Last modified by Eric Nantel on 2025/06/06 07:47

From version < 160.1 >
edited by RB1
on 2020/03/11 09:50
To version < 172.1 >
edited by Eric Nantel
on 2020/05/01 09:24
< >
Change comment: Rollback to version 170.1

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -xwiki:XWiki.RB1
1 +xwiki:XWiki.ENantel
Content
... ... @@ -5,729 +5,952 @@
5 5  
6 6  = Serial Protocol =
7 7  
8 -The custom Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 RC servo controller and almost everything one might expect to be able to configure for a smart servo motor is available.
8 +The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servomotor is available.
9 9  
10 -In order to have servos react differently when commands are sent to all servos in a serial bus, the first step a user should take is to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC / checksum implemented as part of the protocol.
10 +In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on CID [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC or checksum implemented as part of the protocol.
11 11  
12 12  == Session ==
13 13  
14 -A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.
14 +{{html wiki="true" clean="false"}}
15 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
16 +A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.<div class="wikimodel-emptyline"></div>
15 15  
16 -Note #1: For a given session, the action related to a specific commands overrides the stored value in EEPROM.
17 -Note #2: During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).
18 -You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended.
18 +**Note #1:** For a given session, the action related to a specific commands overrides the stored value in EEPROM.<div class="wikimodel-emptyline"></div>
19 +**Note #2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).<div class="wikimodel-emptyline"></div>
20 +You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays.
21 +<div class="wikimodel-emptyline"></div></div></div>
22 +{{/html}}
19 19  
20 20  == Action Commands ==
21 21  
22 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
26 +{{html wiki="true" clean="false"}}
27 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
28 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]]. Action commands are sent serially to the servo's Rx pin and must be sent in the following format:<div class="wikimodel-emptyline"></div>
23 23  
24 -1. Start with a number sign # (U+0023)
30 +1. Start with a number sign **#** (Unicode Character: U+0023)
25 25  1. Servo ID number as an integer
26 -1. Action command (one to three letters, no spaces, capital or lower case)
32 +1. Action command (one or more letters, no whitespace, capital or lower case)
27 27  1. Action value in the correct units with no decimal
28 -1. End with a control / carriage return '<cr>'
34 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)
29 29  
30 30  (((
31 -Ex: #5PD1443<cr>
37 +Ex: #5D1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
32 32  
33 -This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
39 +This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
40 +<div class="wikimodel-emptyline"></div></div></div>
41 +{{/html}}
34 34  
35 -== Action Modifiers ==
43 +== Modifiers ==
36 36  
37 -Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is:
45 +{{html wiki="true" clean="false"}}
46 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
47 +Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div>
38 38  
39 -1. Start with a number sign # (U+0023)
49 +1. Start with a number sign **#** (Unicode Character: U+0023)
40 40  1. Servo ID number as an integer
41 41  1. Action command (one to three letters, no spaces, capital or lower case)
42 42  1. Action value in the correct units with no decimal
43 -1. Modifier command (one letter)
53 +1. Modifier command (one letter to too letters)
44 44  1. Modifier value in the correct units with no decimal
45 -1. End with a control / carriage return '<cr>'
55 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)
46 46  
47 -Ex: #5P1456T1263<cr>
57 +Ex: #5D1800T1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
48 48  
49 -This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds.
50 -)))
59 +This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div>
60 +<div class="wikimodel-emptyline"></div></div></div>
61 +{{/html}}
51 51  
52 52  == Query Commands ==
53 53  
54 -Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:
65 +{{html wiki="true" clean="false"}}
66 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
67 +Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div>
55 55  
56 -1. Start with a number sign # (U+0023)
69 +1. Start with a number sign **#** (Unicode Character: U+0023)
57 57  1. Servo ID number as an integer
58 -1. Query command (one to three letters, no spaces, capital or lower case)
59 -1. End with a control / carriage return '<cr>'
71 +1. Query command (one to four letters, no spaces, capital or lower case)
72 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
60 60  
61 -(((
62 -Ex: #5QD<cr>Query position in degrees for servo #5
63 -)))
74 +Ex: #5QD&lt;cr&gt; Query position in (tenth of) degrees for servo #5<div class="wikimodel-emptyline"></div>
64 64  
65 -(((
66 66  The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format:
67 67  
68 -1. Start with an asterisk * (U+002A)
78 +1. Start with an asterisk * (Unicode Character: U+0023)
69 69  1. Servo ID number as an integer
70 -1. Query command (one to three letters, no spaces, capital letters)
80 +1. Query command (one to four letters, no spaces, capital letters)
71 71  1. The reported value in the units described, no decimals.
72 -1. End with a control / carriage return '<cr>'
82 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
73 73  
74 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be:
84 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div>
75 75  
76 -(((
77 -Ex: *5QD1443<cr>
78 -)))
86 +Ex: *5QD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
79 79  
80 -This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees).
88 +This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees).
89 +<div class="wikimodel-emptyline"></div></div></div>
90 +{{/html}}
81 81  
82 82  == Configuration Commands ==
83 83  
84 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
94 +{{html wiki="true" clean="false"}}
95 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
96 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div>
85 85  
86 -1. Start with a number sign # (U+0023)
98 +These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative. This means that if two same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>
99 +
100 +The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div>
101 +
102 +1. Start with a number sign **#** (Unicode Character: U+0023)
87 87  1. Servo ID number as an integer
88 -1. Configuration command (two to three letters, no spaces, capital or lower case)
104 +1. Configuration command (two to four letters, no spaces, capital or lower case)
89 89  1. Configuration value in the correct units with no decimal
90 -1. End with a control / carriage return '<cr>'
106 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
91 91  
92 -Ex: #5CO-50<cr>
108 +Ex: #5CO-50&lt;cr&gt;<div class="wikimodel-emptyline"></div>
93 93  
94 -This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below.
110 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div>
95 95  
96 -**Session vs Configuration Query**
112 +**Session vs Configuration Query**<div class="wikimodel-emptyline"></div>
97 97  
98 -By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
114 +By default, the query command returns the session'value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div>
99 99  
100 -Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.
116 +Ex: #5CSR20&lt;cr&gt; immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>
101 101  
102 -After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
118 +After RESET, a command of #5SR4&lt;cr&gt; sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>
103 103  
104 -#5QSR<cr> would return *5QSR4<cr> which represents the value for that session, whereas
120 +#5QSR&lt;cr&gt; or #5QSR0&lt;cr&gt; would return *5QSR4&lt;cr&gt; which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>
105 105  
106 -#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM
122 +#5QSR1&lt;cr&gt; would return *5QSR20&lt;cr&gt; which represents the value in EEPROM
123 +<div class="wikimodel-emptyline"></div></div></div>
124 +{{/html}}
107 107  
108 108  == Virtual Angular Position ==
109 109  
110 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).
128 +{{html wiki="true" clean="false"}}
129 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
130 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div>
111 111  
112 -[[image:LSS-servo-positions.jpg]]
132 +[[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div>
113 113  
114 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
134 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div>
115 115  
116 -#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)
136 +#1D-300&lt;cr&gt; This causes the servo to move to -30.0 degrees (green arrow)<div class="wikimodel-emptyline"></div>
117 117  
118 -#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)
138 +#1D2100&lt;cr&gt; This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)<div class="wikimodel-emptyline"></div>
119 119  
120 -#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.
140 +#1D-4200&lt;cr&gt; This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div>
121 121  
122 -Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.
142 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.<div class="wikimodel-emptyline"></div>
123 123  
124 -#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
144 +#1D4800&lt;cr&gt; This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div>
125 125  
126 -#1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).
146 +#1D3300&lt;cr&gt; would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>
127 127  
128 -If / once the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified).
129 -)))
148 +If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°].
149 +<div class="wikimodel-emptyline"></div></div></div>
150 +{{/html}}
130 130  
131 131  = Command List =
132 132  
133 -== Regular ==
154 +**Latest firmware version currently : 368.29.14**
134 134  
135 -|= #|=Description|=Mod|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
136 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| | L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
137 -| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| | H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
138 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]|T| | | | | | ✓|milliseconds|(% style="width:510px" %)Modifier only for {P, D, MD}. Time is estimated and can change based on load|(% style="text-align:center; width:113px" %)
139 -| 4|[[**S**peed>>||anchor="H4.Speed28S29modifier"]]|S/SD| |QS| | | | ✓|microseconds per second / degrees per second|(% style="width:510px" %)S modifier only for {P}. SD modifier only for {D, MD}.|(% style="text-align:center; width:113px" %)
140 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| | MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
141 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| | O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
142 -0
143 -)))
144 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| | AR| QAR| CAR|✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
145 -1800
146 -)))
147 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| | P| QP| | | | ✓|microseconds|(% style="width:510px" %)(((
148 -Inherited from SSC-32 serial protocol
149 -)))|(% style="text-align:center; width:113px" %)
150 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| | D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
151 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| | WD| QWD| | | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
152 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| | WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
153 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| | SD| QSD|CSD|✓| ✓| ✓|degrees per second (°/s)|(% style="width:510px" %)(((
154 -QSD: Add modifier "2" for instantaneous speed.
156 +|(% colspan="10" style="color:orange; font-size:18px" %)**Communication Setup**
157 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
158 +| |Soft **Reset**|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Soft reset. See command for details.
159 +| |**Default** Configuration|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Revert to firmware default values. See command for details
160 +| |Firmware **Update** Mode|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Update firmware. See command for details.
161 +| |**Confirm** Changes|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
162 +| |**C**hange to **RC**|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CRC|(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Change to RC mode 1 (position) or 2 (wheel).
163 +| |**ID** #|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %) |(% style="text-align:center" %)✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
164 +| |**B**audrate|(% style="text-align:center" %) |(% style="text-align:center" %)QB|(% style="text-align:center" %)CB|(% style="text-align:center" %) |(% style="text-align:center" %)✓|115200| |Reset required after change.
155 155  
156 -SD overwrites SR / CSD overwrites CSR and vice-versa.
157 -)))|(% style="text-align:center; width:113px" %)Max per servo
158 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.MaxSpeedinRPM28SR29"]]| | SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((
159 -QSR: Add modifier "2" for instantaneous speed
166 +|(% colspan="10" style="color:orange; font-size:18px" %)**Motion**
167 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
168 +| |Position in **D**egrees|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°|
169 +| |**M**ove in **D**egrees (relative)|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°|
170 +| |**W**heel mode in **D**egrees|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation"
171 +| |**W**heel mode in **R**PM|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation"
172 +| |Position in **P**WM|(% style="text-align:center" %)P|(% style="text-align:center" %)QP|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|Inherited from SSC-32 serial protocol
173 +| |**M**ove in PWM (relative)|(% style="text-align:center" %)M|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|
174 +| |**R**aw **D**uty-cycle **M**ove|(% style="text-align:center" %)RDM|(% style="text-align:center" %)QMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW
175 +| |**Q**uery Status|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1 to 8 integer|See command description for details
176 +| |**L**imp|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
177 +| |**H**alt & Hold|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
160 160  
161 -SR overwrites SD / CSR overwrites CSD and vice-versa.
162 -)))|(% style="text-align:center; width:113px" %)Max per servo
163 -| 14|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| | LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 7)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)0 (OFF)
164 -| 15|[[**G**yre direction (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| | G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
165 -| 16|[[**ID** #>>||anchor="H16.IdentificationNumber28ID29"]]| | | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0
166 -| 17|[[**B**aud rate>>||anchor="H17.BaudRate"]]| | | QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)115200
167 -| 18|//{coming soon}//| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
168 -
169 -)))
170 -| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstA0Position28Degrees29"]]| | | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)No Value
171 -| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)|(% style="text-align:center; width:113px" %)
172 -| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %)
173 -| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
174 -| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
175 -| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
176 -| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
177 -| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
178 -| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | | |CRC|✓| | ✓|none|(% style="width:510px" %)(((
179 -Change to RC mode 1 (position) or 2 (wheel).
180 -)))|(% style="text-align:center; width:113px" %)Serial
181 -| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
182 -| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
183 -| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
179 +|(% colspan="10" style="color:orange; font-size:18px" %)**Motion Setup**
180 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
181 +| |**E**nable **M**otion Profile|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|(% style="text-align:center" %) |(% style="text-align:center" %)✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile
182 +| |**F**ilter **P**osition **C**ount|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|5| |Affects motion only when motion profile is disabled (EM0)
183 +| |**O**rigin Offset|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|1/10°|
184 +| |**A**ngular **R**ange|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1800|1/10°|
185 +| |**A**ngular **S**tiffness|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|-4 to +4 integer|Suggested values are between 0 to +4
186 +| |**A**ngular **H**olding Stiffness |(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|4|-10 to +10 integer|
187 +| |**A**ngular **A**cceleration|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
188 +| |**A**ngular **D**eceleration|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
189 +| |**G**yre Direction|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
190 +| |**F**irst Position (**D**eg)|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|No value|1/10°|Reset required after change.
191 +| |**M**aximum **M**otor **D**uty|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓|1023|255 to 1023 integer|
192 +| |Maximum **S**peed in **D**egrees|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
193 +| |Maximum **S**peed in **R**PM|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
184 184  
185 -== Advanced ==
195 +|(% colspan="10" style="color:orange; font-size:18px" %)**Modifiers**
196 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
197 +| |**S**peed|(% style="text-align:center" %)S|(% style="text-align:center" %)QS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |uS/s |For P action command
198 +| |**S**peed in **D**egrees|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|For D and MD action commands
199 +| |**T**imed move|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |ms|Modifier only for P, D and MD. Time can change based on load
200 +| |**C**urrent **H**old|(% style="text-align:center" %)CH|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR
201 +| |**C**urrent **L**imp|(% style="text-align:center" %)CL|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR
186 186  
187 -|= #|=(% style="width: 182px;" %)Description|=(% style="width: 56px;" %)Mod|=(% style="width: 70px;" %) Action|=(% style="width: 71px;" %) Query|=(% style="width: 77px;" %) Config|=(% style="width: 77px;" %)Session|=(% style="width: 56px;" %) RC|=(% style="width: 151px;" %) Serial|= Units|=(% style="width: 510px;" %) Notes
188 -| A1|(% style="width:182px" %)[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]|(% style="width:56px" %) |(% style="width:70px" %)AS|(% style="width:71px" %)QAS|(% style="width:77px" %)CAS|(% style="width:77px" %)|(% style="width:56px" %)|(% style="width:151px" %) ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4
189 -| A2|(% style="width:182px" %)[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|(% style="width:56px" %) |(% style="width:70px" %)AH|(% style="width:71px" %)QAH|(% style="width:77px" %)CAH|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|none (integer -10 to +10)|(% style="width:510px" %)Effect is different between serial and RC
190 -| A3|(% style="width:182px" %)[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|(% style="width:56px" %) |(% style="width:70px" %)AA|(% style="width:71px" %)QAA|(% style="width:77px" %)CAA|(% style="width:77px" %)|(% style="width:56px" %) |(% style="width:151px" %) |degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared
191 -| A4|(% style="width:182px" %)[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|(% style="width:56px" %) |(% style="width:70px" %)AD|(% style="width:71px" %)QAD|(% style="width:77px" %)CAD|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared
192 -| A5|(% style="width:182px" %)[[**E**nable **M**otion Control>>||anchor="HA5:MotionControl28EM29"]]|(% style="width:56px" %) |(% style="width:70px" %)EM|(% style="width:71px" %)QEM|(% style="width:77px" %) |(% style="width:77px" %) |(% style="width:56px" %) |(% style="width:151px" %) ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable
193 -| A6|(% style="width:182px" %)[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]|(% style="width:56px" %) |(% style="width:70px" %) |(% style="width:71px" %)QLB|(% style="width:77px" %) CLB|(% style="width:77px" %) |(% style="width:56px" %) |(% style="width:151px" %) ✓|none (integer from 0 to 63)|(% style="width:510px" %)(((
194 -0=No blinking, 63=Always blink;
203 +|(% colspan="10" style="color:orange; font-size:18px" %)**Telemetry**
204 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
205 +| |**Q**uery **V**oltage|(% style="text-align:center" %) |(% style="text-align:center" %)QV|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mV|
206 +| |**Q**uery **T**emperature|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°C|
207 +| |**Q**uery **C**urrent|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|
208 +| |**Q**uery **M**odel **S**tring|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
209 +| |**Q**uery **F**irmware Version|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)| | |
210 +| |**Q**uery Serial **N**umber|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the unique serial number for the servo
195 195  
196 -Blink while: 1=Limp; 2=Holding; 4=Accel; 8=Decel; 16=Free 32=Travel;
197 -)))
198 -| A7|(% style="width:182px" %)[[**C**urrent **H**alt & **H**old>>||anchor="HA7.CurrentHalt26Hold28CH29"]]|(% style="width:56px" %)CH|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR
199 -| A8|(% style="width:182px" %)[[**C**urrent **L**imp>>||anchor="HA8.CurrentLimp28CL29"]]|(% style="width:56px" %)CL|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR
212 +|(% colspan="10" style="color:orange; font-size:18px" %)**RGB LED**
213 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
214 +| |**LED** Color|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
215 +| |**C**onfigure **L**ED **B**linking|(% style="text-align:center" %) |(% style="text-align:center" %)QLB|(% style="text-align:center" %)CLB|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 63 integer|Reset required after change. See command for details.
200 200  
201 -== Details - Basic ==
217 += (% style="color:inherit; font-family:inherit" %)Details(%%) =
202 202  
203 -====== __1. Limp (**L**)__ ======
219 +== (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
204 204  
205 -Example: #5L<cr>
221 +====== __Reset__ ======
206 206  
207 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
223 +{{html wiki="true" clean="false"}}
224 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
225 +Ex: #5RESET<cr><div class="wikimodel-emptyline"></div>
226 +This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands).
227 +Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div>
228 +</div></div>
229 +{{/html}}
208 208  
209 -====== __2. Halt & Hold (**H**)__ ======
231 +====== __Default & confirm__ ======
210 210  
211 -Example: #5H<cr>
233 +{{html wiki="true" clean="false"}}
234 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
235 +Ex: #5DEFAULT<cr><div class="wikimodel-emptyline"></div>
212 212  
213 -This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position.
237 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.<div class="wikimodel-emptyline"></div>
214 214  
215 -====== __3. Timed move (**T**) modifier__ ======
239 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div>
216 216  
217 -Example: #5P1500T2500<cr>
241 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<div class="wikimodel-emptyline"></div>
218 218  
219 -Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
243 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
244 +</div></div>
245 +{{/html}}
220 220  
221 -Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
247 +====== __Update & confirm__ ======
222 222  
223 -====== __4. Speed (**S**) modifier__ ======
249 +{{html wiki="true" clean="false"}}
250 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
251 +Ex: #5UPDATE<cr><div class="wikimodel-emptyline"></div>
224 224  
225 -Example: #5P1500S750<cr>
253 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<div class="wikimodel-emptyline"></div>
226 226  
227 -This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
255 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div>
228 228  
229 -Query Speed (**QS**)
257 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div>
230 230  
231 -Example: #5QS<cr> might return *5QS300<cr>
259 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
260 +</div></div>
261 +{{/html}}
232 232  
233 -This command queries the current speed in microseconds per second.
263 +====== __Configure RC Mode (**CRC**)__ ======
234 234  
235 -====== __5. (Relative) Move in Degrees (**MD**)__ ======
265 +{{html wiki="true" clean="false"}}
266 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
267 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.<div class="wikimodel-emptyline"></div>
236 236  
237 -Example: #5MD123<cr>
269 +|**Command sent**|**Note**
270 +|ex: #5CRC1<cr>|Change to RC position mode.
271 +|ex: #5CRC2<cr>|Change to RC continuous rotation (wheel) mode.
272 +|ex: #5CRC*<cr>|Where * is any value other than 1 or 2 (or no value): stay in smart mode.<div class="wikimodel-emptyline"></div>
238 238  
239 -The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
274 +EX: #5CRC2<cr><div class="wikimodel-emptyline"></div>
240 240  
241 -====== __6. Origin Offset Action (**O**)__ ======
276 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.<div class="wikimodel-emptyline"></div>
242 242  
243 -Example: #5O2400<cr>
278 +**Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.<div class="wikimodel-emptyline"></div>
279 +</div></div>
280 +{{/html}}
244 244  
245 -This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
282 +====== __Identification Number (**ID**)__ ======
246 246  
247 -[[image:LSS-servo-default.jpg]]
284 +{{html wiki="true" clean="false"}}
285 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
286 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div>
248 248  
249 -In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
288 +Query Identification (**QID**)<div class="wikimodel-emptyline"></div>
250 250  
251 -[[image:LSS-servo-origin.jpg]]
290 +EX: #254QID<cr> might return *QID5<cr><div class="wikimodel-emptyline"></div>
252 252  
253 -Origin Offset Query (**QO**)
292 +When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.<div class="wikimodel-emptyline"></div>
254 254  
255 -Example: #5QO<cr> Returns: *5QO-13
294 +Configure ID (**CID**)<div class="wikimodel-emptyline"></div>
256 256  
257 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
296 +Ex: #4CID5<cr><div class="wikimodel-emptyline"></div>
258 258  
259 -Configure Origin Offset (**CO**)
298 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div>
299 +</div></div>
300 +{{/html}}
260 260  
261 -Example: #5CO-24<cr>
302 +====== __Baud Rate__ ======
262 262  
263 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
304 +{{html wiki="true" clean="false"}}
305 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
306 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div>
264 264  
265 -====== __7. Angular Range (**AR**)__ ======
308 +Query Baud Rate (**QB**)<div class="wikimodel-emptyline"></div>
266 266  
267 -Example: #5AR1800<cr>
310 +Ex: #5QB<cr> might return *5QB115200<cr><div class="wikimodel-emptyline"></div>
268 268  
269 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
312 +Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.<div class="wikimodel-emptyline"></div>
270 270  
271 -[[image:LSS-servo-default.jpg]]
314 +Configure Baud Rate (**CB**)<div class="wikimodel-emptyline"></div>
272 272  
273 -Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
316 +**Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.<div class="wikimodel-emptyline"></div>
274 274  
275 -[[image:LSS-servo-ar.jpg]]
318 +Ex: #5CB9600<cr><div class="wikimodel-emptyline"></div>
276 276  
277 -Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
320 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div>
321 +</div></div>
322 +{{/html}}
278 278  
279 -[[image:LSS-servo-ar-o-1.jpg]]
324 +== Motion ==
280 280  
281 -Query Angular Range (**QAR**)
326 +====== __Position in Degrees (**D**)__ ======
282 282  
283 -Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
328 +{{html wiki="true" clean="false"}}
329 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
330 +Example: #5D1456&lt;cr&gt;<div class="wikimodel-emptyline"></div>
284 284  
285 -Configure Angular Range (**CAR**)
332 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. <div class="wikimodel-emptyline"></div>
286 286  
287 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
334 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). <div class="wikimodel-emptyline"></div>
288 288  
289 -====== __8. Position in Pulse (**P**)__ ======
336 +Query Position in Degrees (**QD**)<div class="wikimodel-emptyline"></div>
290 290  
291 -Example: #5P2334<cr>
338 +Example: #5QD&lt;cr&gt; might return *5QD132&lt;cr&gt;<div class="wikimodel-emptyline"></div>
292 292  
293 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.
340 +This means the servo is located at 13.2 degrees.<div class="wikimodel-emptyline"></div>
294 294  
295 -Query Position in Pulse (**QP**)
342 +(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %)
343 +Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div>
296 296  
297 -Example: #5QP<cr> might return *5QP2334
345 +Ex: #5QDT&lt;cr&gt; might return *5QDT6783&lt;cr&gt;<div class="wikimodel-emptyline"></div>
298 298  
299 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 
300 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
347 +The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
348 +<div class="wikimodel-emptyline"></div></div></div>
349 +{{/html}}
301 301  
302 -====== __9. Position in Degrees (**D**)__ ======
351 +====== __(Relative) Move in Degrees (**MD**)__ ======
303 303  
304 -Example: #5D1456<cr>
353 +{{html wiki="true" clean="false"}}
354 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
355 +Example: #5MD123&lt;cr&gt;<div class="wikimodel-emptyline"></div>
305 305  
306 -This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction.
357 +The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
358 +<div class="wikimodel-emptyline"></div></div></div>
359 +{{/html}}
307 307  
308 -Larger values are permitted and allow for multi-turn functionality using the concept of virtual position.
361 +====== __Wheel Mode in Degrees (**WD**)__ ======
309 309  
310 -Query Position in Degrees (**QD**)
363 +{{html wiki="true" clean="false"}}
364 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
365 +Ex: #5WD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
311 311  
312 -Example: #5QD<cr> might return *5QD132<cr>
367 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
313 313  
314 -This means the servo is located at 13.2 degrees.
369 +Query Wheel Mode in Degrees (**QWD**)<div class="wikimodel-emptyline"></div>
315 315  
316 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %)
317 -Query Target Position in Degrees (**QDT**)
371 +Ex: #5QWD&lt;cr&gt; might return *5QWD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
318 318  
319 -Ex: #5QDT<cr> might return *5QDT6783<cr>
373 +The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
374 +<div class="wikimodel-emptyline"></div></div></div>
375 +{{/html}}
320 320  
321 -The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
377 +====== __Wheel Mode in RPM (**WR**)__ ======
322 322  
323 -====== __10. Wheel Mode in Degrees (**WD**)__ ======
379 +{{html wiki="true" clean="false"}}
380 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
381 +Ex: #5WR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
324 324  
325 -Ex: #5WD900<cr>
383 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
326 326  
327 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
385 +Query Wheel Mode in RPM (**QWR**)<div class="wikimodel-emptyline"></div>
328 328  
329 -Query Wheel Mode in Degrees (**QWD**)
387 +Ex: #5QWR&lt;cr&gt; might return *5QWR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
330 330  
331 -Ex: #5QWD<cr> might return *5QWD900<cr>
389 +The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
390 +<div class="wikimodel-emptyline"></div></div></div>
391 +{{/html}}
332 332  
333 -The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
393 +====== __Position in PWM (**P**)__ ======
334 334  
335 -====== __11. Wheel Mode in RPM (**WR**)__ ======
395 +{{html wiki="true" clean="false"}}
396 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
397 +Example: #5P2334&lt;cr&gt;<div class="wikimodel-emptyline"></div>
336 336  
337 -Ex: #5WR40<cr>
399 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.<div class="wikimodel-emptyline"></div>
338 338  
339 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
401 +Query Position in Pulse (**QP**)<div class="wikimodel-emptyline"></div>
340 340  
341 -Query Wheel Mode in RPM (**QWR**)
403 +Example: #5QP&lt;cr&gt; might return *5QP2334<div class="wikimodel-emptyline"></div>
342 342  
343 -Ex: #5QWR<cr> might return *5QWR40<cr>
405 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle.
406 +Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
407 +<div class="wikimodel-emptyline"></div></div></div>
408 +{{/html}}
344 344  
345 -The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
410 +====== __(Relative) Move in PWM (**M**)__ ======
346 346  
347 -====== __12. Max Speed in Degrees (**SD**)__ ======
412 +{{html wiki="true" clean="false"}}
413 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
414 +Example: #5M1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
348 348  
349 -Ex: #5SD1800<cr>
416 +The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
417 +<div class="wikimodel-emptyline"></div></div></div>
418 +{{/html}}
350 350  
351 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
420 +====== __Raw Duty-cycle Move (**RDM**)__ ======
352 352  
353 -Query Speed in Degrees (**QSD**)
422 +{{html wiki="true" clean="false"}}
423 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
424 +Example: #5RDM512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
354 354  
355 -Ex: #5QSD<cr> might return *5QSD1800<cr>
426 +The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.<div class="wikimodel-emptyline"></div>
356 356  
357 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed.
358 -If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
428 +The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).<div class="wikimodel-emptyline"></div>
359 359  
360 -|**Command sent**|**Returned value (1/10 °)**
361 -|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
362 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
363 -|ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
364 -|ex: #5QSD3<cr>|Target travel speed
430 +Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div>
365 365  
366 -Configure Speed in Degrees (**CSD**)
432 +Example: #5QMD&lt;cr&gt; might return *5QMD512<div class="wikimodel-emptyline"></div>
367 367  
368 -Ex: #5CSD1800<cr>
434 +This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle.
435 +<div class="wikimodel-emptyline"></div></div></div>
436 +{{/html}}
369 369  
370 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
438 +====== __Query Status (**Q**)__ ======
371 371  
372 -====== __13. Max Speed in RPM (**SR**)__ ======
440 +{{html wiki="true" clean="false"}}
441 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
442 +The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div>
373 373  
374 -Ex: #5SD45<cr>
444 +Ex: #5Q&lt;cr&gt; might return *5Q6&lt;cr&gt;, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div>
445 +</div></div>
446 +{{/html}}
375 375  
376 -This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
448 +|(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description**
449 +| |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
450 +| |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
451 +| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command
452 +| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
453 +| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
454 +| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
455 +| |ex: *5Q6<cr>|6: Holding|Keeping current position
456 +| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
457 +| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
458 +| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
459 +| |ex: *5Q10<cr>|10: Safe Mode|(((
460 +A safety limit has been exceeded (temperature, peak current or extended high current draw).
377 377  
378 -Query Speed in Degrees (**QSR**)
462 +Send a Q1 command to know which limit has been reached (described below).
463 +)))
379 379  
380 -Ex: #5QSR<cr> might return *5QSR45<cr>
465 +{{html wiki="true" clean="false"}}
466 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
467 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div>
468 +</div></div>
469 +{{/html}}
381 381  
382 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed.
383 -If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
471 +|(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
472 +| |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
473 +| |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
474 +| |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
475 +| |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
384 384  
385 -|**Command sent**|**Returned value (1/10 °)**
386 -|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
387 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
388 -|ex: #5QSR2<cr>|Instantaneous speed (same as QWR)
389 -|ex: #5QSR3<cr>|Target travel speed
477 +====== __Limp (**L**)__ ======
390 390  
391 -Configure Speed in RPM (**CSR**)
479 +{{html wiki="true" clean="false"}}
480 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
481 +Example: #5L&lt;cr&gt;<div class="wikimodel-emptyline"></div>
392 392  
393 -Ex: #5CSR45<cr>
483 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L&lt;cr&gt;.
484 +<div class="wikimodel-emptyline"></div></div></div>
485 +{{/html}}
394 394  
395 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
487 +====== __Halt & Hold (**H**)__ ======
396 396  
397 -====== __14. LED Color (**LED**)__ ======
489 +{{html wiki="true" clean="false"}}
490 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
491 +Example: #5H&lt;cr&gt;<div class="wikimodel-emptyline"></div>
398 398  
399 -Ex: #5LED3<cr>
493 +This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
494 +<div class="wikimodel-emptyline"></div></div></div>
495 +{{/html}}
400 400  
401 -This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
497 +== Motion Setup ==
402 402  
403 -0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;
499 +====== __Enable Motion Profile (**EM**)__ ======
404 404  
405 -Query LED Color (**QLED**)
501 +{{html wiki="true" clean="false"}}
502 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
503 +Ex: #5EM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
406 406  
407 -Ex: #5QLED<cr> might return *5QLED5<cr>
505 +This command enables a trapezoidal motion profile. By default, the trapezoidal motion profile is enabled. If the motion profile is enabled, angular acceleration (AA) and angular deceleration(AD) will have an effect on the motion. Also, SD/S and T modifiers can be used.<div class="wikimodel-emptyline"></div>
408 408  
409 -This simple query returns the indicated servo's LED color.
507 +Ex: #5EM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
410 410  
411 -Configure LED Color (**CLED**)
509 +This command will disable the trapezoidal motion profile. As such, the servo will move at full speed for D/MD action commands. Angular acceleration (AA) and angular deceleration(AD) won't have an effect on motion in this mode and modifiers SD/S or T cannot be used.<div class="wikimodel-emptyline"></div>
412 412  
413 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
511 +Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div>
414 414  
415 -====== __15. Gyre Rotation Direction (**G**)__ ======
513 +Ex: #5QEM&lt;cr&gt; might return *5QEM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
416 416  
417 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
515 +This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div>
418 418  
419 -Ex: #5G-1<cr>
517 +Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div>
420 420  
421 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
519 +Ex: #5CEM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
422 422  
423 -Query Gyre Direction (**QG**)
521 +This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
522 +<div class="wikimodel-emptyline"></div></div></div>
523 +{{/html}}
424 424  
425 -Ex: #5QG<cr> might return *5QG-1<cr>
525 +====== __Filter Position Count (**FPC**)__ ======
426 426  
427 -The value returned above means the servo is in a counter-clockwise gyration.
527 +{{html wiki="true" clean="false"}}
528 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
529 +Ex: #5FPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
530 +This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div>
428 428  
429 -Configure Gyre (**CG**)
532 +Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div>
430 430  
431 -Ex: #5CG-1<cr>
534 +Ex: #5QFPC&lt;cr&gt; might return *5QFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
432 432  
433 -This changes the gyre direction as described above and also writes to EEPROM.
536 +This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div>
434 434  
435 -====== __16. Identification Number (**ID**)__ ======
538 +Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div>
436 436  
437 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate).
540 +Ex: #5CFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
438 438  
439 -Query Identification (**QID**)
542 +This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
543 +<div class="wikimodel-emptyline"></div></div></div>
544 +{{/html}}
440 440  
441 -EX: #254QID<cr> might return *QID5<cr>
546 +====== __Origin Offset (**O**)__ ======
442 442  
443 -When using the query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number (assuming the query is sent . Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
548 +{{html wiki="true" clean="false"}}
549 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
550 +Example: #5O2400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
444 444  
445 -Configure ID (**CID**)
552 +This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div>
446 446  
447 -Ex: #4CID5<cr>
554 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
448 448  
449 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.
556 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div>
450 450  
451 -====== __17. Baud Rate__ ======
558 +[[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div>
452 452  
453 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200. The baud rates are currently restricted to those above.
560 +Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div>
454 454  
455 -Query Baud Rate (**QB**)
562 +Example: #5QO&lt;cr&gt; might return *5QO-13<div class="wikimodel-emptyline"></div>
456 456  
457 -Ex: #5QB<cr> might return *5QB115200<cr>
564 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div>
458 458  
459 -Since the command to query the baud rate must be done at the servo's existing baud rate, it casimply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.
566 +Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div>
460 460  
461 -Configure Baud Rate (**CB**)
568 +Example: #5CO-24&lt;cr&gt;<div class="wikimodel-emptyline"></div>
462 462  
463 -Important Note: the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.
570 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
571 +<div class="wikimodel-emptyline"></div></div></div>
572 +{{/html}}
464 464  
465 -Ex: #5CB9600<cr>
574 +====== __Angular Range (**AR**)__ ======
466 466  
467 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
576 +{{html wiki="true" clean="false"}}
577 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
578 +Example: #5AR1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
468 468  
469 -====== __18. {//Coming soon//}__ ======
580 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div>
470 470  
471 -Command coming soon....
582 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
472 472  
473 -====== __19. First Position (Degrees)__ ======
584 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div>
474 474  
475 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.
586 +[[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div>
476 476  
477 -Query First Position in Degrees (**QFD**)
588 +Finally, the angular range action command (ex. #5AR1800&lt;cr&gt;) and origin offset action command (ex. #5O-1200&lt;cr&gt;) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div>
478 478  
479 -Ex: #5QFD<cr> might return *5QFD64<cr>
590 +[[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div>
480 480  
481 -The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If there is no first position value stored, the reply will be DIS
592 +Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div>
482 482  
483 -Configure First Position in Degrees (**CFD**)
594 +Example: #5QAR&lt;cr&gt; might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div>
484 484  
485 -Ex: #5CD64<cr>
596 +Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div>
486 486  
487 -This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
598 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
599 +<div class="wikimodel-emptyline"></div></div></div>
600 +{{/html}}
488 488  
489 -====== __20. Query Model String (**QMS**)__ ======
602 +====== __Angular Stiffness (**AS**)__ ======
490 490  
491 -Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
604 +{{html wiki="true" clean="false"}}
605 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
606 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div>
492 492  
493 -This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
608 +A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div>
494 494  
495 -====== __21. Query Serial Number (**QN**)__ ======
610 +* The more torque will be applied to try to keep the desired position against external input / changes
611 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div>
496 496  
497 -Ex: #5QN<cr> might return *5QN12345678<cr>
613 +A lower value on the other hand:<div class="wikimodel-emptyline"></div>
498 498  
499 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
615 +* Causes a slower acceleration to the travel speed, and a slower deceleration
616 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div>
500 500  
501 -====== __22. Query Firmware (**QF**)__ ======
618 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
502 502  
503 -Ex: #5QF<cr> might return *5QF411<cr>
620 +Ex: #5AS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
504 504  
505 -The number in the reply represents the firmware version, in this example being 411.
622 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div>
506 506  
507 -====== __23. Query Status (**Q**)__ ======
624 +Ex: #5QAS&lt;cr&gt;<div class="wikimodel-emptyline"></div>
508 508  
509 -The status query described what the servo is currently doing. The query returns an integer which must be looked up in the table below. Use the CLB advanced command to have the LED blink for certain statuses.
626 +Queries the value being used.<div class="wikimodel-emptyline"></div>
510 510  
511 -Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
628 +Ex: #5CAS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
512 512  
513 -|***Value returned (Q)**|**Status**|**Detailed description**
514 -|ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
515 -|ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
516 -|ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely
517 -|ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
518 -|ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
519 -|ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
520 -|ex: *5Q6<cr>|6: Holding|Keeping current position
521 -|ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
522 -|ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
523 -|ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
524 -|ex: *5Q10<cr>|10: Safe Mode|(((
525 -A safety limit has been exceeded (temperature, peak current or extended high current draw).
630 +Writes the desired angular stiffness value to EEPROM.
631 +<div class="wikimodel-emptyline"></div></div></div>
632 +{{/html}}
526 526  
527 -Send a Q1 command to know which limit has been reached (described below).
528 -)))
634 +====== __Angular Holding Stiffness (**AH**)__ ======
529 529  
530 -(% class="wikigeneratedid" %)
531 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
636 +{{html wiki="true" clean="false"}}
637 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
638 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
532 532  
533 -|***Value returned (Q1)**|**Status**|**Detailed description**
534 -|ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
535 -|ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
536 -|ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
537 -|ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
640 +Ex: #5AH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
538 538  
539 -====== __24. Query Voltage (**QV**)__ ======
642 +This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div>
540 540  
541 -Ex: #5QV<cr> might return *5QV11200<cr>
644 +Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div>
542 542  
543 -The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
646 +Ex: #5QAH&lt;cr&gt; might return *5QAH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
544 544  
545 -====== __25. Query Temperature (**QT**)__ ======
648 +This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div>
546 546  
547 -Ex: #5QT<cr> might return *5QT564<cr>
650 +Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div>
548 548  
549 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
652 +Ex: #5CAH2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
550 550  
551 -====== __26. Query Current (**QC**)__ ======
654 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM.
655 +<div class="wikimodel-emptyline"></div></div></div>
656 +{{/html}}
552 552  
553 -Ex: #5QC<cr> might return *5QC140<cr>
658 +====== __Angular Acceleration (**AA**)__ ======
554 554  
555 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
660 +{{html wiki="true" clean="false"}}
661 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
662 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
556 556  
557 -====== __27. Configure RC Mode (**CRC**)__ ======
664 +Ex: #5AA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
558 558  
559 -This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
666 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
560 560  
561 -|**Command sent**|**Note**
562 -|ex: #5CRC1<cr>|Change to RC position mode.
563 -|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode.
564 -|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode.
668 +Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div>
565 565  
566 -EX: #5CRC2<cr>
670 +Ex: #5QAA&lt;cr&gt; might return *5QAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
567 567  
568 -This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.
672 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
569 569  
570 -Important note:** **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), ensuring a common GND and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.
674 +Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div>
571 571  
572 -====== __28. **RESET**__ ======
676 +Ex: #5CAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
573 573  
574 -Ex: #5RESET<cr> or #5RS<cr>
678 +This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
679 +<div class="wikimodel-emptyline"></div></div></div>
680 +{{/html}}
575 575  
576 -This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
577 -Note: after a RESET command is received the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.
682 +====== __Angular Deceleration (**AD**)__ ======
578 578  
579 -====== __29. **DEFAULT** & CONFIRM__ ======
684 +{{html wiki="true" clean="false"}}
685 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
686 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
580 580  
581 -Ex: #5DEFAULT<cr>
688 +Ex: #5AD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
582 582  
583 -This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
690 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
584 584  
585 -EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
692 +Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div>
586 586  
587 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
694 +Ex: #5QAD&lt;cr&gt; might return *5QAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
588 588  
589 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
696 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
590 590  
591 -====== __30. **UPDATE** & CONFIRM__ ======
698 +Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div>
592 592  
593 -Ex: #5UPDATE<cr>
700 +Ex: #5CAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
594 594  
595 -This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
702 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
703 +<div class="wikimodel-emptyline"></div></div></div>
704 +{{/html}}
596 596  
597 -EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
706 +====== __Gyre Direction (**G**)__ ======
598 598  
599 -Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
708 +{{html wiki="true" clean="false"}}
709 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
710 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div>
600 600  
601 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
712 +Ex: #5G-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
602 602  
603 -== Details - Advanced ==
714 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div>
604 604  
605 -The motion controller used in serial mode is not the same as the motion controller use in RC mode. RC mode is intended to add functionality to what would be considered "normal" RC behavior based on PWM input.
716 +Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div>
606 606  
607 -====== __A1. Angular Stiffness (**AS**)__ ======
718 +Ex: #5QG&lt;cr&gt; might return *5QG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
608 608  
609 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.
720 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div>
610 610  
611 -A positive value of "angular stiffness":
722 +Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div>
612 612  
613 -* The more torque will be applied to try to keep the desired position against external input / changes
614 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
724 +Ex: #5CG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
615 615  
616 -A negative value on the other hand:
726 +This changes the gyre direction as described above and also writes to EEPROM.
727 +<div class="wikimodel-emptyline"></div></div></div>
728 +{{/html}}
617 617  
618 -* Causes a slower acceleration to the travel speed, and a slower deceleration
619 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back
730 +====== __First Position__ ======
620 620  
621 -The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
732 +{{html wiki="true" clean="false"}}
733 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
734 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div>
622 622  
623 -Ex: #5AS-2<cr>
736 +Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div>
624 624  
625 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
738 +Ex: #5QFD&lt;cr&gt; might return *5QFD900&lt;cr&gt; <div class="wikimodel-emptyline"></div>
626 626  
627 -Ex: #5QAS<cr>
740 +The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div>
628 628  
629 -Queries the value being used.
742 +Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div>
630 630  
631 -Ex: #5CAS<cr>
744 +Ex: #5CD900&lt;cr&gt;<div class="wikimodel-emptyline"></div>
632 632  
633 -Writes the desired angular stiffness value to memory.
746 +This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD&lt;cr&gt;) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD&lt;cr&gt;
747 +<div class="wikimodel-emptyline"></div></div></div>
748 +{{/html}}
634 634  
635 -====== __A2. Angular Holding Stiffness (**AH**)__ ======
750 +====== __Maximum Speed in Degrees (**SD**)__ ======
636 636  
637 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. Note that when  considering altering a stiffness value, the end effect depends on the mode being tested.
752 +{{html wiki="true" clean="false"}}
753 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
754 +Ex: #5SD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
755 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
638 638  
639 -Ex: #5AH3<cr>
757 +Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div>
640 640  
641 -This sets the holding stiffness for servo #5 to 3 for that session.
759 +Ex: #5QSD&lt;cr&gt; might return *5QSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
642 642  
643 -Query Angular Hold Stiffness (**QAH**)
761 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1&lt;cr&gt; is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
644 644  
645 -Ex: #5QAH<cr> might return *5QAH3<cr>
763 +|**Command sent**|**Returned value (1/10 °)**
764 +|ex: #5QSD&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
765 +|ex: #5QSD1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
766 +|ex: #5QSD2&lt;cr&gt;|Instantaneous speed (same as QWD)
767 +|ex: #5QSD3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
646 646  
647 -This returns the servo's angular holding stiffness value.
769 +Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div>
648 648  
649 -Configure Angular Hold Stiffness (**CAH**)
771 +Ex: #5CSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
772 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
773 +</div></div>
774 +{{/html}}
650 650  
651 -Ex: #5CAH2<cr>
776 +====== __Maximum Speed in RPM (**SR**)__ ======
652 652  
653 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM. Note that when  considering altering a stiffness value, the end effect depends on the mode being tested.
778 +{{html wiki="true" clean="false"}}
779 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
780 +Ex: #5SR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
781 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
654 654  
655 -====== __A3: Angular Acceleration (**AA**)__ ======
783 +Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div>
656 656  
657 -The default value for angular acceleration is 100, which is the same as the maximum deceleration. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
785 +Ex: #5QSR&lt;cr&gt; might return *5QSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
658 658  
659 -Ex: #5AA30<cr>
787 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1&lt;cr&gt; is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
660 660  
661 -Query Angular Acceleration (**QAD**)
789 +|**Command sent**|**Returned value (1/10 °)**
790 +|ex: #5QSR&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
791 +|ex: #5QSR1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
792 +|ex: #5QSR2&lt;cr&gt;|Instantaneous speed (same as QWD)
793 +|ex: #5QSR3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
662 662  
663 -Ex: #5QA<cr> might return *5QA30<cr>
795 +Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div>
664 664  
665 -Configure Angular Acceleration (**CAD**)
797 +Ex: #5CSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
798 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
799 +</div></div>
800 +{{/html}}
666 666  
667 -Ex: #5CA30<cr>
802 +== Modifiers ==
668 668  
669 -====== __A4: Angular Deceleration (**AD**)__ ======
804 +====== __Speed (**S**, **SD**) modifier__ ======
670 670  
671 -The default value for angular deceleration is 100, which is the same as the maximum acceleration. Values between 1 and 15 have the greatest impact.
806 +{{html wiki="true" clean="false"}}
807 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
808 +Example: #5P1500S750&lt;cr&gt;<div class="wikimodel-emptyline"></div>
809 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
810 +Example: #5D0SD180&lt;cr&gt;<div class="wikimodel-emptyline"></div>
811 +Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 180 degrees per second.<div class="wikimodel-emptyline"></div>
812 +Query Speed (**QS**)<div class="wikimodel-emptyline"></div>
813 +Example: #5QS&lt;cr&gt; might return *5QS300&lt;cr&gt;<div class="wikimodel-emptyline"></div>
814 +This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div>
815 +</div></div>
816 +{{/html}}
672 672  
673 -Ex: #5AD8<cr>
818 +====== __Timed move (**T**) modifier__ ======
674 674  
675 -Query Angular Deceleration (**QAD**)
820 +{{html wiki="true" clean="false"}}
821 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
822 +Example: #5P1500T2500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
676 676  
677 -Ex: #5QD<cr> might return *5QD8<cr>
824 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
825 +**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div>
826 +</div></div>
827 +{{/html}}
678 678  
679 -Configure Angular Deceleration (**CAD**)
829 +====== __Current Halt & Hold (**CH**) modifier__ ======
680 680  
681 -Ex: #5CD8<cr>
831 +{{html wiki="true" clean="false"}}
832 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
833 +Example: #5D1423CH400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
682 682  
683 -====== __A5: Motion Control (**EM**)__ ======
835 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div>
836 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
837 +</div></div>
838 +{{/html}}
684 684  
685 -The command EM0 disables use of the motion controller (acceleration, velocity / travel, deceleration). As such, the servo will move at full speed for all motion commands. The command EM1 enables use of the motion controller.
840 +====== __Current Limp (**CL**) modifier__ ======
686 686  
687 -Note that if the modifiers S or T are used, it is assumed that motion control is desired, and for that command, EM1 will be used.
842 +{{html wiki="true" clean="false"}}
843 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
844 +Example: #5D1423CL400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
688 688  
689 -====== __A6. Configure LED Blinking (**CLB**)__ ======
846 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div>
847 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
848 +</div></div>
849 +{{/html}}
690 690  
691 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:
851 +== Telemetry ==
692 692  
693 -(% style="width:195px" %)
694 -|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
695 -|(% style="width:134px" %)No blinking|(% style="width:58px" %)0
696 -|(% style="width:134px" %)Limp|(% style="width:58px" %)1
697 -|(% style="width:134px" %)Holding|(% style="width:58px" %)2
698 -|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
699 -|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
700 -|(% style="width:134px" %)Free|(% style="width:58px" %)16
701 -|(% style="width:134px" %)Travelling|(% style="width:58px" %)32
702 -|(% style="width:134px" %)Always blink|(% style="width:58px" %)63
853 +====== __Query Voltage (**QV**)__ ======
703 703  
704 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
855 +{{html wiki="true" clean="false"}}
856 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
857 +Ex: #5QV&lt;cr&gt; might return *5QV11200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
858 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div>
859 +</div></div>
860 +{{/html}}
705 705  
706 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
707 -Ex: #5CLB1<cr> only blink when limp (1)
708 -Ex: #5CLB2<cr> only blink when holding (2)
709 -Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)
710 -Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)
711 -Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)
862 +====== __Query Temperature (**QT**)__ ======
712 712  
713 -RESETTING the servo is needed.
864 +{{html wiki="true" clean="false"}}
865 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
866 +Ex: #5QT&lt;cr&gt; might return *5QT564&lt;cr&gt;<div class="wikimodel-emptyline"></div>
867 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div>
868 +</div></div>
869 +{{/html}}
714 714  
715 -====== __A7. Current Halt & Hold (**CH**)__ ======
871 +====== __Query Current (**QC**)__ ======
716 716  
717 -This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR.
873 +{{html wiki="true" clean="false"}}
874 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
875 +Ex: #5QC&lt;cr&gt; might return *5QC140&lt;cr&gt;<div class="wikimodel-emptyline"></div>
876 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div>
877 +</div></div>
878 +{{/html}}
718 718  
719 -Ex: #5D1423CH400<cr>
880 +====== __Query Model String (**QMS**)__ ======
720 720  
721 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.
882 +{{html wiki="true" clean="false"}}
883 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
884 +Ex: #5QMS&lt;cr&gt; might return *5QMSLSS-HS1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
885 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div>
886 +</div></div>
887 +{{/html}}
722 722  
723 -====== __A8. Current Limp (**CL**)__ ======
889 +====== __Query Firmware (**QF**)__ ======
724 724  
725 -This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR.
891 +{{html wiki="true" clean="false"}}
892 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
893 +Ex: #5QF&lt;cr&gt; might return *5QF368&lt;cr&gt;<div class="wikimodel-emptyline"></div>
894 +The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div>
895 +The command #5QF3&lt;cr&gt; can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div>
896 +</div></div>
897 +{{/html}}
726 726  
727 -Ex: #5D1423CH400<cr>
899 +====== __Query Serial Number (**QN**)__ ======
728 728  
729 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.
901 +{{html wiki="true" clean="false"}}
902 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
903 +Ex: #5QN&lt;cr&gt; might return *5QN12345678&lt;cr&gt;<div class="wikimodel-emptyline"></div>
904 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div>
905 +</div></div>
906 +{{/html}}
730 730  
908 +== RGB LED ==
909 +
910 +====== __LED Color (**LED**)__ ======
911 +
912 +{{html wiki="true" clean="false"}}
913 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
914 +Ex: #5LED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
915 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div>
916 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div>
917 +Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div>
918 +Ex: #5QLED&lt;cr&gt; might return *5QLED5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
919 +This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div>
920 +Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div>
921 +Ex: #5CLED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
922 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div>
923 +</div></div>
924 +{{/html}}
925 +
926 +====== __Configure LED Blinking (**CLB**)__ ======
927 +
928 +{{html wiki="true" clean="false"}}
929 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
930 +This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div>
931 +
932 +(% style="width:195px" %)
933 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
934 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0
935 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1
936 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2
937 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
938 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
939 +|(% style="width:134px" %)Free|(% style="width:58px" %)16
940 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32
941 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div>
942 +
943 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div>
944 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div>
945 +Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div>
946 +Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div>
947 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div>
948 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div>
949 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div>
950 +RESETTING the servo is needed.<div class="wikimodel-emptyline"></div>
951 +</div></div>
952 +{{/html}}
953 +
731 731  = RGB LED Patterns =
732 732  
733 733  The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]]
Copyright RobotShop 2018