained inorder to be backward compatible with the SSC-32 / 32U protocol. Thisrelates the desired angle with an RC standard PWM pulse andis further explained in the SSC-32 and SSC-32U manuals foundon Lynxmotion.com.Without any modifications to configuration considered, and a ±90.0 degreesstandardrange where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.346 +====== __Position in Degrees (**D**)__ ====== 294 294 295 -Query Position in Pulse (**QP**) 348 +{{html wiki="true" clean="false"}} 349 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 350 +Example: #5D1456<cr><div class="wikimodel-emptyline"></div> 296 296 297 - Example:#5QP<cr>might return*5QP2334352 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. <div class="wikimodel-emptyline"></div> 298 298 299 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 300 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 354 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). <div class="wikimodel-emptyline"></div> 301 301 302 - ======__9.Position in Degrees (**D**)__======356 +Query Position in Degrees (**QD**)<div class="wikimodel-emptyline"></div> 303 303 304 -Example: #5D 1456<cr>358 +Example: #5QD<cr> might return *5QD132<cr><div class="wikimodel-emptyline"></div> 305 305 306 -This m oves the servotoan angleof 145.6 degrees, where thecenter (0) position is centered.Negativevalues (ex. -176 representing -17.6degrees) are used.A fullcirclewould be from-1800 to1800degrees. A value of 2700 would be the same angle as-900,exceptthe servo would moveina differentdirection.360 +This means the servo is located at 13.2 degrees.<div class="wikimodel-emptyline"></div> 307 307 308 -Larger values are permitted and allow for multi-turn functionality using the concept of virtual position. 362 +(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 363 +Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div> 309 309 310 -Q uery Positionin Degrees(**QD**)365 +Ex: #5QDT<cr> might return *5QDT6783<cr><div class="wikimodel-emptyline"></div> 311 311 312 -Example: #5QD<cr> might return *5QD132<cr> 367 +The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 368 +<div class="wikimodel-emptyline"></div></div></div> 369 +{{/html}} 313 313 314 - Thismeanstheservo islocated at 13.2 degrees.371 +====== __(Relative) Move in Degrees (**MD**)__ ====== 315 315 316 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 317 -Query Target Position in Degrees (**QDT**) 373 +{{html wiki="true" clean="false"}} 374 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 375 +Example: #5MD123<cr><div class="wikimodel-emptyline"></div> 318 318 319 -Ex: #5QDT<cr> might return *5QDT6783<cr> 377 +The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 378 +<div class="wikimodel-emptyline"></div></div></div> 379 +{{/html}} 320 320 321 - Thequery target position command returns thetarget angleduring and afteran actionwhich results in a rotation of the servo horn. In the example above, the servo is rotatingto a virtual position of 678.3 degrees.Should the servo not have a target position or be in wheel mode, it will respond without a number(Ex:*5QDT<cr>).381 +====== __Wheel Mode in Degrees (**WD**)__ ====== 322 322 323 -====== __10. Wheel Mode in Degrees (**WD**)__ ====== 383 +{{html wiki="true" clean="false"}} 384 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 385 +Ex: #5WD90<cr><div class="wikimodel-emptyline"></div> 324 324 325 - Ex:#5WD900<cr>387 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div> 326 326 327 - This command sets the servoto wheelmodewhereit will rotate inthedesired direction at theselectedspeed. The example abovewould have theservo rotate at 90.0 degreesper second clockwise (assuming factorydefaultconfigurations).389 +Query Wheel Mode in Degrees (**QWD**)<div class="wikimodel-emptyline"></div> 328 328 329 - QueryWheelModein Degrees(**QWD**)391 +Ex: #5QWD<cr> might return *5QWD90<cr><div class="wikimodel-emptyline"></div> 330 330 331 -Ex: #5QWD<cr> might return *5QWD900<cr> 393 +The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 394 +<div class="wikimodel-emptyline"></div></div></div> 395 +{{/html}} 332 332 333 - Theservo replieswith the angular speed in tenthsofdegreesper second. A negative signwouldindicate the opposite direction(for factory default a negative value would be counter clockwise).397 +====== __Wheel Mode in RPM (**WR**)__ ====== 334 334 335 -====== __11. Wheel Mode in RPM (**WR**)__ ====== 399 +{{html wiki="true" clean="false"}} 400 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 401 +Ex: #5WR40<cr><div class="wikimodel-emptyline"></div> 336 336 337 - Ex:#5WR40<cr>403 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div> 338 338 339 - This command sets the servoto wheelmodewhereit will rotate inthedesireddirection at the selected rpm. Wheel mode (a.k.a. "continuousrotation") hasthe servo operate like a geared DCmotor. Theservo'smaximum rpm cannotbe set higher than its physicallimit at a givenvoltage. The example above wouldhave the servo rotate at 40 rpm clockwise (assuming factory default configurations).405 +Query Wheel Mode in RPM (**QWR**)<div class="wikimodel-emptyline"></div> 340 340 341 -Q ueryWheelModeinRPM (**QWR**)407 +Ex: #5QWR<cr> might return *5QWR40<cr><div class="wikimodel-emptyline"></div> 342 342 343 -Ex: #5QWR<cr> might return *5QWR40<cr> 344 - 345 345 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 410 +<div class="wikimodel-emptyline"></div></div></div> 411 +{{/html}} 346 346 347 -====== __ 12.Max SpeedinDegrees(**SD**)__ ======413 +====== __Position in PWM (**P**)__ ====== 348 348 349 -Ex: #5SD1800<cr> 415 +{{html wiki="true" clean="false"}} 416 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 417 +Example: #5P2334<cr><div class="wikimodel-emptyline"></div> 350 350 351 -Th iscommandsetstheservo'smaximumspeedformotioncommandsintenthsof degreespersecondforthat session.In the exampleabove,theservo'smaximum speedforthat sessionwould beseto 180.0 degreespersecond.The servo'sximumspeedcannoteset higherthan its physical limitat a givenvoltage.The SD action commandoverridesCSD(described below)forthat session.Uponresetor powercycle,theservorevertstothevalueassociatedwithCSD asdescribed below.NotethatSD andSR (described below)areeffectivelythesame,butallow theusertopecifythespeedin eitherunit. Thelastcommand (eitherSR orSD) receivediswhatheservousesforthatsession.419 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.<div class="wikimodel-emptyline"></div> 352 352 353 -Query SpeedinDegrees (**QSD**)421 +Query Position in Pulse (**QP**)<div class="wikimodel-emptyline"></div> 354 354 355 -Ex: #5Q SD<cr>might return *5QSD1800<cr>423 +Example: #5QP<cr> might return *5QP2334<div class="wikimodel-emptyline"></div> 356 356 357 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. 358 -If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 425 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 426 +Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 427 +<div class="wikimodel-emptyline"></div></div></div> 428 +{{/html}} 359 359 360 -|**Command sent**|**Returned value (1/10 °)** 361 -|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 362 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 363 -|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 364 -|ex: #5QSD3<cr>|Target travel speed 430 +====== __(Relative) Move in PWM (**M**)__ ====== 365 365 366 -Configure Speed in Degrees (**CSD**) 432 +{{html wiki="true" clean="false"}} 433 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 434 +Example: #5M1500<cr><div class="wikimodel-emptyline"></div> 367 367 368 -Ex: #5CSD1800<cr> 436 +The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 437 +<div class="wikimodel-emptyline"></div></div></div> 438 +{{/html}} 369 369 370 - Usingthe CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speedwillbe set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSDvalue is used. Note that CSD and CSR (described below) are effectively thesame, but allow theuser to specify the speed in either unit. The last command(either CSRor CSD)is what the servo uses for that session.440 +====== __Raw Duty-cycle Move (**RDM**)__ ====== 371 371 372 -====== __13. Max Speed in RPM (**SR**)__ ====== 442 +{{html wiki="true" clean="false"}} 443 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 444 +Example: #5RDM512<cr><div class="wikimodel-emptyline"></div> 373 373 374 - Ex:#5SD45<cr>446 +The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.<div class="wikimodel-emptyline"></div> 375 375 376 -Th iscommandsetsthe servo's maximum speedformotion commandsinrpmforthat session.In theexample above,the servo's maximum speed for thatsessionwouldbe seto45rpm. The servo'smaximum speed cannotbe setigherthan itsphysical limitat a givenvoltage. SD overrides CSD (described below)forthatsession. Uponresetor power cycle,theservorevertsto thevalueassociatedwith CSD as describedbelow. Notethat SD (describedabove) and SR are effectively the same, but allow the user to specify thespeedneither unit. Thelast command(either SR or SD) receiveds what the servo uses for that session.448 +The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).<div class="wikimodel-emptyline"></div> 377 377 378 -Query Speedin Degrees(**QSR**)450 +Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div> 379 379 380 -Ex: #5Q SR<cr>might return *5QSR45<cr>452 +Example: #5QMD<cr> might return *5QMD512<div class="wikimodel-emptyline"></div> 381 381 382 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. 383 -If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 454 +This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle. 455 +<div class="wikimodel-emptyline"></div></div></div> 456 +{{/html}} 384 384 385 -|**Command sent**|**Returned value (1/10 °)** 386 -|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 387 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 388 -|ex: #5QSR2<cr>|Instantaneous speed (same as QWR) 389 -|ex: #5QSR3<cr>|Target travel speed 458 +====== __Query Status (**Q**)__ ====== 390 390 391 -Configure Speed in RPM (**CSR**) 460 +{{html wiki="true" clean="false"}} 461 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 462 +The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div> 392 392 393 -Ex: #5CSR45<cr> 464 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div> 465 +</div></div> 466 +{{/html}} 394 394 395 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 468 +|(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description** 469 +| |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 470 +| |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 471 +| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command 472 +| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 473 +| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 474 +| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 475 +| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding) 476 +| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 477 +| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 478 +| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 479 +| |ex: *5Q10<cr>|10: Safe Mode|((( 480 +A safety limit has been exceeded (temperature, peak current or extended high current draw). 396 396 397 -====== __14. LED Color (**LED**)__ ====== 482 +Send a Q1 command to know which limit has been reached (described below). 483 +))) 398 398 399 -Ex: #5LED3<cr> 485 +{{html wiki="true" clean="false"}} 486 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 487 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div> 488 +</div></div> 489 +{{/html}} 400 400 401 -This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. 491 +|(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description** 492 +| |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 493 +| |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 494 +| |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 495 +| |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 402 402 403 - 0=Off(black);1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;497 +====== __Limp (**L**)__ ====== 404 404 405 -Query LED Color (**QLED**) 499 +{{html wiki="true" clean="false"}} 500 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 501 +Example: #5L<cr><div class="wikimodel-emptyline"></div> 406 406 407 -Ex: #5QLED<cr> might return *5QLED5<cr> 503 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 504 +<div class="wikimodel-emptyline"></div></div></div> 505 +{{/html}} 408 408 409 - Thissimple query returnstheindicatedservo'sLED color.507 +====== __Halt & Hold (**H**)__ ====== 410 410 411 -Configure LED Color (**CLED**) 509 +{{html wiki="true" clean="false"}} 510 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 511 +Example: #5H<cr><div class="wikimodel-emptyline"></div> 412 412 413 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 513 +This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 514 +<div class="wikimodel-emptyline"></div></div></div> 515 +{{/html}} 414 414 415 -== ====__15. Gyre RotationDirection(**G**)__======517 +== Motion Setup == 416 416 417 - "Gyre"is definedas a circular course or motion.The effect of changing the gyre direction is as ifyou were to use a mirror image of a circle.CW = 1; CCW = -1. The factory default is clockwise(CW).519 +====== __Enable Motion Profile (**EM**)__ ====== 418 418 419 -Ex: #5G-1<cr> 521 +{{html clean="false" wiki="true"}} 522 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 523 +EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div> 420 420 421 - Thiscommand will cause servo#5's positions to be inverted, effectivelycausing theservo to rotatein the opposite direction given the same command. Forexamplein a 2WD robot, servos are oftenphysicallyinstalledback to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.525 +Ex: #5EM1<cr><div class="wikimodel-emptyline"></div> 422 422 423 - QueryGyreDirection(**QG**)527 +This command enables a trapezoidal motion profile for servo #5 <div class="wikimodel-emptyline"></div> 424 424 425 -Ex: #5 QG<cr> mightreturn*5QG-1<cr>529 +Ex: #5EM0<cr><div class="wikimodel-emptyline"></div> 426 426 427 -The value returned above means the servo is in a counter-clockwise gyration.531 +This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command). 428 428 429 - ConfigureGyre(**CG**)533 +<div class="wikimodel-emptyline"></div> 430 430 431 -E x:#5CG-1<cr>535 +Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div> 432 432 433 - Thischangesthegyredirectionas describedaboveand alsowritesto EEPROM.537 +Ex: #5QEM<cr> might return *5QEM1<cr><div class="wikimodel-emptyline"></div> 434 434 435 - ======__16. IdentificationNumber(**ID**)__======539 +This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div> 436 436 437 - A servo's identification numbercannotbe set "onthe fly" and must be configuredvia theCID commanddescribedbelow. The factory default ID number forallservoss 0. Since smart servos are intended to be daisy chained, in order to respond differently from oneanother, the usermustset different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate).541 +Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div> 438 438 439 - QueryIdentification(**QID**)543 +Ex: #5CEM0<cr><div class="wikimodel-emptyline"></div> 440 440 441 -EX: #254QID<cr> might return *QID5<cr> 545 +This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 546 +<div class="wikimodel-emptyline"></div></div></div> 547 +{{/html}} 442 442 443 - WhenusingthequeryID command,its best toonlyhaveone servo connected and thus receive only one reply. This is useful when you are notsure of the servo's ID, but don't want to change it. Using the broadcast command(ID 254)with only one servo will have that servo reply with its ID number (assuming the query is sent . Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.549 +====== __Filter Position Count (**FPC**)__ ====== 444 444 445 -Configure ID (**CID**) 551 +{{html clean="false" wiki="true"}} 552 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 553 +The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default. 554 +<div class="wikimodel-emptyline"></div> 555 +Ex: #5FPC10<cr><div class="wikimodel-emptyline"></div> 556 +This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div> 446 446 447 - Ex:#4CID5<cr>558 +Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div> 448 448 449 - Setting a servo's ID inEEPROMis done via theCID command. All servos connected to the same serial bus will be assignedthatID. Inmost situations eachservo mustbe set a unique ID, which means each servo must beconnected individually to the serial bus andreceive a uniqueCID number. It is best to do this before the servos are added to an assembly. Numbered stickers are providedtodistinguish each servoafter their ID iset, though you are free to usewhatever alternativemethodyoulike. The servomust be RESET orpower cycledinorder for the new ID to take effect.560 +Ex: #5QFPC<cr> might return *5QFPC10<cr><div class="wikimodel-emptyline"></div> 450 450 451 - ======__17.BaudRate__ ======562 +This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div> 452 452 453 - A servo's baud rate cannot be set "on thefly" and must be configuredvia the CB command described below. The factory default baudratefor allservosis 115200. Since smartservos areintended tobe daisy chained,inorder to respondtothe same serial bus, all servosin a project should ideally beset to thesame baud rate. Setting different baudrates will havethe servos respond differentlyand may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200. The baud rates are currently restrictedto those above.564 +Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div> 454 454 455 - QueryBaudRate(**QB**)566 +Ex: #5CFPC10<cr><div class="wikimodel-emptyline"></div> 456 456 457 -Ex: #5QB<cr> might return *5QB115200<cr> 568 +This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 569 +<div class="wikimodel-emptyline"></div></div></div> 570 +{{/html}} 458 458 459 - Sincethe command to query the baud rate must be done at the servo's existingbaud rate,it cansimplybe used to confirm the CB configuration command wascorrectlyreceivedbefore the servo is power cycled and the new baud rate takes effect.572 +====== __Origin Offset (**O**)__ ====== 460 460 461 -Configure Baud Rate (**CB**) 574 +{{html wiki="true" clean="false"}} 575 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 576 +Example: #5O2400<cr><div class="wikimodel-emptyline"></div> 462 462 463 - ImportantNote:the servo'scurrent sessionretains thegiven baudrateand the newbaud ratewill onlytakeeffectwhen the servoispower cycled/RESET.578 +This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div> 464 464 465 - Ex:#5CB9600<cr>580 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div> 466 466 467 - Sendingthiscommandwill change thebaudrateassociatedwithservoID5to9600bits persecond.582 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div> 468 468 469 - ====== __18. {//Coming soon//}__ ======584 +[[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div> 470 470 471 - Command coming soon....586 +Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div> 472 472 473 - ======__19.FirstPosition (Degrees)__ ======588 +Example: #5QO<cr> might return *5QO-13<div class="wikimodel-emptyline"></div> 474 474 475 - In certaincases,ausermightwant tohave theservo move toaspecific angleuponpowerup; wereferto thisas "first position"(a.k.a. "initialposition").The factorydefault has nofirstpositionvalue stored inEEPROM andthereforeupon power up, theservoremains limp untila position (or hold command) is assigned. Notethat the number should be restricted to-1790 (-179.0degrees)to+1790 (179.0 degrees)andvalues beyondthiswill bechangedto 1800.590 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div> 476 476 477 - QueryFirst Positionin Degrees (**QFD**)592 +Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div> 478 478 479 -Ex: #5 QFD<cr> mightreturn*5QFD64<cr>594 +Example: #5CO-24<cr><div class="wikimodel-emptyline"></div> 480 480 481 -The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If there is no first position value stored, the reply will be DIS 596 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 597 +<div class="wikimodel-emptyline"></div></div></div> 598 +{{/html}} 482 482 483 - ConfigureFirst Positionin Degrees(**CFD**)600 +====== __Angular Range (**AR**)__ ====== 484 484 485 -Ex: #5CD64<cr> 602 +{{html wiki="true" clean="false"}} 603 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 604 +Example: #5AR1800<cr><div class="wikimodel-emptyline"></div> 486 486 487 -This co nfiguration commandmeans theservo,whenset tosmartmode,willimmediatelymove to6.4degreesuponpowerup.SendingaCFDcommandwithoutaumber (Ex.#5CFD<cr>)resultsinthe servo remaininglimpuponpowerup. Inorder to removethefirstposition, sendno value,ex: #5CFD<cr>606 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div> 488 488 489 - ====== __20. Query ModelString(**QMS**)__======608 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div> 490 490 491 - Ex:#5QMS<cr>might return*5QMSLSS-HS1<cr>610 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div> 492 492 493 - This replymeans theis LSS-HS1, meaning a high speedservo, first revision.612 +[[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div> 494 494 495 - ======__21.QuerySerialNumber(**QN**)__======614 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div> 496 496 497 - Ex:#5QN<cr> mightreturn*5QN12345678<cr>616 +[[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div> 498 498 499 - The numberintheresponse(12345678)wouldbe the servo'sserialnumberwhichis set and shouldnot bechanged bytheuser.618 +Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div> 500 500 501 - ======__22.QueryFirmware(**QF**)__======620 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div> 502 502 503 - Ex: #5QF<cr> mightreturn *5QF411<cr>622 +Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div> 504 504 505 -The number in the reply represents the firmware version, in this example being 411. 624 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 625 +<div class="wikimodel-emptyline"></div></div></div> 626 +{{/html}} 506 506 507 -====== __ 23. QueryStatus (**Q**)__ ======628 +====== __Angular Stiffness (**AS**)__ ====== 508 508 509 -The status query described what the servo is currently doing. The query returns an integer which must be looked up in the table below. Use the CLB advanced command to have the LED blink for certain statuses. 630 +{{html wiki="true" clean="false"}} 631 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 632 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div> 510 510 511 - Ex:#5Q<cr> might return*5Q6<cr>, which indicatesthe motor isholdingaposition.634 +A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div> 512 512 513 -|***Value returned (Q)**|**Status**|**Detailed description** 514 -|ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 515 -|ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 516 -|ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely 517 -|ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 518 -|ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 519 -|ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 520 -|ex: *5Q6<cr>|6: Holding|Keeping current position 521 -|ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 522 -|ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 523 -|ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 524 -|ex: *5Q10<cr>|10: Safe Mode|((( 525 -A safety limit has been exceeded (temperature, peak current or extended high current draw). 636 +* The more torque will be applied to try to keep the desired position against external input / changes 637 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div> 526 526 527 -Send a Q1 command to know which limit has been reached (described below). 528 -))) 639 +A lower value on the other hand:<div class="wikimodel-emptyline"></div> 529 529 530 - (%class="wikigeneratedid"%)531 - Ifa safetylimit hasbeen reached and exceeded,theLED will flashred andtheservo will stopprovidingtorque (nolonger reacttocommands which causethe motorto rotate).In order todeterminewhich limithasbeen reached, send a Q1 command. Theservo mustbe RESETinorder toturntoormaloperation, thoughifamit is still detected(for examplethe servo isstilltoohot), it will revertbackto Safe Mode.641 +* Causes a slower acceleration to the travel speed, and a slower deceleration 642 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div> 532 532 533 -|***Value returned (Q1)**|**Status**|**Detailed description** 534 -|ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 535 -|ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 536 -|ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 537 -|ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 644 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 538 538 539 - ======__24. QueryVoltage(**QV**)__ ======646 +Ex: #5AS-2<cr><div class="wikimodel-emptyline"></div> 540 540 541 - Ex:#5QV<cr>might return*5QV11200<cr>648 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div> 542 542 543 - Thenumber returnedhas one decimal,so in thecase above,servowith ID 5 has aninput voltageof 11.2V (perhaps athree cell LiPo battery).650 +Ex: #5QAS<cr><div class="wikimodel-emptyline"></div> 544 544 545 - ====== __25.QueryTemperature(**QT**)__======652 +Queries the value being used.<div class="wikimodel-emptyline"></div> 546 546 547 -Ex: #5 QT<cr> mightreturn*5QT564<cr>654 +Ex: #5CAS-2<cr><div class="wikimodel-emptyline"></div> 548 548 549 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 656 +Writes the desired angular stiffness value to EEPROM. 657 +<div class="wikimodel-emptyline"></div></div></div> 658 +{{/html}} 550 550 551 -====== __ 26. QueryCurrent (**QC**)__ ======660 +====== __Angular Holding Stiffness (**AH**)__ ====== 552 552 553 -Ex: #5QC<cr> might return *5QC140<cr> 662 +{{html wiki="true" clean="false"}} 663 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 664 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 554 554 555 - Theunits areinmilliamps,soin thexample above,the servois consuming 140mA, or 0.14A.666 +Ex: #5AH3<cr><div class="wikimodel-emptyline"></div> 556 556 557 - ======__27.ConfigureRCMode(**CRC**)__======668 +This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div> 558 558 559 - This command puts theservointoRC mode (positionor continuous), where it will only respond to RC pulses.Note that because thisis thecase, theservowill no longer accept serial commands. Theservo can be placed back into smartmode byusing thebutton menu.670 +Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div> 560 560 561 -|**Command sent**|**Note** 562 -|ex: #5CRC1<cr>|Change to RC position mode. 563 -|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 564 -|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode. 672 +Ex: #5QAH<cr> might return *5QAH3<cr><div class="wikimodel-emptyline"></div> 565 565 566 - EX:#5CRC2<cr>674 +This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div> 567 567 568 - This command would placethe servo inRC wheelmodeaftera RESETor power cycle.Note that afteraRESET or powercycle, theservowill bein RCmodeand will not replyto serialcommands. Using thecommand #5CRC<cr>or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.676 +Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div> 569 569 570 - Important note:****To revert from RCmode back to serialmode,the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button beinaccessible (or broken) when the servois in RC mode and the user needs tochange to serialmode,a5V constant HIGH needsto be sent to the servo's Rx pin (RC PWM pin), ensuring a common GND andwait for 30 seconds. NormalRC PWM pulses should not exceed 2500milliseconds. After 30 seconds, the servo will interpretthis as a desired mode change and change to serialmode. This has beenimplementedas a fail safe.678 +Ex: #5CAH2<cr><div class="wikimodel-emptyline"></div> 571 571 572 -====== __28. **RESET**__ ====== 680 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM. 681 +<div class="wikimodel-emptyline"></div></div></div> 682 +{{/html}} 573 573 574 - Ex:#5RESET<cr>or #5RS<cr>684 +====== __Angular Acceleration (**AA**)__ ====== 575 575 576 -This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 577 -Note: after a RESET command is received the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details. 686 +{{html wiki="true" clean="false"}} 687 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 688 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 578 578 579 - ====== __29. **DEFAULT**&CONFIRM__======690 +Ex: #5AA30<cr><div class="wikimodel-emptyline"></div> 580 580 581 - Ex:#5DEFAULT<cr>692 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 582 582 583 - This command sets in motion theresetof all values to the default valuesincluded with the versionof the firmwareinstalled on thatservo. Theservo thenwaits for the CONFIRM command. Anyother commandreceived will causehe servo to exit the DEFAULT function.694 +Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div> 584 584 585 -E X: #5DEFAULT<cr>followedby#5CONFIRM<cr>696 +Ex: #5QAA<cr> might return *5QAA30<cr><div class="wikimodel-emptyline"></div> 586 586 587 - Sinceititnotcommontohaveto restore all configurations,aonfirmationcommandisneededaftera firmwaremmandissent. Shouldany command otherthan CONFIRM bereceivedby theservoafter the firmware commandhas been received, itwill exit the command.698 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 588 588 589 - NotethatafterheCONFIRMcommand isent, the servowill automaticallyperform a RESET.700 +Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div> 590 590 591 - ======__30. **UPDATE**&CONFIRM__======702 +Ex: #5CAA30<cr><div class="wikimodel-emptyline"></div> 592 592 593 -Ex: #5UPDATE<cr> 704 +This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 705 +<div class="wikimodel-emptyline"></div></div></div> 706 +{{/html}} 594 594 595 - Thiscommand sets in motion the equivalent ofalong button presswhen the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command.Any other command received will cause the servo to exit the UPDATEfunction.708 +====== __Angular Deceleration (**AD**)__ ====== 596 596 597 -EX: #5UPDATE<cr> followed by #5CONFIRM<cr> 710 +{{html wiki="true" clean="false"}} 711 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 712 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 598 598 599 - Sinceitit notcommon to have to update firmware, a confirmation commandsneeded after an UPDATEcommand isent. Should any command other than CONFIRM be received by the servo after the firmware commandhas been received, it will leave the firmware action.714 +Ex: #5AD30<cr><div class="wikimodel-emptyline"></div> 600 600 601 - Note thataftertheCONFIRM commandis sent,theservowillautomaticallyperformaRESET.716 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 602 602 603 - ==Details-Advanced==718 +Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div> 604 604 605 - Themotioncontrollerused in serialmodeis not the same asthemotion controlleruse inRC mode. RC mode is intendedto addfunctionality to whatwouldbeconsidered "normal" RC behavior basedon PWMinput.720 +Ex: #5QAD<cr> might return *5QAD30<cr><div class="wikimodel-emptyline"></div> 606 606 607 - ======__A1.AngularStiffness (**AS**)__======722 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 608 608 609 - The servo's rigidity/ angularstiffnesscan bethought ofas (thoughnotidentical to)adamped springin which the valueaffectsthestiffness and embodies how much, and how quickly theservo tried keephe requested positionagainst changes. There are no units.724 +Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div> 610 610 611 - Apositive valueof "angularstiffness":726 +Ex: #5CAD30<cr><div class="wikimodel-emptyline"></div> 612 612 613 -* The more torque will be applied to try to keep the desired position against external input / changes 614 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 728 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 729 +<div class="wikimodel-emptyline"></div></div></div> 730 +{{/html}} 615 615 616 - Anegativevalueontheother hand:732 +====== __Gyre Direction (**G**)__ ====== 617 617 618 -* Causes a slower acceleration to the travel speed, and a slower deceleration 619 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back 734 +{{html wiki="true" clean="false"}} 735 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 736 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div> 620 620 621 - Thedefaultvalue forstiffnessdepending on the firmware may be 0 or 1. Greatervaluesproduce increasingly erratic behavior andtheffect becomes extreme below -4 and above+4. Maximumvalues are -10 to +10.738 +Ex: #5G-1<cr><div class="wikimodel-emptyline"></div> 622 622 623 - Ex:#5AS-2<cr>740 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div> 624 624 625 - This reduces the angularstiffness to -2 forthat session,allowing the servo to deviate more aroundthedesiredposition. Thiscan be beneficialin manysituationssuch asimpacts (legged robots) whereore of a "spring" effectis desired. Upon reset, the servo will use the value storedinmemory, basedon the last configuration command.742 +Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div> 626 626 627 -Ex: #5Q AS<cr>744 +Ex: #5QG<cr> might return *5QG-1<cr><div class="wikimodel-emptyline"></div> 628 628 629 - Queries the valuebeing used.746 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div> 630 630 631 - Ex:#5CAS<cr>748 +Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div> 632 632 633 - Writesthe desiredangularstiffness valuetomemory.750 +Ex: #5CG-1<cr><div class="wikimodel-emptyline"></div> 634 634 635 -====== __A2. Angular Holding Stiffness (**AH**)__ ====== 752 +This changes the gyre direction as described above and also writes to EEPROM. 753 +<div class="wikimodel-emptyline"></div></div></div> 754 +{{/html}} 636 636 637 - Theangular holding stiffness determinesheservo'sability to hold a desired positionunder load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. Note that when considering altering a stiffness value, the end effect depends on the mode being tested.756 +====== __First Position__ ====== 638 638 639 -Ex: #5AH3<cr> 758 +{{html wiki="true" clean="false"}} 759 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 760 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div> 640 640 641 - Thissetsthe holdingstiffnessfor servo#5 to 3 for thatsession.762 +Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div> 642 642 643 -Q ueryAngularHoldStiffness (**QAH**)764 +Ex: #5QFD<cr> might return *5QFD900<cr> <div class="wikimodel-emptyline"></div> 644 644 645 - Ex:#5QAH<cr>might return*5QAH3<cr>766 +The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div> 646 646 647 - Thisreturnsheservo'sangularholdingstiffnessvalue.768 +Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div> 648 648 649 -C onfigure Angular HoldStiffness (**CAH**)770 +Ex: #5CFD900<cr><div class="wikimodel-emptyline"></div> 650 650 651 -Ex: #5CAH2<cr> 772 +This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 773 +<div class="wikimodel-emptyline"></div></div></div> 774 +{{/html}} 652 652 653 - Thiswrites theangularholding stiffness of servo #5 to 2 to EEPROM. Note that when consideringaltering a stiffness value,theendeffect depends on the mode being tested.776 +====== __Maximum Motor Duty (**MMD**)__ ====== 654 654 655 -====== __A3: Angular Acceleration (**AA**)__ ====== 778 +{{html wiki="true" clean="false"}} 779 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 780 +This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div> 656 656 657 - Thedefaultvalue forangularacceleration is100,whichis the same as the maximumdeceleration. Accepts values of between1 and 100. Increments of 10degrees per second squared.782 +Ex: #5MMD512<cr><div class="wikimodel-emptyline"></div> 658 658 659 - Ex:#5AA30<cr>784 +This will set the duty-cycle to 512 for servo with ID 5 for that session.<div class="wikimodel-emptyline"></div> 660 660 661 -Query AngularAcceleration(**QAD**)786 +Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div> 662 662 663 -Ex: #5Q A<cr>might return *5QA30<cr>788 +Ex: #5QMMDD<cr> might return *5QMMD512<cr> <div class="wikimodel-emptyline"></div> 664 664 665 -Configure Angular Acceleration (**CAD**) 790 +This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023. 791 +<div class="wikimodel-emptyline"></div></div></div> 792 +{{/html}} 666 666 667 - Ex:#5CA30<cr>794 +====== __Maximum Speed in Degrees (**SD**)__ ====== 668 668 669 -====== __A4: Angular Deceleration (**AD**)__ ====== 796 +{{html wiki="true" clean="false"}} 797 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 798 +Ex: #5SD1800<cr><div class="wikimodel-emptyline"></div> 799 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 670 670 671 - Thedefault valuefor angular deceleration is100,whichis the sameas the maximum acceleration. Values between 1 and15 have the greatestimpact.801 +Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div> 672 672 673 -Ex: #5 AD8<cr>803 +Ex: #5QSD<cr> might return *5QSD1800<cr><div class="wikimodel-emptyline"></div> 674 674 675 -Quer yAngularDeceleration (**QAD**)805 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 676 676 677 -Ex: #5QD<cr> might return *5QD8<cr> 807 +|**Command sent**|**Returned value (1/10 °)** 808 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 809 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 810 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 811 +|ex: #5QSD3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 678 678 679 -Configure AngularDeceleration(**CAD**)813 +Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div> 680 680 681 -Ex: #5CD8<cr> 815 +Ex: #5CSD1800<cr><div class="wikimodel-emptyline"></div> 816 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 817 +</div></div> 818 +{{/html}} 682 682 683 -====== __ A5:MotionControl(**EM**)__ ======820 +====== __Maximum Speed in RPM (**SR**)__ ====== 684 684 685 -The command EM0 disables use of the motion controller (acceleration, velocity / travel, deceleration). As such, the servo will move at full speed for all motion commands. The command EM1 enables use of the motion controller. 822 +{{html wiki="true" clean="false"}} 823 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 824 +Ex: #5SR45<cr><div class="wikimodel-emptyline"></div> 825 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 686 686 687 - Notethat if the modifiersSor T areused,itisassumedthat motioncontrolisdesired, and for that command, EM1 willbeused.827 +Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div> 688 688 689 - ======__A6.ConfigureLEDBlinking (**CLB**)__ ======829 +Ex: #5QSR<cr> might return *5QSR45<cr><div class="wikimodel-emptyline"></div> 690 690 691 - Thiscommandlowsyou tocontrolwhentheRGB LEDwillblinkthe userset color(see[[16.RGBLED>>||anchor="H16.RGBLED28LED29"]]fordetails).Thisisveryuseful whenvisuallyseeingwhattheservoisoing.turnonoroffblinkingforvariousLSS status. The command requiresthat the servo beRESET.Hereisthelist andtheirassociatedalue:831 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 692 692 693 -(% style="width:195px" %) 694 -|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 695 -|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 696 -|(% style="width:134px" %)Limp|(% style="width:58px" %)1 697 -|(% style="width:134px" %)Holding|(% style="width:58px" %)2 698 -|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 699 -|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 700 -|(% style="width:134px" %)Free|(% style="width:58px" %)16 701 -|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 702 -|(% style="width:134px" %)Always blink|(% style="width:58px" %)63 833 +|**Command sent**|**Returned value (1/10 °)** 834 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 835 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 836 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 837 +|ex: #5QSR3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 703 703 704 - Toset blinking,useCLB with thevalueof your choosing.Toactivateblinking in multiple status,simply add together the values of the corresponding status. See examples below:839 +Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div> 705 705 706 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 707 -Ex: #5CLB1<cr> only blink when limp (1) 708 -Ex: #5CLB2<cr> only blink when holding (2) 709 -Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12) 710 -Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48) 711 -Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32) 841 +Ex: #5CSR45<cr><div class="wikimodel-emptyline"></div> 842 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 843 +</div></div> 844 +{{/html}} 712 712 713 - RESETTINGthe servoneeded.846 +== Modifiers == 714 714 715 -====== __ A7. Current Halt & Hold (**CH**)__ ======848 +====== __Speed (**S**, **SD**) modifier__ ====== 716 716 717 -This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR. 850 +{{html clean="false" wiki="true"}} 851 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 852 +Example: #5P1500S750<cr><div class="wikimodel-emptyline"></div> 853 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 854 +Example: #5D0SD180<cr><div class="wikimodel-emptyline"></div> 855 +Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.<div class="wikimodel-emptyline"></div> 856 +Query Speed (**QS**)<div class="wikimodel-emptyline"></div> 857 +Example: #5QS<cr> might return *5QS300<cr><div class="wikimodel-emptyline"></div> 858 +This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div> 859 +</div></div> 860 +{{/html}} 718 718 719 - Ex:#5D1423CH400<cr>862 +====== __Timed move (**T**) modifier__ ====== 720 720 721 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position. 864 +{{html wiki="true" clean="false"}} 865 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 866 +Example: #5P1500T2500<cr><div class="wikimodel-emptyline"></div> 722 722 723 -====== __A8. Current Limp (**CL**)__ ====== 868 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 869 +**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div> 870 +</div></div> 871 +{{/html}} 724 724 725 - Thismodifier,released infirmwarev367,can be addedtothe following actions:D; MD; WD; WR.873 +====== __Current Halt & Hold (**CH**) modifier__ ====== 726 726 727 -Ex: #5D1423CH400<cr> 875 +{{html wiki="true" clean="false"}} 876 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 877 +Example: #5D1423CH400<cr><div class="wikimodel-emptyline"></div> 728 728 729 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp. 879 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div> 880 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 881 +</div></div> 882 +{{/html}} 730 730 731 -= RGBLEDPatterns=884 +====== __Current Limp (**CL**) modifier__ ====== 732 732 886 +{{html wiki="true" clean="false"}} 887 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 888 +Example: #5D1423CL400<cr><div class="wikimodel-emptyline"></div> 889 + 890 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div> 891 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 892 +</div></div> 893 +{{/html}} 894 + 895 +== Telemetry == 896 + 897 +====== __Query Voltage (**QV**)__ ====== 898 + 899 +{{html wiki="true" clean="false"}} 900 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 901 +Ex: #5QV<cr> might return *5QV11200<cr><div class="wikimodel-emptyline"></div> 902 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div> 903 +</div></div> 904 +{{/html}} 905 + 906 +====== __Query Temperature (**QT**)__ ====== 907 + 908 +{{html wiki="true" clean="false"}} 909 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 910 +Ex: #5QT<cr> might return *5QT564<cr><div class="wikimodel-emptyline"></div> 911 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div> 912 +</div></div> 913 +{{/html}} 914 + 915 +====== __Query Current (**QC**)__ ====== 916 + 917 +{{html wiki="true" clean="false"}} 918 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 919 +Ex: #5QC<cr> might return *5QC140<cr><div class="wikimodel-emptyline"></div> 920 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div> 921 +</div></div> 922 +{{/html}} 923 + 924 +====== __Query Model String (**QMS**)__ ====== 925 + 926 +{{html wiki="true" clean="false"}} 927 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 928 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr><div class="wikimodel-emptyline"></div> 929 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div> 930 +</div></div> 931 +{{/html}} 932 + 933 +====== __Query Firmware (**QF**)__ ====== 934 + 935 +{{html wiki="true" clean="false"}} 936 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 937 +Ex: #5QF<cr> might return *5QF368<cr><div class="wikimodel-emptyline"></div> 938 +The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div> 939 +The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div> 940 +</div></div> 941 +{{/html}} 942 + 943 +====== __Query Serial Number (**QN**)__ ====== 944 + 945 +{{html wiki="true" clean="false"}} 946 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 947 +Ex: #5QN<cr> might return *5QN12345678<cr><div class="wikimodel-emptyline"></div> 948 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div> 949 +</div></div> 950 +{{/html}} 951 + 952 +== RGB LED == 953 + 954 +====== __LED Color (**LED**)__ ====== 955 + 956 +{{html wiki="true" clean="false"}} 957 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 958 +Ex: #5LED3<cr><div class="wikimodel-emptyline"></div> 959 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div> 960 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div> 961 +Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div> 962 +Ex: #5QLED<cr> might return *5QLED5<cr><div class="wikimodel-emptyline"></div> 963 +This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div> 964 +Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div> 965 +Ex: #5CLED3<cr><div class="wikimodel-emptyline"></div> 966 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div> 967 +</div></div> 968 +{{/html}} 969 + 970 +====== __Configure LED Blinking (**CLB**)__ ====== 971 + 972 +{{html wiki="true" clean="false"}} 973 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 974 +This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div> 975 + 976 +(% style="width:195px" %) 977 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 978 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 979 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1 980 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2 981 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 982 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 983 +|(% style="width:134px" %)Free|(% style="width:58px" %)16 984 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 985 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div> 986 + 987 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div> 988 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div> 989 +Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div> 990 +Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div> 991 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div> 992 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div> 993 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div> 994 +RESETTING the servo is needed.<div class="wikimodel-emptyline"></div> 995 +</div></div> 996 +{{/html}} 997 + 998 +== RGB LED Patterns == 999 + 733 733 The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] 734 734 735 735 [[image:LSS - LED Patterns.png]]
- LSS-Protocol-Backup-2020-05-01.zip
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.ENantel - Size
-
... ... @@ -1,0 +1,1 @@ 1 +47.4 KB - Content
- XWiki.StyleSheetExtension[0]
-
- Caching policy
-
... ... @@ -1,0 +1,1 @@ 1 +long - Code
-
... ... @@ -1,0 +1,13 @@ 1 +div.cmdcnt 2 +{ 3 + display:table-row; 4 +} 5 +div.cmdpad 6 +{ 7 + display:table-cell; 8 + padding:16px; 9 +} 10 +div.cmdtxt 11 +{ 12 + display:table-cell; 13 +} - Content Type
-
... ... @@ -1,0 +1,1 @@ 1 +CSS - Name
-
... ... @@ -1,0 +1,1 @@ 1 +DivTextIndentation - Parse content
-
... ... @@ -1,0 +1,1 @@ 1 +No - Use this extension
-
... ... @@ -1,0 +1,1 @@ 1 +currentPage